Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = ELTD1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 50713 KiB  
Article
Air Temperature Extremes in the Mediterranean Region (1940–2024): Synoptic Patterns and Trends
by Georgios Kotsias and Christos J. Lolis
Atmosphere 2025, 16(7), 852; https://doi.org/10.3390/atmos16070852 - 13 Jul 2025
Viewed by 461
Abstract
Extreme air temperatures along with the synoptic conditions leading to their appearance are examined for the Mediterranean region for the 85-year period of 1940–2024. The data used are daily (04UTC and 12UTC) grid point (1° × 1°) values of 2 m air temperature, [...] Read more.
Extreme air temperatures along with the synoptic conditions leading to their appearance are examined for the Mediterranean region for the 85-year period of 1940–2024. The data used are daily (04UTC and 12UTC) grid point (1° × 1°) values of 2 m air temperature, 850 hPa air temperature, and 1000 hPa and 500 hPa geopotential heights, obtained from the ERA5 database. For 12UTC and 04UTC, the 2 m air temperature anomalies are calculated and are used for the definition of Extremely High Temperature Days (EHTDs) and Extremely Low Temperature Days (ELTDs), respectively. Overall, 3787 EHTDs and 4872 ELTDs are defined. It is found that EHTDs are evidently more frequent in recent years (increased by 305% since the 1980s) whereas ELTDs are less frequent (decreased by 41% since the 1980s), providing a clear sign of warming of the Mediterranean climate. A multivariate statistical analysis combining factor analysis and k-means clustering, known as spectral clustering, is applied to the data resulting in the definition of nine EHTD and seven ELTD clusters. EHTDs are mainly associated with intense solar heating, blocking anticyclones and warm air advection. ELTDs are connected to intense radiative cooling of the Earth’s surface, cold air advection and Arctic outbreaks. This is a unique study for the Mediterranean region utilizing the high-resolution ERA5 data collected since the 1940s to define and investigate the variability of both high and low temperature extremes using a validated methodology. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

18 pages, 7834 KiB  
Article
ELTD1 Activation Induces an Endothelial-EMT Transition to a Myofibroblast Phenotype
by Helen Sheldon, John Alexander, Esther Bridges, Lucia Moreira, Svetlana Reilly, Koon Hwee Ang, Dian Wang, Salwa Lin, Syed Haider, Alison H. Banham and Adrian L. Harris
Int. J. Mol. Sci. 2021, 22(20), 11293; https://doi.org/10.3390/ijms222011293 - 19 Oct 2021
Cited by 13 | Viewed by 3888
Abstract
ELTD1 is expressed in endothelial and vascular smooth muscle cells and has a role in angiogenesis. It has been classified as an adhesion GPCR, but as yet, no ligand has been identified and its function remains unknown. To establish its role, ELTD1 was [...] Read more.
ELTD1 is expressed in endothelial and vascular smooth muscle cells and has a role in angiogenesis. It has been classified as an adhesion GPCR, but as yet, no ligand has been identified and its function remains unknown. To establish its role, ELTD1 was overexpressed in endothelial cells. Expression and consequently ligand independent activation of ELTD1 results in endothelial-mesenchymal transistion (EndMT) with a loss of cell-cell contact, formation of stress fibres and mature focal adhesions and an increased expression of smooth muscle actin. The effect was pro-angiogenic, increasing Matrigel network formation and endothelial sprouting. RNA-Seq analysis after the cells had undergone EndMT revealed large increases in chemokines and cytokines involved in regulating immune response. Gene set enrichment analysis of the data identified a number of pathways involved in myofibroblast biology suggesting that the endothelial cells had undergone a type II EMT. This type of EMT is involved in wound repair and is closely associated with inflammation implicating ELTD1 in these processes. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

15 pages, 1834 KiB  
Review
ELTD1—An Emerging Silent Actor in Cancer Drama Play
by Ani-Simona Sevastre, Iuliana M. Buzatu, Carina Baloi, Alexandru Oprita, Alexandra Dragoi, Ligia G. Tataranu, Oana Alexandru, Stefania Tudorache and Anica Dricu
Int. J. Mol. Sci. 2021, 22(10), 5151; https://doi.org/10.3390/ijms22105151 - 13 May 2021
Cited by 12 | Viewed by 3086
Abstract
The epidermal growth factor, latrophilin, and seven transmembrane domain–containing protein 1 (ELTD1), is a member of the G–protein coupled receptors (GPCRs) superfamily. Although discovered in 2001, ELTD1 has been investigated only by a few research groups, and important data about its role in [...] Read more.
The epidermal growth factor, latrophilin, and seven transmembrane domain–containing protein 1 (ELTD1), is a member of the G–protein coupled receptors (GPCRs) superfamily. Although discovered in 2001, ELTD1 has been investigated only by a few research groups, and important data about its role in normal and tumor cells is still missing. Even though its functions and structure are not yet fully understood, recent studies show that ELTD1 has a role in both physiological and pathological angiogenesis, and it appears to be a very important biomarker and a molecular target in cancer diseases. Upregulation of ELTD1 in malignant cells has been reported, and correlated with poor cancer prognosis. This review article aims to compile the existing data and to discuss the current knowledge on ELTD1 structure and signaling, and its role in physiological and neoplastic conditions. Full article
Show Figures

Figure 1

13 pages, 1812 KiB  
Article
ADGRL4/ELTD1 Silencing in Endothelial Cells Induces ACLY and SLC25A1 and Alters the Cellular Metabolic Profile
by David M. Favara, Christos E. Zois, Syed Haider, Elisabete Pires, Helen Sheldon, James McCullagh, Alison H. Banham and Adrian L. Harris
Metabolites 2019, 9(12), 287; https://doi.org/10.3390/metabo9120287 - 25 Nov 2019
Cited by 19 | Viewed by 5691
Abstract
Adhesion G Protein-Coupled Receptor L4 (ADGRL4/ELTD1) is an endothelial cell adhesion G protein-coupled receptor (aGPCR) which regulates physiological and tumour angiogenesis, providing an attractive target for anti-cancer therapeutics. To date, ADGRL4/ELTD1′s full role and mechanism of function within endothelial biology remains unknown, as [...] Read more.
Adhesion G Protein-Coupled Receptor L4 (ADGRL4/ELTD1) is an endothelial cell adhesion G protein-coupled receptor (aGPCR) which regulates physiological and tumour angiogenesis, providing an attractive target for anti-cancer therapeutics. To date, ADGRL4/ELTD1′s full role and mechanism of function within endothelial biology remains unknown, as do its ligand(s). In this study, ADGRL4/ELTD1 silencing, using two independent small interfering RNAs (siRNAs), was performed in human umbilical vein endothelial cells (HUVECS) followed by transcriptional profiling, target gene validation, and metabolomics using liquid chromatography-mass spectrometry in order to better characterise ADGRL4/ELTD1′s role in endothelial cell biology. We show that ADGRL4/ELTD1 silencing induced expression of the cytoplasmic metabolic regulator ATP Citrate Lyase (ACLY) and the mitochondria-to-cytoplasm citrate transporter Solute Carrier Family 25 Member 1 (SLC25A1) but had no apparent effect on pathways downstream of ACLY (fatty acid and cholesterol synthesis or acetylation). Silencing induced KIT expression and affected the Notch signalling pathway, upregulating Delta Like Canonical Notch Ligand 4 (DLL4) and suppressing Jagged Canonical Notch Ligand 1 (JAG1) and Hes Family BHLH Transcription Factor 2 (HES2). The effect of ADGRL4/ELTD1 silencing on the cellular metabolic profile was modest but several metabolites were significantly affected. Cis-aconitic acid, uridine diphosphate (UDP)-glucoronate, fructose 2,6-diphosphate, uridine 5-diphosphate, and aspartic acid were all elevated as a result of silencing and phosphocreatine, N-acetylglutamic acid, taurine, deoxyadenosine triphosphate, and cytidine monophosphate were depleted. Metabolic pathway analysis implicated ADGRL4/ELTD1 in pyrimidine, amino acid, and sugar metabolism. In summary, this study shows that ADGRL4/ELTD1 impacts core components of endothelial metabolism and regulates genes involved in endothelial differentiation/homeostasis and Notch signalling. Full article
(This article belongs to the Special Issue Metabolomics in the Study of Disease)
Show Figures

Figure 1

17 pages, 400 KiB  
Review
Emerging Biomarkers in Glioblastoma
by Mairéad G. McNamara, Solmaz Sahebjam and Warren P. Mason
Cancers 2013, 5(3), 1103-1119; https://doi.org/10.3390/cancers5031103 - 22 Aug 2013
Cited by 80 | Viewed by 11936
Abstract
Glioblastoma, the most common primary brain tumor, has few available therapies providing significant improvement in survival. Molecular signatures associated with tumor aggressiveness as well as with disease progression and their relation to differences in signaling pathways implicated in gliomagenesis have recently been described. [...] Read more.
Glioblastoma, the most common primary brain tumor, has few available therapies providing significant improvement in survival. Molecular signatures associated with tumor aggressiveness as well as with disease progression and their relation to differences in signaling pathways implicated in gliomagenesis have recently been described. A number of biomarkers which have potential in diagnosis, prognosis and prediction of response to therapy have been identified and along with imaging modalities could contribute to the clinical management of GBM. Molecular biomarkers including O(6)-methlyguanine-DNA-methyltransferase (MGMT) promoter and deoxyribonucleic acid (DNA) methylation, loss of heterozygosity (LOH) of chromosomes 1p and 19q, loss of heterozygosity 10q, isocitrate dehydrogenase (IDH) mutations, epidermal growth factor receptor (EGFR), epidermal growth factor, latrophilin, and 7 transmembrane domain-containing protein 1 on chromosome 1 (ELTD1), vascular endothelial growth factor (VEGF), tumor suppressor protein p53, phosphatase and tensin homolog (PTEN), p16INK4a gene, cytochrome c oxidase (CcO), phospholipid metabolites, telomerase messenger expression (hTERT messenger ribonucleic acid [mRNA]), microRNAs (miRNAs), cancer stem cell markers and imaging modalities as potential biomarkers are discussed. Inclusion of emerging biomarkers in prospective clinical trials is warranted in an effort for more effective personalized therapy in the future. Full article
(This article belongs to the Special Issue Glioblastoma)
Show Figures

Figure 1

Back to TopTop