Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = EMR shielding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2079 KiB  
Review
Radio-Absorbing Magnetic Polymer Composites Based on Spinel Ferrites: A Review
by Vladimir G. Kostishin, Igor M. Isaev and Dmitrij V. Salogub
Polymers 2024, 16(7), 1003; https://doi.org/10.3390/polym16071003 - 6 Apr 2024
Cited by 12 | Viewed by 3567
Abstract
Ferrite-containing polymer composites are of great interest for the development of radar-absorbing and -shielding materials (RAMs and RSMs). The main objective of RAM and RSM development is to achieve a combination of efficient electromagnetic wave (EMW) absorption methods with advantageous technological and mechanical [...] Read more.
Ferrite-containing polymer composites are of great interest for the development of radar-absorbing and -shielding materials (RAMs and RSMs). The main objective of RAM and RSM development is to achieve a combination of efficient electromagnetic wave (EMW) absorption methods with advantageous technological and mechanical properties as well as acceptable weight and dimensions in the final product. This work deals with composite RAMs and RSMs containing spinel-structured ferrites. These materials are chosen since they can act as efficient RAMs in the form of ceramic plates and as fillers for radar-absorbing polymer composites (RAC) for electromagnetic radiation (EMR). Combining ferrites with conducting fillers can broaden the working frequency range of composite RAMs due to the activation of various absorption mechanisms. Ferrite-containing composites are the most efficient materials that can be used as the working media of RAMs and RSMs due to a combination of excellent dielectric and magnetic properties of ferrites. This work contains a brief review of the main theoretical standpoints on EMR interaction with materials, a comparison between the radar absorption properties of ferrites and ferrite–polymer composites and analysis of some phenomenological aspects of the radar absorption mechanisms in those composites. Full article
(This article belongs to the Special Issue Magnetic Polymer Composites: Obtaining, Properties and Application)
Show Figures

Figure 1

26 pages, 6939 KiB  
Article
The Impact of Structural Variations and Coating Techniques on the Microwave Properties of Woven Fabrics Coated with PEDOT:PSS Composition
by Vitalija Rubežienė, Sandra Varnaitė-Žuravliova, Audronė Sankauskaitė, Julija Pupeikė, Paulius Ragulis and Aušra Abraitienė
Polymers 2023, 15(21), 4224; https://doi.org/10.3390/polym15214224 - 25 Oct 2023
Cited by 4 | Viewed by 1628
Abstract
Minimizing the impact of electromagnetic radiation (EMR) holds paramount importance in safeguarding individuals who frequently utilize electrical and electronic devices. Electrically conductive textiles, which possess specialized EMR shielding features, present a promising solution to mitigate the risks related to EMR. Furthermore, these textile-based [...] Read more.
Minimizing the impact of electromagnetic radiation (EMR) holds paramount importance in safeguarding individuals who frequently utilize electrical and electronic devices. Electrically conductive textiles, which possess specialized EMR shielding features, present a promising solution to mitigate the risks related to EMR. Furthermore, these textile-based shielding materials could find application as radar-absorbing materials in stealth technology, emphasizing the need for substantial absorption capabilities in shielding mechanisms. In this study, various textile-based materials with an electrically conductive coating that contain the conjugated polymer system poly(3,4-ethylene-dioxythiophene)-polystyrene sulfonate (PEDOT:PSS) were prepared and investigated. The influence of the textile substrate structural parameters, coating deposit, and coating method on their microwave properties—transmission, reflection, and absorption—was investigated. Reflection and transmission measurements were conducted within a frequency range of 2 to 18 GHz. These measurements revealed that, for the tested samples, the shielding properties are determined by the combined effect of reflection and absorption. However, the role of these two parameters varies across the tested frequency range. It was defined that for fabrics coated on one side, better reflection reduction is obtained when the shielding effectiveness (SE) is below |20| dB. It was found that by controlling the coating deposition on the fabric, it is possible to fine-tune the electrical properties to a certain extent, thereby influencing the microwave properties of the coated fabrics. The studies of prepared samples have shown that reflection and transmission parameters depend not only on the type and quantity of conductive paste applied to the fabric but also on the fabric’s construction parameters and the coating technique used. It was found that the denser the substrate used for coating, the more conductive paste solidifies on the surface, forming a thicker coat on the top. For conductive fabrics with the same substrate to achieve a particular SE value using the knife-over-roll coating technology, the required coating deposit amount is considerably lower as compared with the deposit necessary in the case of screen printing: for the knife-over-roll-coated sample to reach SE 15 dB, the required deposit is approximately 14 g/m2; meanwhile, for a sample coated via screen printing, this amount rises to 23 g/m2. Full article
(This article belongs to the Special Issue Polymer-Based Composites for EMI Shielding)
Show Figures

Figure 1

21 pages, 1707 KiB  
Review
A Brief Review on the High-Energy Electromagnetic Radiation-Shielding Materials Based on Polymer Nanocomposites
by Angel Acevedo-Del-Castillo, Ernesto Águila-Toledo, Santiago Maldonado-Magnere and Héctor Aguilar-Bolados
Int. J. Mol. Sci. 2021, 22(16), 9079; https://doi.org/10.3390/ijms22169079 - 23 Aug 2021
Cited by 27 | Viewed by 6696
Abstract
This paper revises the use of polymer nanocomposites to attenuate high-energy electromagnetic radiation (HE-EMR), such as gamma radiation. As known, high-energy radiation produces drastic damage not only in facilities or electronic devices but also to life and the environment. Among the different approaches [...] Read more.
This paper revises the use of polymer nanocomposites to attenuate high-energy electromagnetic radiation (HE-EMR), such as gamma radiation. As known, high-energy radiation produces drastic damage not only in facilities or electronic devices but also to life and the environment. Among the different approaches to attenuate the HE-EMR, we consider the use of compounds with a high atomic number (Z), such as lead, but as known, lead is toxic. Therefore, different works have considered low-toxicity post-transitional metal-based compounds, such as bismuth. Additionally, nanosized particles have shown higher performance to attenuate HE-EMR than those that are micro-sized. On the other hand, materials with π-conjugated systems can also play a role in spreading the energy of electrons ejected as a consequence of the interaction of HE-EMR with matter, preventing the ionization and bond scission of polymers. The different effects produced by the interactions of the matter with HE-EMR are revised. The increase of the shielding properties of lightweight, flexible, and versatile materials such as polymer-based materials can be a contribution for developing technologies to obtain more efficient materials for preventing the damage produced for the HE-EMR in different industries where it is found. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

21 pages, 6383 KiB  
Article
Development and Investigation of PEDOT:PSS Composition Coated Fabrics Intended for Microwave Shielding and Absorption
by Vitalija Rubeziene, Julija Baltusnikaite-Guzaitiene, Ausra Abraitiene, Audrone Sankauskaite, Paulius Ragulis, Gilda Santos and Juana Pimenta
Polymers 2021, 13(8), 1191; https://doi.org/10.3390/polym13081191 - 7 Apr 2021
Cited by 16 | Viewed by 3959
Abstract
This study presents the investigation of the electromagnetic properties and resistance performance of electrically conductive fabrics coated with composition containing the conjugated polymer system poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS). The developed fabrics were intended for electromagnetic radiation (EMR) shielding in microwave range and for absorbing [...] Read more.
This study presents the investigation of the electromagnetic properties and resistance performance of electrically conductive fabrics coated with composition containing the conjugated polymer system poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS). The developed fabrics were intended for electromagnetic radiation (EMR) shielding in microwave range and for absorbing microwaves in radar operating range, so as to act as radar absorbing materials (RAM). The measurements of reflection and transmission of the developed fabrics were performed in a frequency range of 2–18 GHz, which covers the defined frequencies relevant to the application. Four types of fabrics with different fiber composition (polyamide; polyamide/cotton; wool and para-aramid/viscose) were selected and coated with conductive paste using screen printing method. It was found that EMR shielding effectiveness (SE) as well as absorption properties depend not only the amount of conductive paste topped on the fabric, but also resides in the construction parameters of fabrics. Depending on such fabric structural parameters as density, mass per unit area, type of weave, a layer of shield (or coating) just sticks on the fabric surface or penetrates into fabric, changing the shield thickness and herewith turning SE results. Meanwhile, the fiber composition of fabrics influences mostly bonding between fibers and polymer coating. To improve the resistance performance of the developed samples, a conventional textile surface modification technique, atmospheric plasma treatment, was applied. Initially, before plasma treatment and after treatment the fabrics were evaluated regarding an aqueous liquid repellency test, measuring the contact angles for the water solvent. The influence of plasma treatment on resistance performance of coated fabrics was evaluated by subjecting the plasma treated samples and untreated samples to abrasion in the Martindale abrasion apparatus and to multiplex washing cycles. These investigations revealed that applied plasma treatment visibly improved abrasion resistance as a result of better adhesion of the coating. However, washing resistance increased not so considerably. Full article
(This article belongs to the Special Issue Multifunctional Advanced Textile Materials)
Show Figures

Graphical abstract

12 pages, 4500 KiB  
Article
Electromagnetic Shielding Properties of Knitted Fabric Made from Polyamide Threads Coated with Silver
by Tanja Pušić, Bosiljka Šaravanja and Krešimir Malarić
Materials 2021, 14(5), 1281; https://doi.org/10.3390/ma14051281 - 8 Mar 2021
Cited by 24 | Viewed by 4112
Abstract
This paper investigates a textile material of low surface mass for its protection against electromagnetic radiation (EMR), which is suitable for composite structures of garments, and for technical and interior applications. The shielding effectiveness against EMR of fabric knitted from polyamide threads coated [...] Read more.
This paper investigates a textile material of low surface mass for its protection against electromagnetic radiation (EMR), which is suitable for composite structures of garments, and for technical and interior applications. The shielding effectiveness against EMR of fabric knitted from polyamide threads coated with silver, measured in the frequency range of 0.9 GHz to 2.4 GHz, indicated a high degree of protection. The key contribution of the paper is the evaluation of the stability of the shielding properties against EM radiation after applying apolar and polar solvents, in synergy with the cyclic process parameters of wet and dry cleaning. The results of the study confirmed the decline in the shielding effectiveness after successive cycles of material treatment with dry and wet cleaning. The effect of wet cleaning in relation to dry cleaning is more apparent, which is due to the damage of the silver coating on the polyamide threads in the knitted fabric. Full article
(This article belongs to the Special Issue Advanced Materials for Clothing and Textile Engineering)
Show Figures

Figure 1

Back to TopTop