Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = EMATs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3864 KiB  
Article
Sub-MHz EMAR for Non-Contact Thickness Measurement: How Ultrasonic Wave Directivity Affects Accuracy
by Alexander Siegl, David Auer, Bernhard Schweighofer, Andre Hochfellner, Gerald Klösch and Hannes Wegleiter
Sensors 2025, 25(15), 4746; https://doi.org/10.3390/s25154746 (registering DOI) - 1 Aug 2025
Viewed by 57
Abstract
Electromagnetic acoustic resonance (EMAR) is a well-established non-contact method for ultrasonic thickness measurement, typically operated at frequencies above 1 MHz using an electromagnetic acoustic transducer (EMAT). This study successfully extends EMAR into the sub-MHz range, allowing supply voltages below 60 V and thus [...] Read more.
Electromagnetic acoustic resonance (EMAR) is a well-established non-contact method for ultrasonic thickness measurement, typically operated at frequencies above 1 MHz using an electromagnetic acoustic transducer (EMAT). This study successfully extends EMAR into the sub-MHz range, allowing supply voltages below 60 V and thus offering safer and more cost-effective operation. Experiments were conducted on copper blocks approximately 20 mm thick, where a relative thickness accuracy of better than 0.2% is obtained. Regarding this result, the research identifies a critical design principle: Stable thickness resonances and subsequently accurate thickness measurement are achieved when the ratio of ultrasonic wavelength to EMAT track width (λ/w) falls below 1. This minimizes the excitation and interactions with structural eigenmodes, ensuring consistent measurement reliability. To support this, the study introduces a system-based model to simulate the EMAR method. The model provides detailed insights into how wave propagation affects the accuracy of EMAR measurements. Experimental results align well with the simulation outcome and confirm the feasibility of EMAR in the sub-MHz regime without compromising precision. These findings highlight the potential of low-voltage EMAR as a safer, cost-effective, and highly accurate approach for industrial ultrasonic thickness measurements. Full article
(This article belongs to the Special Issue Electromagnetic Sensing and Its Applications)
Show Figures

Figure 1

16 pages, 2473 KiB  
Article
Improvement of EMAT Butterfly Coil for Defect Detection in Aluminum Alloy Plate
by Dazhao Chi, Guangyu Sun and Haichun Liu
Materials 2025, 18(13), 3207; https://doi.org/10.3390/ma18133207 - 7 Jul 2025
Viewed by 306
Abstract
For non-destructive testing (NDT) of defects in aluminum alloy plates, traditional ultrasonic contact methods face challenges from high temperatures and liquid couplant contamination. Using electromagnetic acoustic transducers (EMATs), a key issue is that longitudinal waves (L-waves) excited by the butterfly-coil EMATs interfere with [...] Read more.
For non-destructive testing (NDT) of defects in aluminum alloy plates, traditional ultrasonic contact methods face challenges from high temperatures and liquid couplant contamination. Using electromagnetic acoustic transducers (EMATs), a key issue is that longitudinal waves (L-waves) excited by the butterfly-coil EMATs interfere with the desired shear waves (S-waves) reflected by internal defects. To solve this problem, a simulation–experiment approach optimized the butterfly coil parameters. An FE model visualized the electromagnetic acoustic transducer (EMAT) acoustic field and predicted signals. Orthogonal simulations tested three main parameters: excitation frequency, wire diameter, and effective coil width. Tests on aluminum specimens with artificial defects used the optimized EMAT. Simulated and measured signals showed strong correlation, validating optimal parameters. The results confirmed suppressed L-wave interference and improved defect detection sensitivity, enabling detection of a 3 mm diameter flat-bottomed hole buried 37 mm deep. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

24 pages, 864 KiB  
Article
Application of Acoustic Cardiography in Assessment of Cardiac Function in Horses with Atrial Fibrillation Before and After Cardioversion
by Mélodie J. Schneider, Isabelle L. Piotrowski, Hannah K. Junge, Glenn van Steenkiste, Ingrid Vernemmen, Gunther van Loon and Colin C. Schwarzwald
Animals 2025, 15(13), 1993; https://doi.org/10.3390/ani15131993 - 7 Jul 2025
Viewed by 319
Abstract
Left atrial mechanical dysfunction is common in horses following the treatment of atrial fibrillation (AF). This study aimed to evaluate the use of an acoustic cardiography monitor (Audicor®) in quantifying cardiac mechanical and hemodynamic function in horses with AF before and [...] Read more.
Left atrial mechanical dysfunction is common in horses following the treatment of atrial fibrillation (AF). This study aimed to evaluate the use of an acoustic cardiography monitor (Audicor®) in quantifying cardiac mechanical and hemodynamic function in horses with AF before and after treatment and to correlate these findings with echocardiographic measures. Twenty-eight horses with AF and successful transvenous electrical cardioversion were included. Audicor® recordings with concomitant echocardiographic examinations were performed one day before, one day after, and two to seven days after cardioversion. Key variables measured by Audicor® included electromechanical activating time (EMAT), heart rate-corrected EMATc, left ventricular systolic time (LVST), heart rate-corrected LVSTc, systolic dysfunction index (SDI), and intensity and persistence of the third and fourth heart sound (S3, S4). A repeated-measures ANOVA with Tukey’s test was used to compare these variables over time, and linear regression and Bland–Altman analyses were applied to assess associations with echocardiographic findings. Following conversion to sinus rhythm, there was a significant decrease in EMATc and LVSTc (p < 0.0001) and a significant increase in LVST (p = 0.0001), indicating improved ventricular systolic function, with strong agreement between Audicor® snapshot and echocardiographic measures. However, S4 quantification did not show clinical value for assessing left atrial function after conversion. Full article
Show Figures

Figure 1

36 pages, 11404 KiB  
Article
Synchronous Acquisition and Processing of Electro- and Phono-Cardiogram Signals for Accurate Systolic Times’ Measurement in Heart Disease Diagnosis and Monitoring
by Roberto De Fazio, Ilaria Cascella, Şule Esma Yalçınkaya, Massimo De Vittorio, Luigi Patrono, Ramiro Velazquez and Paolo Visconti
Sensors 2025, 25(13), 4220; https://doi.org/10.3390/s25134220 - 6 Jul 2025
Viewed by 464
Abstract
Cardiovascular diseases remain one of the leading causes of mortality worldwide, highlighting the importance of effective monitoring and early diagnosis. While electrocardiography (ECG) is the standard technique for evaluating the heart’s electrical activity and detecting rhythm and conduction abnormalities, it alone is insufficient [...] Read more.
Cardiovascular diseases remain one of the leading causes of mortality worldwide, highlighting the importance of effective monitoring and early diagnosis. While electrocardiography (ECG) is the standard technique for evaluating the heart’s electrical activity and detecting rhythm and conduction abnormalities, it alone is insufficient for identifying certain conditions, such as valvular disorders. Phonocardiography (PCG) allows the recording and analysis of heart sounds and improves the diagnostic accuracy when combined with ECG. In this study, ECG and PCG signals were simultaneously acquired from a resting adult subject using a compact system comprising an analog front-end (model AD8232, manufactured by Analog Devices, Wilmington, MA, USA) for ECG acquisition and a digital stethoscope built around a condenser electret microphone (model HM-9250, manufactured by HMYL, Anqing, China). Both the ECG electrodes and the microphone were positioned on the chest to ensure the spatial alignment of the signals. An adaptive segmentation algorithm was developed to segment PCG and ECG signals based on their morphological and temporal features. This algorithm identifies the onset and peaks of S1 and S2 heart sounds in the PCG and the Q, R, and S waves in the ECG, enabling the extraction of the systolic time intervals such as EMAT, PEP, LVET, and LVST parameters proven useful in the diagnosis and monitoring of cardiovascular diseases. Based on the segmented signals, the measured averages (EMAT = 74.35 ms, PEP = 89.00 ms, LVET = 244.39 ms, LVST = 258.60 ms) were consistent with the reference standards, demonstrating the reliability of the developed method. The proposed algorithm was validated on synchronized ECG and PCG signals from multiple subjects in an open-source dataset (BSSLAB Localized ECG Data). The systolic intervals extracted using the proposed method closely matched the literature values, confirming the robustness across different recording conditions; in detail, the mean Q–S1 interval was 40.45 ms (≈45 ms reference value, mean difference: −4.85 ms, LoA: −3.42 ms and −6.09 ms) and the R–S1 interval was 14.09 ms (≈15 ms reference value, mean difference: −1.2 ms, LoA: −0.55 ms and −1.85 ms). In conclusion, the results demonstrate the potential of the joint ECG and PCG analysis to improve the long-term monitoring of cardiovascular diseases. Full article
Show Figures

Figure 1

24 pages, 10912 KiB  
Article
Research on a High-Temperature Electromagnetic Ultrasonic Circumferential Guided Wave Sensor Based on Halbach Array
by Yuanxin Li, Jinjie Zhou, Jiabo Wen, Zehao Wang and Liu Li
Micromachines 2025, 16(4), 367; https://doi.org/10.3390/mi16040367 - 24 Mar 2025
Cited by 1 | Viewed by 523
Abstract
High-temperature pipelines, as core facilities in the fields of petrochemical and power, are constantly exposed to extreme working conditions ranging from 450 to 600 °C, facing risks of stress corrosion, creep damage, and other defects. Traditional shutdown inspections are time-consuming and costly. Meanwhile, [...] Read more.
High-temperature pipelines, as core facilities in the fields of petrochemical and power, are constantly exposed to extreme working conditions ranging from 450 to 600 °C, facing risks of stress corrosion, creep damage, and other defects. Traditional shutdown inspections are time-consuming and costly. Meanwhile, existing electromagnetic acoustic transducers (EMATs) are restricted by their high-temperature tolerance (≤500 °C) and short-term stability (effective working duration < 5 min). This paper proposes a high-frequency circumferential guided wave (CLamb wave) EMAT based on a Halbach permanent magnet array. Through magnetic circuit optimization (Halbach array) and multi-layer insulation design, it enables continuous and stable detection on the surface of 600 °C pipelines for 10 min. The simulations revealed that the Halbach array increased the magnetic flux density by 1.4 times and the total displacement amplitude by 2 times at a magnet’s large lift-off (9 mm). The experimental results show that the internal temperature of the sensor remained stable below 167 °C at 600 °C. It was capable of detecting the smallest defect of a φ3 mm half-hole (depth half of the wall thickness), with a signal attenuation rate of only 0.32%/min. The signal amplitude of Q235 pipelines under high-temperature short-term detection (<5 min) was 1.5 times higher than that at room temperature. However, material degradation under high temperature led to insufficient long-term stability. This study breaks through the bottleneck of long-term detection of high-temperature EMATs, providing a new scheme for efficient online detection of high-temperature pipelines. Full article
(This article belongs to the Special Issue Acoustic Transducers and Their Applications, 2nd Edition)
Show Figures

Figure 1

14 pages, 8356 KiB  
Article
Residual Stress Measurement Using EMAT for X80 Pipeline Steel: Effects of Coating Thickness and Surface Roughness Under Low Surface Preparation Requirements
by Chunlang Luo, Bing Chen, Li Xia, Lintao Xu, Xuan Liu, Sunmin Zou, Dongchuan Peng and Guoqing Gou
Materials 2024, 17(23), 5799; https://doi.org/10.3390/ma17235799 - 26 Nov 2024
Cited by 1 | Viewed by 916
Abstract
The residual stress significantly affects the operational safety of oil and gas pipelines. Traditional ultrasonic stress measurement methods require pipeline surface pretreatment, which reduces detection efficiency. EMAT, as a non-contact measurement method, shows promising applications for residual stress detection in oil and gas [...] Read more.
The residual stress significantly affects the operational safety of oil and gas pipelines. Traditional ultrasonic stress measurement methods require pipeline surface pretreatment, which reduces detection efficiency. EMAT, as a non-contact measurement method, shows promising applications for residual stress detection in oil and gas pipelines. Therefore, based on field conditions for residual stress detection in oil and gas pipelines, this study prepared X80 pipeline steel specimens with epoxy resin coatings of 0.58 mm, 1 mm, 1.58 mm, and 1.9 mm thickness to verify the influence of coating thickness on the stress measurement accuracy of EMAT. Additionally, X80 pipeline steel specimens with varying surface roughness were prepared to study the impact of surface roughness on the residual stress measurement. The results indicate that within the range of coating thickness variations, the residual stress measurement error falls in the range of 50 MPa, while the change of residual stress caused by surface roughness is less than 30 MPa. This validates the feasibility and accuracy of the EMAT method for residual stress measurement in in-service pipelines without the need for surface treatment. Full article
(This article belongs to the Special Issue Evaluation of Fatigue and Creep-Fatigue Damage of Steel)
Show Figures

Figure 1

13 pages, 3223 KiB  
Article
Coil-Only High-Frequency Lamb Wave Generation in Nickel Sheets
by Yini Song, Yihua Kang, Kai Wang, Yizhou Guo, Jun Tu and Bo Feng
Sensors 2024, 24(22), 7141; https://doi.org/10.3390/s24227141 - 6 Nov 2024
Viewed by 1944
Abstract
This study presents a novel, coil-only magnetostrictive ultrasonic detection method that operates effectively without permanent magnets, introducing a simpler alternative to conventional designs. The system configuration is streamlined, consisting of a single meander coil, an excitation source, and a nickel sheet, with both [...] Read more.
This study presents a novel, coil-only magnetostrictive ultrasonic detection method that operates effectively without permanent magnets, introducing a simpler alternative to conventional designs. The system configuration is streamlined, consisting of a single meander coil, an excitation source, and a nickel sheet, with both the bias magnetic field and ultrasonic excitation achieved by a composite excitation containing both DC and AC components. This design offers significant advantages, enabling high-frequency Lamb wave generation in nickel sheets for ultrasonic detection while reducing device complexity. Experimental validation demonstrated that an S0-mode Lamb wave at a frequency of 2.625 MHz could be effectively excited in a 0.2 mm nickel sheet using a double-layer meander coil. The experimentally measured wave velocity was 4.9946 m/s, with a deviation of only 0.4985% from the theoretical value, confirming the accuracy of the method. Additionally, this work provides a theoretical basis for future development of flexible MEMS-based magnetostrictive ultrasonic transducers, expanding the potential for miniaturized magnetostrictive patch transducers. Full article
(This article belongs to the Special Issue Advances and Applications of Magnetic Sensors)
Show Figures

Figure 1

23 pages, 2249 KiB  
Article
Improved EMAT Sensor Design for Enhanced Ultrasonic Signal Detection in Steel Wire Ropes
by Immanuel Rossteutscher, Oliver Blaschke, Florian Dötzer, Thorsten Uphues and Klaus Stefan Drese
Sensors 2024, 24(22), 7114; https://doi.org/10.3390/s24227114 - 5 Nov 2024
Cited by 2 | Viewed by 1656
Abstract
This study is focused on optimizing electromagnetic acoustic transducer (EMAT) sensors for enhanced ultrasonic guided wave signal generation in steel cables using CAD and modern manufacturing to enable contactless ultrasonic signal transmission and reception. A lab test rig with advanced measurement and data [...] Read more.
This study is focused on optimizing electromagnetic acoustic transducer (EMAT) sensors for enhanced ultrasonic guided wave signal generation in steel cables using CAD and modern manufacturing to enable contactless ultrasonic signal transmission and reception. A lab test rig with advanced measurement and data processing was set up to test the sensors’ ability to detect cable damage, like wire breaks and abrasion, while also examining the effect of potential disruptors such as rope soiling. Machine learning algorithms were applied to improve the damage detection accuracy, leading to significant advancements in magnetostrictive measurement methods and providing a new standard for future development in this area. The use of the Vision Transformer Masked Autoencoder Architecture (ViTMAE) and generative pre-training has shown that reliable damage detection is possible despite the considerable signal fluctuations caused by rope movement. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2024)
Show Figures

Figure 1

16 pages, 21094 KiB  
Article
Development of a Meander-Coil-Type Dual Magnetic Group Circumferential Magnetostrictive Guided Wave Transducer for Detecting Small Defects Hidden behind Support Structures
by Jinjie Zhou, Hang Zhang, Yuepeng Chen and Jitang Zhang
Micromachines 2024, 15(10), 1261; https://doi.org/10.3390/mi15101261 - 15 Oct 2024
Cited by 1 | Viewed by 1341
Abstract
In order to solve the problem that small defects hidden behind pipeline support parts are difficult to detect effectively in small spaces, such as offshore oil platforms, a meander-coil-type dual magnetic group circumferential magnetostrictive guided wave transducer is developed in this paper. The [...] Read more.
In order to solve the problem that small defects hidden behind pipeline support parts are difficult to detect effectively in small spaces, such as offshore oil platforms, a meander-coil-type dual magnetic group circumferential magnetostrictive guided wave transducer is developed in this paper. The transducer, which consists of a coil, two sets of permanent magnets, and a magnetostrictive patch, can excite a high-frequency circumferential shear horizontal (CSH) guided wave. The energy conversion efficiency of the MPT is optimized through magnetic field simulation and experiment, and the amplitude of the defect signal is enhanced 1.9 times. The experimental results show that the MPT developed in this paper can effectively excite and receive CSH2 mode guided waves with a center frequency of 1.6 MHz. Compared with the traditional PPM EMAT transducer, the excitation energy of the transducer is significantly enhanced, and the defects of the 2 mm round hole at the back of the support can be effectively detected. Full article
(This article belongs to the Special Issue Acoustic Transducers and Their Applications, 2nd Edition)
Show Figures

Figure 1

25 pages, 10965 KiB  
Article
Bottom Crack Detection with Real-Time Signal Amplitude Correction Using EMAT-PEC Composite Sensor
by Yizhou Guo, Yu Hu, Kai Wang, Yini Song, Bo Feng, Yihua Kang and Zhaoqi Duan
Sensors 2024, 24(16), 5196; https://doi.org/10.3390/s24165196 - 11 Aug 2024
Cited by 4 | Viewed by 1867
Abstract
During electromagnetic ultrasonic testing, it is difficult to recognize small-size bottom cracks by time of flight (ToF), and the lift-off fluctuation of the probe affects the accuracy and consistency of the inspection results. In order to overcome the difficulty, a novel composite sensor [...] Read more.
During electromagnetic ultrasonic testing, it is difficult to recognize small-size bottom cracks by time of flight (ToF), and the lift-off fluctuation of the probe affects the accuracy and consistency of the inspection results. In order to overcome the difficulty, a novel composite sensor of an electromagnetic acoustic transducer (EMAT) and pulse eddy current (PEC) is designed. We use the amplitude of a bottom echo recorded by EMAT to identify the tiny bottom crack as well as the amplitude of PEC signals picked up by the integrated symmetric coils to measure the average lift-off of the probe in real time. Firstly, the effects of lift-off and bottom cracks on the amplitude of bottom echo are distinguished by combining the theoretical analysis and finite element method (FEM). And then an amplitude correction method based on the fusion of EMAT and PEC signals is proposed to reduce the impact of lift-off on the defect signal. The experimental results demonstrate that the designed composite sensor can effectively detect a bottom crack as small as 0.1 mm × 0.3 mm. The signal fusion method can accurately correct the amplitude of defect signals and the relative error is less than ±8%. Full article
(This article belongs to the Special Issue Novel Sensors for Structural Health Monitoring: 2nd Edition)
Show Figures

Figure 1

21 pages, 4988 KiB  
Article
An Adaptive Noise Reduction Method for High Temperature and Low Voltage Electromagnetic Detection Signals Based on SVMD Combined with ICEEMDAN
by Zhizeng Ge, Jinjie Zhou, Xingquan Shen, Xingjun Zhang and Caixia Qi
Micromachines 2024, 15(8), 977; https://doi.org/10.3390/mi15080977 - 30 Jul 2024
Cited by 1 | Viewed by 1380
Abstract
In view of the low signal-to-noise ratio (SNR) of shear wave electromagnetic acoustic transducers (EMAT) in the detection of high-temperature equipment, the use of low excitation voltage (LEV) further deteriorates the detection results, resulting in the echo signal containing defects being drowned in [...] Read more.
In view of the low signal-to-noise ratio (SNR) of shear wave electromagnetic acoustic transducers (EMAT) in the detection of high-temperature equipment, the use of low excitation voltage (LEV) further deteriorates the detection results, resulting in the echo signal containing defects being drowned in noise. For the extraction of the EMAT signal, an adaptive noise reduction method is proposed. Firstly, the minimum envelope entropy is taken as the fitness function for the Harris Hawks Optimizer (HHO), and the optimal successive variational mode decomposition (SVMD) balance parameter is searched by HHO adaptive iteration to decompose LEV EMAT signals at high temperatures. Then the filter is carried out according to the excitation center frequency and correlation coefficient threshold function. Then, improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) is used to decompose the filtered signal and combine the kurtosis factor to select the appropriate intrinsic mode functions. Finally, the signal is extracted by the Hilbert transform. In order to verify the effectiveness of the method, it is applied to the low-voltage detection of 40Cr from 25 °C to 700 °C. The results show that the method not only suppresses the background noise and clutter noise but also significantly improves the SNR of EMAT signals, and most importantly, it is able to detect and extract the 2 mm small defects from the echo signals. It has great application prospects and value in the LEV detection of high-temperature equipment. Full article
(This article belongs to the Special Issue Acoustic Transducers and Their Applications, 2nd Edition)
Show Figures

Figure 1

16 pages, 2986 KiB  
Article
Thickness Measurements with EMAT Based on Fuzzy Logic
by Yingjie Shi, Shihui Tian, Jiahong Jiang, Tairan Lei, Shun Wang, Xiaobo Lin and Ke Xu
Sensors 2024, 24(13), 4066; https://doi.org/10.3390/s24134066 - 22 Jun 2024
Cited by 2 | Viewed by 1611
Abstract
Metal thickness measurements are essential in various industrial applications, yet current non-contact ultrasonic methods face limitations in range and accuracy, hindering the widespread adoption of electromagnetic ultrasonics. This study introduces a novel combined thickness measurement method employing fuzzy logic, with the aim of [...] Read more.
Metal thickness measurements are essential in various industrial applications, yet current non-contact ultrasonic methods face limitations in range and accuracy, hindering the widespread adoption of electromagnetic ultrasonics. This study introduces a novel combined thickness measurement method employing fuzzy logic, with the aim of broadening the applicational scope of the EMAT. Leveraging minimal hardware, this method utilizes the short pulse time-of-flight (TOF) technique for initial thickness estimation, followed by secondary measurements guided by fuzzy logic principles. The integration of measurements from the resonance, short pulse echo, and linear frequency modulation echo extends the measurement range while enhancing accuracy. Rigorous experimental validation validates the method’s effectiveness, demonstrating a measurement range of 0.3–1000.0 mm with a median error within ±0.5 mm. Outperforming traditional methods like short pulse echoes, this approach holds significant industrial potential. Full article
(This article belongs to the Special Issue Electromagnetic Sensing and Its Applications)
Show Figures

Figure 1

16 pages, 6766 KiB  
Article
Electromagnetic Acoustic Detection of Pipe Defects Hidden above T-Type Support Structures with Circumferential Shear Horizontal Guided Wave
by Xingjun Zhang, Jinjie Zhou, Yang Hu, Yao Liu and Xingquan Shen
Micromachines 2024, 15(4), 550; https://doi.org/10.3390/mi15040550 - 20 Apr 2024
Cited by 3 | Viewed by 1715
Abstract
When pipe defects are generated above the T-type support structure location, it is difficult to distinguish the reflection signals caused by the weld bead at the support structure from the reflection echoes of pipe defects. Therefore, in order to effectively detect pipe defects, [...] Read more.
When pipe defects are generated above the T-type support structure location, it is difficult to distinguish the reflection signals caused by the weld bead at the support structure from the reflection echoes of pipe defects. Therefore, in order to effectively detect pipe defects, a waveform subtraction method with a circumferential shear horizontal (CSH) guided wave is proposed, which is generated by an electromagnetic acoustic transducer (EMAT). First, a CSH0 guided wave mode with a center frequency of 500 kHz is selected to establish a three-dimensional model with and without pipe defects above the support structure. Following this, the influence of different widths of support structures on the echo signal is compared. Moreover, simulation and experimental results are used to compare the influence of different welding qualities on the detection results. Finally, the waveform subtraction method is used to process the simulation and experimental signals, and the influence of pipe defects with different lengths and depths is discussed. The results show that the non-through crack defect of 5 mm × 1 mm (length × depth) can be detected. The results show that this method can effectively detect the cracks by eliminating the influence of the weld echo, which provides a new concept for the detection of the defect above the support structure. Full article
(This article belongs to the Special Issue Acoustic Transducers and Their Applications)
Show Figures

Figure 1

12 pages, 619 KiB  
Article
Evaluation of the Audicor Acoustic Cardiography Device as a Diagnostic Tool in Horses with Mitral or Aortic Valve Insufficiency
by Isabelle L. Piotrowski, Hannah K. Junge and Colin C. Schwarzwald
Animals 2024, 14(2), 331; https://doi.org/10.3390/ani14020331 - 21 Jan 2024
Viewed by 1555
Abstract
Mitral and aortic valve insufficiencies have been commonly reported in horses. The objective of this study was to establish the use of acoustic cardiography (Audicor®) in horses with aortic (AI) or mitral valve insufficiency (MI). A total of 17 healthy horses, [...] Read more.
Mitral and aortic valve insufficiencies have been commonly reported in horses. The objective of this study was to establish the use of acoustic cardiography (Audicor®) in horses with aortic (AI) or mitral valve insufficiency (MI). A total of 17 healthy horses, 18 horses with AI, and 28 horses with MI were prospectively included. None of the horses was in heart failure. Echocardiography and Audicor® analyses were conducted. Electromechanical activating time (EMAT), rate-corrected EMATc, left ventricular systolic time (LVST), rate-corrected LVSTc, and intensity and persistence of the third and fourth heart sound (S3, S4) were reported by Audicor®. Graphical analysis of the three-dimensional (3D) phonocardiogram served to visually detect murmurs. Audicor® snapshot variables were compared between groups using one-way ANOVA followed by Tukey’s multiple-comparisons test. The association between Audicor® snapshot variables and the corresponding echocardiographic variables was investigated by linear regression and Bland–Altman analyses. Heart murmurs were not displayed on Audicor® phonocardiograms. No significant differences were found between Audicor® variables obtained in clinically healthy horses and horses with valvular insufficiency. The Audicor® device is unable to detect heart murmurs in horses. Audicor® variables representing cardiac function are not markedly altered, and their association with corresponding echocardiographic variables is poor in horses with valvular insufficiency that are not in heart failure. Full article
(This article belongs to the Special Issue Equine Internal Medicine)
Show Figures

Figure 1

18 pages, 4352 KiB  
Article
A Simplified One-Parallel-Element Automatic Impedance-Matching Network Applied to Electromagnetic Acoustic Transducers Driving
by João Pedro T. Andrade, Pedro Leon F. C. Bazan, Vivian S. Medeiros and Alan C. Kubrusly
Automation 2023, 4(4), 378-395; https://doi.org/10.3390/automation4040022 - 1 Dec 2023
Cited by 2 | Viewed by 2668
Abstract
Ultrasonic waves generated and received by electromagnetic acoustic transducers (EMATs) are advantageous in non-destructive testing, mainly due to the ability to operate without physical contact with the medium under test. Nevertheless, they present a main drawback of less efficiency, which leads to a [...] Read more.
Ultrasonic waves generated and received by electromagnetic acoustic transducers (EMATs) are advantageous in non-destructive testing, mainly due to the ability to operate without physical contact with the medium under test. Nevertheless, they present a main drawback of less efficiency, which leads to a lower signal-to-noise ratio. To overcome this, the L-network impedance-matching network is often used in order to ensure maximum power transfer to the EMAT from the excitation electronics. There is a wide range of factors that affect an EMAT’s impedance, apart from the transducer itself; namely, the properties of the specimen material, temperature, and frequency. Therefore, to ensure optimal power transfer, the matching network’s configuration needs to be fine-tuned often. Therefore, the automation of the laborious process of manually adjusting the network is of great benefit to the use of EMAT transducers. In this work, a simplified one-parallel-element automatic matching network is proposed and its theoretical optimal value is derived. Next, an automatic matching network was designed and fabricated. Experiments were performed with two different EMATs at several frequencies obtaining good agreement with theoretical predictions. The automatic system was able to determine the best configuration for the one-element matching network and provided up to 5.6 dB gain, similar to a standard manual solution and considerably faster. Full article
Show Figures

Figure 1

Back to TopTop