Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = EMP cell

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2264 KiB  
Article
Extramedullary Plasmacytomas of the Nasal Cavity: Case-Based Perspectives into Optimizing the Diagnostic Differentiation from Inflammatory Polyps
by Carmen Aurelia Mogoantă, Codruț Sarafoleanu, Andrei Osman, Irina Enache, Shirley Tarabichi, Constantin-Ioan Busuioc, Ilona Mihaela Liliac, Dan Iovanescu and Ionuţ Tănase
Medicina 2025, 61(8), 1406; https://doi.org/10.3390/medicina61081406 (registering DOI) - 1 Aug 2025
Abstract
Background and Objectives: Extramedullary plasmacytoma (EMP) is a rare monoclonal B-cell neoplasm that typically affects the head and neck region, with a predilection for the sinonasal tract. Clinical presentation is often nonspecific, leading to delayed diagnosis. This study aims to improve our [...] Read more.
Background and Objectives: Extramedullary plasmacytoma (EMP) is a rare monoclonal B-cell neoplasm that typically affects the head and neck region, with a predilection for the sinonasal tract. Clinical presentation is often nonspecific, leading to delayed diagnosis. This study aims to improve our understanding of sinonasal EMP by reviewing the recent literature and presenting a case series from our clinical experience. Materials and Methods: A systematic review of published cases of sinonasal EMP from 2000 to 2023 was conducted using the PubMed database, yielding 28 eligible cases. Additionally, we retrospectively analyzed three patients diagnosed and treated at our institutions. Inclusion criteria included histologically and immunohistochemically confirmed EMP without evidence of systemic multiple myeloma. Data on demographics, tumor location, symptoms, treatment, and outcomes were collected and analyzed descriptively. Results: Sinonasal EMP most commonly presented with unilateral nasal obstruction and epistaxis. Tumors were primarily located in the nasal cavity and paranasal sinuses, often extending beyond a single anatomical site. In the literature cohort, the most frequent treatment was combined surgery and radiotherapy (35.71%), followed by radiotherapy alone (17.86%). Recurrence was reported in 10.71% of cases, and 7.14% of patients died due to disease progression. All three patients in our case series underwent surgical excision; two received postoperative radiotherapy. No recurrences or progression to multiple myeloma were observed during follow-up (12–24 months). Conclusions: Sinonasal EMP is a rare but radiosensitive tumor with a favorable prognosis when treated with surgery and/or radiotherapy. Early diagnosis, histopathological confirmation, and exclusion of systemic disease are essential. Multidisciplinary management and long-term follow-up are critical due to the risk of recurrence and transformation into multiple myeloma. Full article
(This article belongs to the Special Issue Optimizing Outcomes in Head and Neck Surgery)
Show Figures

Figure 1

25 pages, 2485 KiB  
Article
Epigenetic Changes Regulating Epithelial–Mesenchymal Plasticity in Human Trophoblast Differentiation
by William E. Ackerman IV, Mauricio M. Rigo, Sonia C. DaSilva-Arnold, Catherine Do, Mariam Tariq, Martha Salas, Angelica Castano, Stacy Zamudio, Benjamin Tycko and Nicholas P. Illsley
Cells 2025, 14(13), 970; https://doi.org/10.3390/cells14130970 - 24 Jun 2025
Viewed by 1104
Abstract
The phenotype of human placental extravillous trophoblast (EVT) at the end of pregnancy reflects both differentiation from villous cytotrophoblast (CTB) and later gestational changes, including loss of proliferative and invasive capacity. Invasion abnormalities are central to major obstetric pathologies, including placenta accreta spectrum, [...] Read more.
The phenotype of human placental extravillous trophoblast (EVT) at the end of pregnancy reflects both differentiation from villous cytotrophoblast (CTB) and later gestational changes, including loss of proliferative and invasive capacity. Invasion abnormalities are central to major obstetric pathologies, including placenta accreta spectrum, early onset preeclampsia, and fetal growth restriction. Characterization of the normal differentiation processes is, thus, essential for the analysis of these pathologies. Our gene expression analysis, employing purified human CTB and EVT cells, demonstrates a mechanism similar to the epithelial–mesenchymal transition (EMT), which underlies CTB–EVT differentiation. In parallel, DNA methylation profiling shows that CTB cells, already hypomethylated relative to non-trophoblast cell lineages, show further genome-wide hypomethylation in the transition to EVT. A small subgroup of genes undergoes gains of methylation (GOM), associated with differential gene expression (DE). Prominent in this GOM-DE group are genes involved in epithelial–mesenchymal plasticity (EMP). An exemplar is the transcription factor RUNX1, for which we demonstrate a functional role in regulating the migratory and invasive capacities of trophoblast cells. This analysis highlights epigenetically regulated genes acting to underpin the epithelial–mesenchymal plasticity characteristic of human trophoblast differentiation. Identification of these elements provides important information for the obstetric disorders in which these processes are dysregulated. Full article
Show Figures

Figure 1

22 pages, 5751 KiB  
Article
Targeting Aggressive Prostate Carcinoma Cells with Mesothelin-CAR-T Cells
by Apolline de Testas de Folmont, Angèle Fauvel, Francis Vacherot, Pascale Soyeux, Abdérémane Abdou, Salem Chouaib and Stéphane Terry
Biomedicines 2025, 13(5), 1215; https://doi.org/10.3390/biomedicines13051215 - 16 May 2025
Viewed by 659
Abstract
Background: Advancing chimeric antigen receptor (CAR) T cell therapy for solid tumors remains a major challenge in cancer immunotherapy. Prostate cancer (PCa), particularly in its aggressive forms, may be a suitable target for CAR-T therapy given the range of associated tumor antigens. [...] Read more.
Background: Advancing chimeric antigen receptor (CAR) T cell therapy for solid tumors remains a major challenge in cancer immunotherapy. Prostate cancer (PCa), particularly in its aggressive forms, may be a suitable target for CAR-T therapy given the range of associated tumor antigens. However, due to the high plasticity and heterogeneity of aggressive PCa and the complexity of the tumor environment, there is a need to broaden the repertoire of targetable antigens and deepen our understanding of CAR-T behavior in stressed microenvironmental conditions. Growing evidence supports mesothelin as a promising cancer-associated marker and a compelling target for CAR-T cell approaches in solid tumors. Objectives and Methods: Here, we employed gene expression datasets to investigate mesothelin expression in both primary and metastatic PCa tumors. Additionally, we evaluated mesothelin expression across various preclinical PCa models and assessed the therapeutic efficacy of second-generation mesothelin-targeted CAR-T (meso-CAR-T) cells under both normoxic and hypoxic conditions, with hypoxia as a representative tumor-associated stress condition. Results: Our results revealed a significant enrichment of mesothelin in 3–10% of metastatic prostate tumors, contrasting with its minimal expression in primary tumors. In line with these findings, we observed increased mesothelin expression in an aggressive variant of the 22Rv1 cell line, which displayed an epithelial–mesenchymal plasticity (EMP) phenotype. Meso-CAR-T cells demonstrated potent cytotoxicity and remarkable selectivity toward these carcinoma cells under both severe hypoxia (1% O2) or normoxia (21% O2), highlighting their ability to withstand metabolic stress within the tumor microenvironment. Conclusions: Our study underscores the potential of meso-CAR-T cells as a promising strategy for targeting specific subtypes of metastatic prostate cancer. Full article
(This article belongs to the Special Issue The Development of Cancer Immunotherapy)
Show Figures

Figure 1

26 pages, 1964 KiB  
Review
Long Non-Coding RNAs: Key Regulators of Tumor Epithelial/Mesenchymal Plasticity and Cancer Stemness
by Yuan Yuan, Yun Tang, Zeng Fang, Jian Wen, Max S. Wicha and Ming Luo
Cells 2025, 14(3), 227; https://doi.org/10.3390/cells14030227 - 5 Feb 2025
Cited by 1 | Viewed by 1713
Abstract
Long non-coding RNAs (lncRNAs) are a class of non-coding RNA molecules with transcripts longer than 200 bp, which were initially thought to be noise from genomic transcription without biological function. However, since the discovery of H19 in 1980 and Xist in 1990, increasing [...] Read more.
Long non-coding RNAs (lncRNAs) are a class of non-coding RNA molecules with transcripts longer than 200 bp, which were initially thought to be noise from genomic transcription without biological function. However, since the discovery of H19 in 1980 and Xist in 1990, increasing evidence has shown that lncRNAs regulate gene expression at epigenetic, transcriptional, and post-transcriptional levels through specific regulatory actions and are involved in the development of cancer and other diseases. Despite many lncRNAs being expressed at lower levels than those of protein-coding genes with less sequence conservation across species, lncRNAs have become an intense area of RNA research. They exert diverse biological functions such as inducing chromatin remodeling, recruiting transcriptional machinery, acting as competitive endogenous RNAs for microRNAs, and modulating protein–protein interactions. Epithelial–mesenchymal transition (EMT) is a developmental process, associated with embryonic development, wound healing, and cancer progression. In the context of oncogenesis, the EMT program is transiently activated and confers migratory/invasive and cancer stem cell (CSC) properties to tumor cells, which are crucial for malignant progression, metastasis, and therapeutic resistance. Accumulating evidence has revealed that lncRNAs play crucial roles in the regulation of tumor epithelial/mesenchymal plasticity (EMP) and cancer stemness. Here, we summarize the emerging roles and molecular mechanisms of lncRNAs in regulating tumor cell EMP and their effects on tumor initiation and progression through regulation of CSCs. We also discuss the potential of lncRNAs as diagnostic and prognostic biomarkers and therapeutic targets. Full article
(This article belongs to the Collection Targeting Cancer Stem Cell)
Show Figures

Figure 1

22 pages, 3450 KiB  
Article
Characterization of Epithelial–Mesenchymal and Neuroendocrine Differentiation States in Pancreatic and Small Cell Ovarian Tumor Cells and Their Modulation by TGF-β1 and BMP-7
by Hendrik Ungefroren, Juliane von der Ohe, Rüdiger Braun, Yola Gätje, Olha Lapshyna, Jörg Schrader, Hendrik Lehnert, Jens-Uwe Marquardt, Björn Konukiewitz and Ralf Hass
Cells 2024, 13(23), 2010; https://doi.org/10.3390/cells13232010 - 5 Dec 2024
Cited by 1 | Viewed by 1803
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis, due in part to early invasion and metastasis, which in turn involves epithelial–mesenchymal transition (EMT) of the cancer cells. Prompted by the discovery that two PDAC cell lines of the quasi-mesenchymal subtype (PANC-1, MIA [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis, due in part to early invasion and metastasis, which in turn involves epithelial–mesenchymal transition (EMT) of the cancer cells. Prompted by the discovery that two PDAC cell lines of the quasi-mesenchymal subtype (PANC-1, MIA PaCa-2) exhibit neuroendocrine differentiation (NED), we asked whether NED is associated with EMT. Using real-time PCR and immunoblotting, we initially verified endogenous expressions of various NED markers, i.e., chromogranin A (CHGA), synaptophysin (SYP), somatostatin receptor 2 (SSTR2), and SSTR5 in PANC-1 and MIA PaCa-2 cells. By means of immunohistochemistry, the expressions of CHGA, SYP, SSTR2, and the EMT markers cytokeratin 7 (CK7) and vimentin could be allocated to the neoplastic ductal epithelial cells of pancreatic ducts in surgically resected tissues from patients with PDAC. In HPDE6c7 normal pancreatic duct epithelial cells and in epithelial subtype BxPC-3 PDAC cells, the expression of CHGA, SYP, and neuron-specific enolase 2 (NSE) was either undetectable or much lower than in PANC-1 and MIA PaCa-2 cells. Parental cultures of PANC-1 cells exhibit EM plasticity (EMP) and harbor clonal subpopulations with both M- and E-phenotypes. Of note, M-type clones were found to display more pronounced NED than E-type clones. Inducing EMT in parental cultures of PANC-1 cells by treatment with transforming growth factor-β1 (TGF-β1) repressed epithelial genes and co-induced mesenchymal and NED genes, except for SSTR5. Surprisingly, treatment with bone morphogenetic protein (BMP)-7 differentially affected gene expressions in PANC-1, MIA PaCa-2, BxPC-3, and HPDE cells. It synergized with TGF-β1 in the induction of vimentin, SNAIL, SSTR2, and NSE but antagonized it in the regulation of CHGA and SSTR5. Phospho-immunoblotting in M- and E-type PANC-1 clones revealed that both TGF-β1 and, surprisingly, also BMP-7 activated SMAD2 and SMAD3 and that in M- but not E-type clones BMP-7 was able to dramatically enhance the activation of SMAD3. From these data, we conclude that in EMT of PDAC cells mesenchymal and NED markers are co-regulated, and that mesenchymal–epithelial transition (MET) is associated with a loss of both the mesenchymal and NED phenotypes. Analyzing NED in another tumor type, small cell carcinoma of the ovary hypercalcemic type (SCCOHT), revealed that two model cell lines of this disease (SCCOHT-1, BIN-67) do express CDH1, SNAI1, VIM, CHGA, SYP, ENO2, and SSTR2, but that in contrast to BMP-7, none of these genes was transcriptionally regulated by TGF-β1. Likewise, in BIN-67 cells, BMP-7 was able to reduce proliferation, while in SCCOHT-1 cells this occurred only upon combined treatment with TGF-β and BMP-7. We conclude that in PDAC-derived tumor cells, NED is closely linked to EMT and TGF-β signaling, which may have implications for the therapeutic use of TGF-β inhibitors in PDAC management. Full article
(This article belongs to the Special Issue New Insights of TGF-Beta Signaling in Cancer)
Show Figures

Figure 1

13 pages, 2158 KiB  
Article
The Functional Characterization of the 6-Phosphogluconate Dehydratase Operon in 2-Ketogluconic Acid Industrial Producing Strain Pseudomonas plecoglossicida JUIM01
by Wen-Jing Sun, Qian-Nan Zhang, Lu-Lu Li, Meng-Xin Qu, Xin-Yi Zan, Feng-Jie Cui, Qiang Zhou, Da-Ming Wang and Lei Sun
Foods 2024, 13(21), 3444; https://doi.org/10.3390/foods13213444 - 28 Oct 2024
Cited by 2 | Viewed by 1413
Abstract
Genus Pseudomonas bacteria mainly consume glucose through the Entner–Doudoroff (ED) route due to a lack of a functional Embden–Meyerhof–Parnas (EMP) pathway. In the present study, a 6-phosphogluconate dehydratase (edd) operon in the ED route was well investigated to find its structural [...] Read more.
Genus Pseudomonas bacteria mainly consume glucose through the Entner–Doudoroff (ED) route due to a lack of a functional Embden–Meyerhof–Parnas (EMP) pathway. In the present study, a 6-phosphogluconate dehydratase (edd) operon in the ED route was well investigated to find its structural characteristics and roles in the regulation of glucose consumption and 2-ketogluconic acid (2KGA) metabolism in the industrial 2KGA-producer P. plecoglossicida JUIM01. The edd operon contained four structural genes of edd, glk, gltR, and gtrS, encoding 6-PG dehydratase Edd, glucokinase Glk, response regulatory factor GltR, and histidine kinase GtrS, respectively. A promoter region was observed in the 5′-upstream of the edd gene, with a transcriptional start site located 129 bp upstream of the edd gene and in a pseudo-palindromic sequence of 5′-TTGTN7ACAA-3′ specifically binding to the transcription factor HexR. The knockout of the edd gene showed a remarkably negative effect on cell growth and re-growth using 2KGA as a substrate, beneficial to 2KGA production, with an increase of 8%. The deletion of glk had no significant effect on the cell growth or glucose metabolism, while showing an adverse impact on the 2KGA production, with a decrease of 5%. The outputs of the present study would provide a theoretical basis for 2KGA-producer improvement with metabolic engineering strategies and the development and optimization of P. plecoglossicida as the chassis cells. Full article
(This article belongs to the Special Issue Advances in Food Biotechnology and Enzyme Engineering)
Show Figures

Figure 1

12 pages, 2976 KiB  
Article
Improved Sugar Recovery from Mandarin Peel under Optimal Enzymatic Hydrolysis Conditions and Application to Bioethanol Production
by Hyerim Son, Jeongho Lee and Hah Young Yoo
Processes 2024, 12(9), 1960; https://doi.org/10.3390/pr12091960 - 12 Sep 2024
Cited by 1 | Viewed by 1219
Abstract
Mandarin peel (MP) has gained attention as a feedstock for flavonoid recovery via the extraction process based on the biorefinery concept, but residues remain after the extraction. Toward an integrated biorefinery concept, this study aimed to valorize extracted MP (eMP) by using it [...] Read more.
Mandarin peel (MP) has gained attention as a feedstock for flavonoid recovery via the extraction process based on the biorefinery concept, but residues remain after the extraction. Toward an integrated biorefinery concept, this study aimed to valorize extracted MP (eMP) by using it in bioethanol production. For efficient fermentable sugar production, the effect of enzymatic hydrolysis conditions on sugar conversion from eMP was investigated, and the results showed that combining cellulase and cellobiase resulted in a higher enzymatic glucose conversion (78.2%) than the use of the individual enzymes (37.5% and 45.6%). Pectinase played an essential role in enhancing enzymatic arabinose conversion, and the optimal conditions were determined to be pH 4 and 90 units of the three enzymes. Under optimal conditions, the sugar yield was 199 g glucose and 47 g arabinose/kg eMP, and the hydrolysate was used in bioethanol fermentation. The results showed that the bioethanol production was 3.78 g/L (73.9% yield), similar to the control medium (3.79 g/L; 74.2% yield), although the cell growth of the yeast was slightly delayed in the eMP hydrolysate medium. This study highlights the potential of eMP as a low-cost feedstock for sugar and bioethanol production. Full article
(This article belongs to the Special Issue Platform Chemicals and Novel Materials from Biomass)
Show Figures

Figure 1

18 pages, 8359 KiB  
Article
Membrane Damage and Metabolic Disruption as the Mechanisms of Linalool against Pseudomonas fragi: An Amino Acid Metabolomics Study
by Jiaxin Cai, Haiming Chen, Runqiu Wang, Qiuping Zhong, Weijun Chen, Ming Zhang, Rongrong He and Wenxue Chen
Foods 2024, 13(16), 2501; https://doi.org/10.3390/foods13162501 - 9 Aug 2024
Cited by 3 | Viewed by 2103
Abstract
Pseudomonas fragi (P. fragi) is usually detected in low-temperature meat products, and seriously threatens food safety and human health. Therefore, the study investigated the antibacterial mechanism of linalool against P. fragi from membrane damage and metabolic disruption. Results from field-emission transmission [...] Read more.
Pseudomonas fragi (P. fragi) is usually detected in low-temperature meat products, and seriously threatens food safety and human health. Therefore, the study investigated the antibacterial mechanism of linalool against P. fragi from membrane damage and metabolic disruption. Results from field-emission transmission electron microscopy (FETEM) and atomic force microscopy (AFM) showed that linalool damage membrane integrity increases surface shrinkage and roughness. According to Fourier transform infrared (FTIR) spectra results, the components in the membrane underwent significant changes, including nucleic acid leakage, carbohydrate production, protein denaturation and modification, and fatty acid content reduction. The data obtained from amino acid metabolomics indicated that linalool caused excessive synthesis and metabolism of specific amino acids, particularly tryptophan metabolism and arginine biosynthesis. The reduced activities of glucose 6-phosphate dehydrogenase (G6PDH), malate dehydrogenase (MDH), and phosphofructokinase (PFK) suggested that linalool impair the respiratory chain and energy metabolism. Meanwhile, genes encoding the above enzymes were differentially expressed, with pfkB overexpression and zwf and mqo downregulation. Furthermore, molecular docking revealed that linalool can interact with the amino acid residues of G6DPH, MDH and PFK through hydrogen bonds. Therefore, it is hypothesized that the mechanism of linalool against P. fragi may involve cell membrane damage (structure and morphology), disturbance of energy metabolism (TCA cycle, EMP and HMP pathway) and amino acid metabolism (cysteine, glutamic acid and citrulline). These findings contribute to the development of linalool as a promising antibacterial agent in response to the food security challenge. Full article
Show Figures

Figure 1

13 pages, 3544 KiB  
Article
Identifying Candidate Gene Drivers Associated with Relapse in Pediatric T-Cell Acute Lymphoblastic Leukemia Using a Gene Co-Expression Network Approach
by Anthony Kypraios, Juba Bennour, Véronique Imbert, Léa David, Julien Calvo, Françoise Pflumio, Raphaël Bonnet, Marie Couralet, Virginie Magnone, Kevin Lebrigand, Pascal Barbry, Pierre S. Rohrlich and Jean-François Peyron
Cancers 2024, 16(9), 1667; https://doi.org/10.3390/cancers16091667 - 25 Apr 2024
Cited by 4 | Viewed by 2920
Abstract
Pediatric T-cell Acute Lymphoblastic Leukemia (T-ALL) relapses are still associated with a dismal outcome, justifying the search for new therapeutic targets and relapse biomarkers. Using single-cell RNA sequencing (scRNAseq) data from three paired samples of pediatric T-ALL at diagnosis and relapse, we first [...] Read more.
Pediatric T-cell Acute Lymphoblastic Leukemia (T-ALL) relapses are still associated with a dismal outcome, justifying the search for new therapeutic targets and relapse biomarkers. Using single-cell RNA sequencing (scRNAseq) data from three paired samples of pediatric T-ALL at diagnosis and relapse, we first conducted a high-dimensional weighted gene co-expression network analysis (hdWGCNA). This analysis highlighted several gene co-expression networks (GCNs) and identified relapse-associated hub genes, which are considered potential driver genes. Shared relapse-expressed genes were found to be related to antigen presentation (HLA, B2M), cytoskeleton remodeling (TUBB, TUBA1B), translation (ribosomal proteins, EIF1, EEF1B2), immune responses (MIF, EMP3), stress responses (UBC, HSP90AB1/AA1), metabolism (FTH1, NME1/2, ARCL4C), and transcriptional remodeling (NF-κB family genes, FOS-JUN, KLF2, or KLF6). We then utilized sparse partial least squares discriminant analysis to select from a pool of 481 unique leukemic hub genes, which are the genes most discriminant between diagnosis and relapse states (comprising 44, 35, and 31 genes, respectively, for each patient). Applying a Cox regression method to these patient-specific genes, along with transcriptomic and clinical data from the TARGET-ALL AALL0434 cohort, we generated three model gene signatures that efficiently identified relapsed patients within the cohort. Overall, our approach identified new potential relapse-associated genes and proposed three model gene signatures associated with lower survival rates for high-score patients. Full article
(This article belongs to the Collection Application of Bioinformatics in Cancers)
Show Figures

Figure 1

21 pages, 9242 KiB  
Article
Characterization of Genomic, Physiological, and Probiotic Features of Lactiplantibacillus plantarum JS21 Strain Isolated from Traditional Fermented Jiangshui
by Yang Liu, Shanshan Wang, Ling Wang, Hongzhao Lu, Tao Zhang and Wenxian Zeng
Foods 2024, 13(7), 1082; https://doi.org/10.3390/foods13071082 - 1 Apr 2024
Cited by 9 | Viewed by 3106
Abstract
This study aimed to understand the genetic and metabolic traits of a Lactiplantibacillus plantarum JS21 strain and its probiotic abilities through laboratory tests and computer analysis. L. plantarum JS21 was isolated from a traditional fermented food known as “Jiangshui” in Hanzhong city. In [...] Read more.
This study aimed to understand the genetic and metabolic traits of a Lactiplantibacillus plantarum JS21 strain and its probiotic abilities through laboratory tests and computer analysis. L. plantarum JS21 was isolated from a traditional fermented food known as “Jiangshui” in Hanzhong city. In this research, the complete genetic makeup of JS21 was determined using Illumina and PacBio technologies. The JS21 genome consisted of a 3.423 Mb circular chromosome and five plasmids. It was found to contain 3023 protein-coding genes, 16 tRNA genes, 64 rRNA operons, 40 non-coding RNA genes, 264 pseudogenes, and six CRISPR array regions. The GC content of the genome was 44.53%. Additionally, the genome harbored three complete prophages. The evolutionary relationship and the genome collinearity of JS21 were compared with other L. plantarum strains. The resistance genes identified in JS21 were inherent. Enzyme genes involved in the Embden–Meyerhof–Parnas (EMP) and phosphoketolase (PK) pathways were detected, indicating potential for facultative heterofermentative pathways. JS21 possessed bacteriocins plnE/plnF genes and genes for polyketide and terpenoid assembly, possibly contributing to its antibacterial properties against Escherichia coli (ATCC 25922), Escherichia coli (K88), Staphylococcus aureus (CMCC 26003), and Listeria monocytogenes (CICC 21635). Furthermore, JS21 carried genes for Na+/H+ antiporters, F0F1 ATPase, and other stress resistance genes, which may account for its ability to withstand simulated conditions of the human gastrointestinal tract in vitro. The high hydrophobicity of its cell surface suggested the potential for intestinal colonization. Overall, L. plantarum JS21 exhibited probiotic traits as evidenced by laboratory experiments and computational analysis, suggesting its suitability as a dietary supplement. Full article
(This article belongs to the Special Issue Probiotics: Selection, Cultivation, Evaluation and Application)
Show Figures

Figure 1

19 pages, 5942 KiB  
Article
Identification and Validation of T-Cell Exhaustion Signature for Predicting Prognosis and Immune Response in Pancreatic Cancer by Integrated Analysis of Single-Cell and Bulk RNA Sequencing Data
by Yaowu Zhu, Li Tan, Danju Luo and Xiong Wang
Diagnostics 2024, 14(6), 667; https://doi.org/10.3390/diagnostics14060667 - 21 Mar 2024
Cited by 3 | Viewed by 3748
Abstract
Purpose: Pancreatic cancer (PACA) is one of the most fatal malignancies worldwide. Immunotherapy is largely ineffective in patients with PACA. T-cell exhaustion contributes to immunotherapy resistance. We investigated the prognostic potential of T-cell exhaustion-related genes (TEXGs). Methods: A single-cell RNA (scRNA) sequencing dataset [...] Read more.
Purpose: Pancreatic cancer (PACA) is one of the most fatal malignancies worldwide. Immunotherapy is largely ineffective in patients with PACA. T-cell exhaustion contributes to immunotherapy resistance. We investigated the prognostic potential of T-cell exhaustion-related genes (TEXGs). Methods: A single-cell RNA (scRNA) sequencing dataset from Tumor Immune Single-Cell Hub (TISCH) and bulk sequencing datasets from the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) were used to screen differentially expressed TEXGs. Kaplan–Meier survival, LASSO regression, and univariate/multivariate Cox regression analyses were performed to construct a TEXG risk model. This model was used to predict the prognosis, tumor immune microenvironment, and immunotherapy response. The PACA cohorts from the ICGC and GSE71729 datasets were used to validate the risk model. Pan-cancer expression of SPOCK2 was determined using the TISCH database. Results: A six-gene (SPOCK2, MT1X, LIPH, RARRES3, EMP1, and MEG3) risk model was constructed. Patients with low risk had prolonged survival times in both the training (TCGA-PAAD, n = 178) and validation (ICGC-PACA-CA, ICGC-PAAD-US, and GSE71729, n = 412) datasets. Multivariate Cox regression analysis demonstrated that the risk score was an independent prognostic variable for PACA. High-risk patients correlated with their immunosuppressive status. Immunohistochemical staining confirmed the changes in TEXGs in clinical samples. Moreover, pan-cancer scRNA sequencing datasets from TISCH analysis indicated that SPOCK2 may be a novel marker of exhausted CD8+ T-cells. Conclusion: We established and validated a T-cell exhaustion-related prognostic signature for patients with PACA. Moreover, our study suggests that SPOCK2 is a novel marker of exhausted CD8+ T cells. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

13 pages, 3163 KiB  
Article
The Transcriptome of BT-20 Breast Cancer Cells Exposed to Curcumin Analog NC2603 Reveals a Relationship between EGR3 Gene Modulation and Cell Migration Inhibition
by Felipe Garcia Nishimura, Beatriz Borsani Sampaio, Gabrielly Oliveira do Couto, Aryane Dias da Silva, Wanessa Julia da Silva, Kamila Chagas Peronni, Adriane Feijó Evangelista, Mohammad Hossain, Jonathan R. Dimmock, Brian Bandy, Rene Oliveira Beleboni, Mozart Marins and Ana Lucia Fachin
Molecules 2024, 29(6), 1366; https://doi.org/10.3390/molecules29061366 - 19 Mar 2024
Cited by 5 | Viewed by 2771
Abstract
Breast cancer represents a critical global health issue, accounting for a substantial portion of cancer-related deaths worldwide. Metastasis, the spread of cancer cells to distant organs, is the primary cause of approximately 90% of breast cancer-related fatalities. Despite advances in cancer treatment, conventional [...] Read more.
Breast cancer represents a critical global health issue, accounting for a substantial portion of cancer-related deaths worldwide. Metastasis, the spread of cancer cells to distant organs, is the primary cause of approximately 90% of breast cancer-related fatalities. Despite advances in cancer treatment, conventional chemotherapeutic drugs often encounter resistance and demonstrate limited efficacy against metastasis. Natural products have emerged as promising sources for innovative cancer therapies, with curcumin being one such example. However, despite its therapeutic potential, curcumin exhibits several limitations. Analogous compounds possessing enhanced bioavailability, potency, or specificity offer a promising avenue for overcoming these challenges and demonstrate potent anti-tumor activities. Our study investigates the antimetastatic potential of the curcumin analog NC2603 in breast cancer cells, utilizing BT-20 cells known for their migratory properties. Cell viability assessments were performed using the MTT reduction method, while migration inhibition was evaluated through scratch and Transwell migration assays. Transcriptome analysis via next-generation sequencing was employed to elucidate gene modulation and compound mechanisms, with subsequent validation using RT-qPCR. The IC50 of NC2603 was determined to be 3.5 μM, indicating potent inhibition of cell viability, and it exhibited greater specificity for BT-20 cells compared with non-cancerous HaCaT cells, surpassing the efficacy of doxorubicin. Notably, NC2603 demonstrated superior inhibition of cell migration in both scratch and Transwell assays compared with curcumin. Transcriptome analysis identified 10,620 modulated genes. We validated the expression of six: EGR3, ATF3, EMP1, SOCS3, ZFP36, and GADD45B, due to their association with migration inhibition properties. We hypothesize that the curcumin analog induces EGR3 expression, which subsequently triggers the expression of ATF3, EMP1, SOCS3, ZFP36, and GADD45B. In summary, this study significantly advances our comprehension of the intricate molecular pathways involved in cancer metastasis, while also examining the mechanisms of analog NC2603 and underscoring its considerable potential as a promising candidate for adjuvant therapy. Full article
Show Figures

Graphical abstract

9 pages, 3041 KiB  
Case Report
Cutaneous Plasmacytoma with Systemic Metastases in a Cape Serotine Bat (Laephotis capensis)
by Louise van der Weyden, Alida Avenant and Nicolize O’Dell
Vet. Sci. 2024, 11(2), 72; https://doi.org/10.3390/vetsci11020072 - 5 Feb 2024
Cited by 1 | Viewed by 2298
Abstract
Despite their relatively long life-spans, reports of neoplasia in bats are rare and are limited to a handful of cases. In this report, we describe a 2-year-old female wild Cape serotine bat (Laephotis capensis) that had been caught by a domestic [...] Read more.
Despite their relatively long life-spans, reports of neoplasia in bats are rare and are limited to a handful of cases. In this report, we describe a 2-year-old female wild Cape serotine bat (Laephotis capensis) that had been caught by a domestic cat and presented with a skin mass over the chest area. Histopathological analysis of a subsequent biopsy revealed proliferating sheets of neoplastic round cells, occasionally appearing to form packets, supported by a fine, fibrovascular stroma. Marked nuclear pleomorphism was seen, as well as a high mitotic count. Immunohistochemistry displayed positive labelling for MUM1 in the neoplastic cells. The diagnosis was extramedullary plasmacytoma (EMP); a neoplasm consisting of plasma cells derived from B lymphocytes. Due to a deteriorating condition, the bat was anaesthetised, and the mass was surgically removed two weeks later. However, the bat succumbed under the anaesthetic. Histopathological examination of the mass showed the same neoplastic cell population as observed in the biopsy; in addition, there was a locally extensive infiltration of neoplastic cells in the spleen and a mild presence of neoplastic cells in circulation. This is the first report of an EMP in a bat, and we compare the findings with that seen in dogs and cats. Full article
(This article belongs to the Section Anatomy, Histology and Pathology)
Show Figures

Figure 1

18 pages, 3937 KiB  
Article
Localization and Dimensional Range of Amphibole Particles Retrieved from Human Alveolar Epithelial Cells
by Ruggero Vigliaturo, Maja Jamnik, Goran Dražić, Marjetka Podobnik, Magda Tušek Žnidarič, Giancarlo Della Ventura, Günther J. Redhammer, Nada Žnidaršič, Simon Caserman and Reto Gieré
Minerals 2024, 14(1), 101; https://doi.org/10.3390/min14010101 - 16 Jan 2024
Cited by 1 | Viewed by 1739
Abstract
Amphibole asbestos is related to multiple diseases, mainly those targeting the lungs. Asbestos-related malignancies can also be caused by non-regulated asbestiform minerals and some elongated mineral particles (EMPs). In particular, the role of nano- and micro-sized EMPs internalized by lung epithelial cells must [...] Read more.
Amphibole asbestos is related to multiple diseases, mainly those targeting the lungs. Asbestos-related malignancies can also be caused by non-regulated asbestiform minerals and some elongated mineral particles (EMPs). In particular, the role of nano- and micro-sized EMPs internalized by lung epithelial cells must be clarified. This is of major importance when considering that EMPs to which humans are exposed are likely a highly heterogeneous mix of different mineral types, shapes, and sizes. Here, we document that particles smaller than 4.54 µm in length and smaller than 0.89 µm in width (e.g., particles that do not fit the regulatory categories to be identified as asbestos) are easily internalized because of their specific dimensions, surface charge, and shape (mostly dictated by the aspect ratio L/w). Once internalized, these particles can be found in proximity to the cell nucleus, in vesicles, and in the cytoplasm. Examining the localization of particles in cells provides important information, which helps in determining the physicochemical environment found inside the biological compartment, thus allowing for a better comprehension of the mineralogical transformation that might happen after internalization by cells. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Graphical abstract

21 pages, 1590 KiB  
Review
Role of Epithelial to Mesenchymal Transition in Colorectal Cancer
by Jian Lu, Marko Kornmann and Benno Traub
Int. J. Mol. Sci. 2023, 24(19), 14815; https://doi.org/10.3390/ijms241914815 - 1 Oct 2023
Cited by 65 | Viewed by 6518
Abstract
The epithelial–mesenchymal transition (EMT) is a cellular reprogramming process that occurs during embryonic development and adult tissue homeostasis. This process involves epithelial cells acquiring a mesenchymal phenotype. Through EMT, cancer cells acquire properties associated with a more aggressive phenotype. EMT and its opposite, [...] Read more.
The epithelial–mesenchymal transition (EMT) is a cellular reprogramming process that occurs during embryonic development and adult tissue homeostasis. This process involves epithelial cells acquiring a mesenchymal phenotype. Through EMT, cancer cells acquire properties associated with a more aggressive phenotype. EMT and its opposite, mesenchymal–epithelial transition (MET), have been described in more tumors over the past ten years, including colorectal cancer (CRC). When EMT is activated, the expression of the epithelial marker E-cadherin is decreased and the expression of the mesenchymal marker vimentin is raised. As a result, cells temporarily take on a mesenchymal phenotype, becoming motile and promoting the spread of tumor cells. Epithelial–mesenchymal plasticity (EMP) has become a hot issue in CRC because strong inducers of EMT (such as transforming growth factor β, TGF-β) can initiate EMT and regulate metastasis, microenvironment, and immune system resistance in CRC. In this review, we take into account the significance of EMT-MET in CRC and the impact of the epithelial cells’ plasticity on the prognosis of CRC. The analysis of connection between EMT and colorectal cancer stem cells (CCSCs) will help to further clarify the current meager understandings of EMT. Recent advances affecting important EMT transcription factors and EMT and CCSCs are highlighted. We come to the conclusion that the regulatory network for EMT in CRC is complicated, with a great deal of crosstalk and alternate paths. More thorough research is required to more effectively connect the clinical management of CRC with biomarkers and targeted treatments associated with EMT. Full article
(This article belongs to the Special Issue Tumor Microenvironment in Colorectal Cancer (Volume 2))
Show Figures

Figure 1

Back to TopTop