Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = EUV spectra

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
5 pages, 196 KiB  
Article
Measurement and Flexible Atomic Code (FAC) Computation of Extreme Ultraviolet (EUV) Spectra of Eu
by Joel H. T. Clementson, Peter Beiersdorfer, Gregory V. Brown, Natalie Hell and Elmar Träbert
Atoms 2024, 12(10), 48; https://doi.org/10.3390/atoms12100048 - 27 Sep 2024
Viewed by 1334
Abstract
A group of EUV lines of H- and He-like ions of C provides excellent wavelength calibrations for a position-sensitive multichannel detector at a high-resolution spectrograph. We have exploited this setting for a series of spectra of highly charged Eu ions recorded at the [...] Read more.
A group of EUV lines of H- and He-like ions of C provides excellent wavelength calibrations for a position-sensitive multichannel detector at a high-resolution spectrograph. We have exploited this setting for a series of spectra of highly charged Eu ions recorded at the Livermore SuperEBIT electron beam ion trap. A variation in the electron beam energy results in spectra with correspondingly staggered highest Eu ion charge states ranging from Na- through to Ni-like Eu ions. A number of spectral features can be identified from the literature, but the majority of line identifications need guidance from computations of simulated spectra on the basis of collisional-radiative models. For ions with more than two electrons in the valence shell, the typical computational results are of a markedly lower accuracy. We have applied the Flexible Atomic Code (FAC), which is capable of handling all our measured ions with reasonable accuracy. We look into the systematics of the deviation of the computed transition energies from the measured ones as a function of the electron number. Full article
(This article belongs to the Special Issue 21st International Conference on the Physics of Highly Charged Ions)
Show Figures

Figure 1

11 pages, 2109 KiB  
Article
Simulation of Extreme Ultraviolet Radiation and Conversion Efficiency of Lithium Plasma in a Wide Range of Plasma Situations
by Xiangdong Li, Frank B. Rosmej and Zhanbin Chen
Atoms 2024, 12(3), 16; https://doi.org/10.3390/atoms12030016 - 12 Mar 2024
Viewed by 2106
Abstract
Based on the detailed term accounting approach, the relationship between extreme ultraviolet conversion efficiency and plasma conditions, which range from 5 to 200 eV for plasma temperature and from 4.63 × 1017 to 4.63 × 1022 cm−3 for plasma density, [...] Read more.
Based on the detailed term accounting approach, the relationship between extreme ultraviolet conversion efficiency and plasma conditions, which range from 5 to 200 eV for plasma temperature and from 4.63 × 1017 to 4.63 × 1022 cm−3 for plasma density, is studied for lithium plasmas through spectral simulations involving very extended atomic configurations, including a benchmark set of autoionizing states. The theoretical limit of the EUV conversion efficiency and its dependence on sustained plasma time are given for different plasma densities. The present study provides the necessary understanding of EUV formation from the perspective of atomic physics and also provides useful knowledge for improving EUV conversion efficiency with different technologies. Full article
(This article belongs to the Special Issue Atomic Physics in Dense Plasmas)
Show Figures

Figure 1

23 pages, 1614 KiB  
Article
Spectral Imager of the Solar Atmosphere: The First Extreme-Ultraviolet Solar Integral Field Spectrograph Using Slicers
by Ariadna Calcines Rosario, Frederic Auchère, Alain Jody Corso, Giulio Del Zanna, Jaroslav Dudík, Samuel Gissot, Laura A. Hayes, Graham S. Kerr, Christian Kintziger, Sarah A. Matthews, Sophie Musset, David Orozco Suárez, Vanessa Polito, Hamish A. S. Reid and Daniel F. Ryan
Aerospace 2024, 11(3), 208; https://doi.org/10.3390/aerospace11030208 - 7 Mar 2024
Cited by 3 | Viewed by 2404
Abstract
Particle acceleration, and the thermalisation of energetic particles, are fundamental processes across the universe. Whilst the Sun is an excellent object to study this phenomenon, since it is the most energetic particle accelerator in the Solar System, this phenomenon arises in many other [...] Read more.
Particle acceleration, and the thermalisation of energetic particles, are fundamental processes across the universe. Whilst the Sun is an excellent object to study this phenomenon, since it is the most energetic particle accelerator in the Solar System, this phenomenon arises in many other astrophysical objects, such as active galactic nuclei, black holes, neutron stars, gamma ray bursts, solar and stellar coronae, accretion disks and planetary magnetospheres. Observations in the Extreme Ultraviolet (EUV) are essential for these studies but can only be made from space. Current spectrographs operating in the EUV use an entrance slit and cover the required field of view using a scanning mechanism. This results in a relatively slow image cadence in the order of minutes to capture inherently rapid and transient processes, and/or in the spectrograph slit ‘missing the action’. The application of image slicers for EUV integral field spectrographs is therefore revolutionary. The development of this technology will enable the observations of EUV spectra from an entire 2D field of view in seconds, over two orders of magnitude faster than what is currently possible. The Spectral Imaging of the Solar Atmosphere (SISA) instrument is the first integral field spectrograph proposed for observations at ∼180 Å combining the image slicer technology and curved diffraction gratings in a highly efficient and compact layout, while providing important spectroscopic diagnostics for the characterisation of solar coronal and flare plasmas. SISA’s characteristics, main challenges, and the on-going activities to enable the image slicer technology for EUV applications are presented in this paper. Full article
(This article belongs to the Special Issue Space Telescopes & Payloads)
Show Figures

Figure 1

13 pages, 2744 KiB  
Article
Experimental Study on the Temporal Evolution Parameters of Laser–Produced Tin Plasma under Different Laser Pulse Energies for LPP–EUV Source
by Yiyi Chen, Chongxiao Zhao, Qikun Pan, Ranran Zhang, Yang Gao, Xiaoxi Li, Jin Guo and Fei Chen
Photonics 2023, 10(12), 1339; https://doi.org/10.3390/photonics10121339 - 4 Dec 2023
Cited by 5 | Viewed by 2025
Abstract
The laser–produced plasma extreme ultraviolet (LPP–EUV) source is the sole light source currently available for commercial EUVL (extreme ultraviolet lithography) machines. The plasma parameters, such as the electron temperature and electron density, affect the conversion efficiency (CE) of extreme ultraviolet radiation and other [...] Read more.
The laser–produced plasma extreme ultraviolet (LPP–EUV) source is the sole light source currently available for commercial EUVL (extreme ultraviolet lithography) machines. The plasma parameters, such as the electron temperature and electron density, affect the conversion efficiency (CE) of extreme ultraviolet radiation and other critical parameters of LPP–EUV source directly. In this paper, the optical emission spectroscopy (OES) was employed to investigate the time–resolved plasma parameters generated by an Nd:YAG laser irradiation on a planar tin target. Assuming that the laser–produced tin plasma satisfies the local thermodynamic equilibrium (LTE) condition, the electron temperature and electron density of the plasma were calculated by the Saha–Boltzmann plot and Stark broadening methods. The experimental results revealed that during the early stage of plasma formation (delay time < 50 ns), there was a significant presence of continuum emission. Subsequently, the intensity of the continuum emission gradually decreased, while line spectra emerged and became predominant at a delay time of 300 ns. In addition, the evolution trend of plasma parameters, with the incident laser pulse energy set at 300 mJ, was characterized by a rapid initial decrease followed by a gradual decline as the delay time increased. Furthermore, with an increase in the incident laser pulse energy from 300 mJ to 750 mJ, the electron temperature and electron density of laser–produced tin plasma exhibiting a monotonically showed increasing trend at the same delay time. Full article
Show Figures

Figure 1

33 pages, 484 KiB  
Review
Atomic Lifetimes of Astrophysical Interest in Ions of Fe
by Elmar Träbert
Atoms 2023, 11(5), 85; https://doi.org/10.3390/atoms11050085 - 22 May 2023
Cited by 3 | Viewed by 2380
Abstract
Multiply charged ions of iron dominate the EUV spectrum of the solar corona. For the interpretation of such spectra, data on both the atomic structure and the transition rate are essential, most of which are provided by theory and computation. The wavelengths of [...] Read more.
Multiply charged ions of iron dominate the EUV spectrum of the solar corona. For the interpretation of such spectra, data on both the atomic structure and the transition rate are essential, most of which are provided by theory and computation. The wavelengths of observed spectra are used to test the predicted energy level structure, while the line intensities depend on level lifetimes and branch fractions. A number of electric dipole and higher-order transition rates have been measured over the years in the laboratory, mostly by beam-foil spectroscopy, at heavy-ion storage rings, and at various ion traps. In this paper, the state of the knowledge base on level lifetimes in all ions of Fe is assessed, and the problems of further progress are outlined. Full article
(This article belongs to the Special Issue Atomic and Molecular Data in Astronomy and Astrophysics)
Show Figures

Figure 1

15 pages, 5764 KiB  
Article
Impurity Behavior in Plasma Recovery after a Vacuum Failure in the Experimental Advanced Superconducting Tokamak
by Zihang Zhao, Ling Zhang, Ruijie Zhou, Yang Yang, Wenmin Zhang, Yunxin Cheng, Shigeru Morita, Ang Ti, Ailan Hu, Zhen Sun, Fengling Zhang, Weikuan Zhao, Zhengwei Li, Yiming Cao, Guizhong Zuo and Haiqing Liu
Appl. Sci. 2023, 13(7), 4338; https://doi.org/10.3390/app13074338 - 29 Mar 2023
Cited by 1 | Viewed by 1840
Abstract
After a vacuum failure in a tokamak, plasma runaway or plasma disruptions frequently occur during plasma recovery, causing difficulties in rebuilding a well-confined collisional plasma. In this work, the impurity behavior during plasma recovery after a vacuum failure in the 2019 spring campaign [...] Read more.
After a vacuum failure in a tokamak, plasma runaway or plasma disruptions frequently occur during plasma recovery, causing difficulties in rebuilding a well-confined collisional plasma. In this work, the impurity behavior during plasma recovery after a vacuum failure in the 2019 spring campaign of the Experimental Advanced Superconducting Tokamak (EAST) was studied by analyzing the spectra recorded by fast-time-response extreme ultraviolet (EUV) spectrometers with 5 ms/frame. During the plasma current ramp-up in recovery discharges, a high content of the low-Z impurities of oxygen and carbon was found, i.e., dozens of times higher than that of normal discharges, which may have caused the subsequent runaway discharges. The electron temperature in the recovery discharge may have dropped to less than 75 eV when the collisional plasma quenched to the runaway status, based on the observable impurity ions in the two cases. Therefore, the lifetime of collisional plasma in the recovery discharge, τc, was deduced from the lifetime of H- and He-like oxygen and carbon ions identified from EUV spectra. It was found that, after several discharges with real-time lithium granule injection, the runaway electron flux and O+ influx reduced to 45% and 20%, respectively. Meanwhile, the lifetime of confined plasma was extended from 113 ms to 588 ms, indicating the effective suppression of impurities and runaway electrons and improvement in plasma performance by real-time lithium granule injection. The results in this work provide valuable references for the achievement of first plasma in future superconducting fusion devices such as ITER and CFETR. Full article
(This article belongs to the Special Issue Advances in Fusion Engineering and Design)
Show Figures

Figure 1

17 pages, 371 KiB  
Viewpoint
EUV Beam–Foil Spectra of Germanium and a Blind-Spot Problem in Spectroscopy
by Elmar Träbert
Atoms 2023, 11(3), 45; https://doi.org/10.3390/atoms11030045 - 2 Mar 2023
Cited by 2 | Viewed by 1968
Abstract
Beam–foil extreme-ultraviolet survey spectra of Ge (Z=32) are presented. The data have been garnered at the performance limit of the heavy-ion accelerator available, with a correspondingly limited statistical and calibrational reliability. However, the Ge spectra have been recorded at [...] Read more.
Beam–foil extreme-ultraviolet survey spectra of Ge (Z=32) are presented. The data have been garnered at the performance limit of the heavy-ion accelerator available, with a correspondingly limited statistical and calibrational reliability. However, the Ge spectra have been recorded at various delays after excitation, and this technique points to a possible blind spot in some other spectroscopic techniques, and thus in the literature coverage. A similarly patchy coverage can be noted in various atomic structure computations. The experimental and theoretical gaps seem to be correlated. Full article
Show Figures

Figure 1

7 pages, 784 KiB  
Article
Analysis of E3 Transitions in Ag-like High-Z Ions Observed with the NIST EBIT
by Endre Takacs, Dipti, David S. La Mantia, Yang Yang, Adam Hosier, Aung Naing, Paul Szypryt, Hunter Staiger, Joseph N. Tan and Yuri Ralchenko
Atoms 2023, 11(3), 43; https://doi.org/10.3390/atoms11030043 - 1 Mar 2023
Cited by 3 | Viewed by 2027
Abstract
We report measurements and identification of the E3 4f7/2,5/2-5s1/2 transitions and E1 allowed transitions in Ag-like W (Z = 74), Re (Z = 75), and Ir (Z = 77). The spectra were [...] Read more.
We report measurements and identification of the E3 4f7/2,5/2-5s1/2 transitions and E1 allowed transitions in Ag-like W (Z = 74), Re (Z = 75), and Ir (Z = 77). The spectra were recorded at the NIST EBIT using a grazing-incidence EUV spectrometer. The present measured wavelengths and theoretical predictions using GRASP2K calculations confirm previous observations of the same E3 transitions in Ag-like W. Our collisional–radiative model using the NOMAD code offers an insight into the population kinematics for Ag-like ions of heavy elements. We discuss the observed spectra and comparisons of the measured and simulated spectral lines. Full article
(This article belongs to the Special Issue 20th International Conference on the Physics of Highly Charged Ions)
Show Figures

Figure 1

12 pages, 6808 KiB  
Communication
Multi-Periodicity of High-Frequency Type III Bursts as a Signature of the Fragmented Magnetic Reconnection
by Marian Karlický and Ján Rybák
Universe 2023, 9(2), 92; https://doi.org/10.3390/universe9020092 - 9 Feb 2023
Cited by 4 | Viewed by 1589
Abstract
Using the radio spectra of the 2 April 2022 eruptive flare, we analyze a group of highfrequency type III bursts by our new wavelet method. In this analysis, we found a multi-periodicity of these bursts that is interpreted by the electron beams accelerated [...] Read more.
Using the radio spectra of the 2 April 2022 eruptive flare, we analyze a group of highfrequency type III bursts by our new wavelet method. In this analysis, we found a multi-periodicity of these bursts that is interpreted by the electron beams accelerated in the fragmented magnetic reconnection in the rising magnetic rope. We propose that each period in these type III bursts is a result of the periodic interaction of sub-ropes formed in the rising magnetic rope. In each interaction, the period depends on the diameter of interacting sub-ropes and local Alfvén velocity. This interpretation is supported by detection of the specific EUV structure which was, according to our knowledge, observed for the first time. All proposed processes occur in the rising magnetic rope. Thus, this flare deviates from the standard flare model, where the main magnetic reconnection is located below the rising magnetic rope. Full article
(This article belongs to the Special Issue Solar Radio Emissions)
Show Figures

Figure 1

28 pages, 922 KiB  
Article
Extreme-Ultraviolet Beam-Foil Spectra of Na through Cl
by Elmar Träbert
Atoms 2021, 9(4), 93; https://doi.org/10.3390/atoms9040093 - 4 Nov 2021
Cited by 1 | Viewed by 2653
Abstract
Beam-foil EUV spectra of elements from Na through Cl are presented, partly in survey spectra and partly in detail spectra. The ionization stages of interest are medium to high, so that three to thirteen electrons remain. Research topics are outlined and the problems [...] Read more.
Beam-foil EUV spectra of elements from Na through Cl are presented, partly in survey spectra and partly in detail spectra. The ionization stages of interest are medium to high, so that three to thirteen electrons remain. Research topics are outlined and the problems of the measurement technique discussed. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

14 pages, 6252 KiB  
Article
Simultaneous Observation of Tungsten Spectra of W0 to W46+ Ions in Visible, VUV and EUV Wavelength Ranges in the Large Helical Device
by Tetsutarou Oishi, Shigeru Morita, Daiji Kato, Izumi Murakami, Hiroyuki A. Sakaue, Yasuko Kawamoto, Tomoko Kawate and Motoshi Goto
Atoms 2021, 9(3), 69; https://doi.org/10.3390/atoms9030069 - 17 Sep 2021
Cited by 13 | Viewed by 3072
Abstract
Spectroscopic studies for emissions released from tungsten ions have been conducted in the Large Helical Device (LHD) for contribution to the tungsten transport study in tungsten divertor fusion devices and for expansion of the experimental database of tungsten line emissions. Tungsten ions are [...] Read more.
Spectroscopic studies for emissions released from tungsten ions have been conducted in the Large Helical Device (LHD) for contribution to the tungsten transport study in tungsten divertor fusion devices and for expansion of the experimental database of tungsten line emissions. Tungsten ions are distributed in the LHD plasma by injecting a pellet consisting of a small piece of tungsten metal wire enclosed by a carbon tube. Line emissions from W0, W5+, W6+, W24+–W28+, W37+, W38+, and W41+–W46+ are observed simultaneously in the visible (3200–3550 Å), vacuum ultraviolet (250–1050 Å), and extreme ultraviolet (5–300 Å) wavelength ranges and the wavelengths are summarized. Temporal evolutions of line emissions from these charge states are compared for comprehensive understanding of tungsten impurity behavior in a single discharge. The charge distribution of tungsten ions strongly depends on the electron temperature. Measurements of emissions from W10+ to W20+ are still insufficient, which is addressed as a future task. Full article
(This article belongs to the Special Issue Atomic and Molecular Spectra in Magnetically Confined Torus Plasmas)
Show Figures

Figure 1

8 pages, 303 KiB  
Article
Spectra of Ga-Like to Cu-Like Praseodymium and Neodymium Ions Observed in the Large Helical Device
by Chihiro Suzuki, Fumihiro Koike, Izumi Murakami, Tetsutarou Oishi and Naoki Tamura
Atoms 2021, 9(3), 46; https://doi.org/10.3390/atoms9030046 - 14 Jul 2021
Cited by 6 | Viewed by 2627
Abstract
Extreme ultraviolet (EUV) spectra of highly charged praseodymium (Pr) and neodymium (Nd) ions have been investigated in optically thin high-temperature plasmas produced in the Large Helical Device (LHD), a magnetically confined torus device for fusion research. Discrete spectral lines emitted mainly from highly [...] Read more.
Extreme ultraviolet (EUV) spectra of highly charged praseodymium (Pr) and neodymium (Nd) ions have been investigated in optically thin high-temperature plasmas produced in the Large Helical Device (LHD), a magnetically confined torus device for fusion research. Discrete spectral lines emitted mainly from highly charged ions having 4s or 4p outermost electrons were observed in plasmas with electron temperatures of 0.8–1.8 keV. Most of the isolated lines of Ga-like to Cu-like Nd ions were identified by a comparison with the recent data recorded in an electron beam ion trap (EBIT). The isolated lines of Pr ions corresponding to the identified lines of Nd ions were easily assigned from a similarity of the spectral feature for these two elements. As a result, some of the lines of Pr ions have been newly identified experimentally for the first time in this study. Full article
(This article belongs to the Special Issue Atomic and Molecular Spectra in Magnetically Confined Torus Plasmas)
Show Figures

Figure 1

38 pages, 887 KiB  
Article
EUV Beam-Foil Spectra of Titanium, Iron, Nickel, and Copper
by Elmar Träbert
Atoms 2021, 9(3), 45; https://doi.org/10.3390/atoms9030045 - 13 Jul 2021
Cited by 3 | Viewed by 2967
Abstract
Beam–foil spectroscopy offers the efficient excitation of the spectra of a single element as well as time-resolved observation. Extreme-ultraviolet (EUV) beam–foil survey and detail spectra of Ti, Fe, Ni, and Cu are presented, as well as survey spectra of Fe and Ni obtained [...] Read more.
Beam–foil spectroscopy offers the efficient excitation of the spectra of a single element as well as time-resolved observation. Extreme-ultraviolet (EUV) beam–foil survey and detail spectra of Ti, Fe, Ni, and Cu are presented, as well as survey spectra of Fe and Ni obtained at an electron beam ion trap. Various details are discussed in the context of line intensity ratios, yrast transitions, prompt and delayed spectra, and intercombination transitions. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

41 pages, 877 KiB  
Article
EUV Beam-Foil Spectra of Scandium, Vanadium, Chromium, Manganese, Cobalt, and Zinc
by Elmar Träbert
Atoms 2021, 9(2), 23; https://doi.org/10.3390/atoms9020023 - 29 Mar 2021
Cited by 4 | Viewed by 3467
Abstract
Beam-foil extreme-ultraviolet spectra of Sc, V, Cr, Mn, Co and Zn are presented that provide survey data of a single element exclusively. Various details are discussed in the context of line intensity ratios, yrast transitions, delayed spectra and peculiar properties of the beam-foil [...] Read more.
Beam-foil extreme-ultraviolet spectra of Sc, V, Cr, Mn, Co and Zn are presented that provide survey data of a single element exclusively. Various details are discussed in the context of line intensity ratios, yrast transitions, delayed spectra and peculiar properties of the beam-foil light source. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

16 pages, 354 KiB  
Review
Calcium and Potassium Spectra in the EUV
by Elmar Träbert
Atoms 2020, 8(4), 73; https://doi.org/10.3390/atoms8040073 - 14 Oct 2020
Cited by 3 | Viewed by 3124
Abstract
In online data bases, the entries on extreme ultraviolet (EUV) spectra of Ca are much more sparse than those of neighbouring elements such as Ar, K, Sc and Ti. This may be a result of experimental problems with Ca in the laboratory as [...] Read more.
In online data bases, the entries on extreme ultraviolet (EUV) spectra of Ca are much more sparse than those of neighbouring elements such as Ar, K, Sc and Ti. This may be a result of experimental problems with Ca in the laboratory as well as of the limited role of multiply charged Ca ions in solar observations. Beam-foil EUV spectra of Ca and K are presented that provide survey data of a single element each. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

Back to TopTop