Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = ECQCL

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 2976 KiB  
Article
Continuous-Wave Room-Temperature External Cavity Quantum Cascade Lasers Operating at λ~8.5 μm
by Zixian Wang, Yuzhe Lin, Yuan Ma, Chenyang Wan, Fengxin Dong, Xuyan Zhou, Jinchuan Zhang, Fengqi Liu and Wanhua Zheng
Photonics 2025, 12(2), 129; https://doi.org/10.3390/photonics12020129 - 31 Jan 2025
Viewed by 829
Abstract
External cavity quantum cascade lasers (EC-QCLs) utilizing the Littrow configuration and operating at an approximate wavelength of 8.5 μm have been successfully demonstrated in continuous wave operations at room temperature. Our work provides ideas and experimental support for the optimization of the EC-QCL [...] Read more.
External cavity quantum cascade lasers (EC-QCLs) utilizing the Littrow configuration and operating at an approximate wavelength of 8.5 μm have been successfully demonstrated in continuous wave operations at room temperature. Our work provides ideas and experimental support for the optimization of the EC-QCL which indicate optimal EC-QCL performance with an external cavity length of 25 cm and investigates the impact of various parameters, including injection current and temperature on the performance of the EC-QCL. In the absence of anti-reflection (AR) coating, the tuning range at 25 °C extends up to 103.3 cm−1, while the maximum side mode suppression ratio (SMSR) reaches 30.8 dB, accompanied by a full width half maximum linewidth (FWHM) of 0.76 nm. Full article
(This article belongs to the Special Issue The Three-Decade Journey of Quantum Cascade Lasers)
Show Figures

Figure 1

10 pages, 3008 KiB  
Article
External-Cavity Quantum Cascade Laser-Based Gas Sensor for Sulfur Hexafluoride Detection
by Xingyu Pan, Yifan Zhang, Jiayu Zeng, Minghui Zhang and Jingsong Li
Chemosensors 2023, 11(1), 30; https://doi.org/10.3390/chemosensors11010030 - 30 Dec 2022
Cited by 6 | Viewed by 2481
Abstract
The external-cavity quantum cascade laser (ECQCL) is an ideal mid-infrared (MIR) spectral light source for determining large molecular-absorption spectral features with broad transition bands. For this paper, a gas sensor system was developed using a broadband tunable ECQCL and a direct absorption spectroscopy [...] Read more.
The external-cavity quantum cascade laser (ECQCL) is an ideal mid-infrared (MIR) spectral light source for determining large molecular-absorption spectral features with broad transition bands. For this paper, a gas sensor system was developed using a broadband tunable ECQCL and a direct absorption spectroscopy detection scheme with a short path absorption cell of 29.6 cm. For spectral signal detection, a cheap and miniaturized quartz crystal tuning fork- (QCTF) based light detector was used for laser signal detection. The characteristics of the QCTF detector were theoretically simulated and experimentally observed. To demonstrate this sensing technique, sulfur hexafluoride (SF6) was selected as the analyte, which can be used as an effective indicator to identify fault-types of gas-insulated electrical equipment. Preliminary results indicated that a good agreement was obtained between experimentally observed data and reference spectra according to the NIST database and previous publications, and the gas sensor system showed a good linear response to SF6 gas concentration. Finally, Allan–Werle deviation analysis indicated that detection limits of 1.89 ppm for SF6 were obtained with a 1 s integration time, which can be further improved to ~0.38 ppm by averaging up to 131 s. Full article
Show Figures

Figure 1

16 pages, 2016 KiB  
Review
Research on Mid-Infrared External Cavity Quantum Cascade Lasers and Applications
by Yuhang Ma, Keke Ding, Long Wei, Xuan Li, Junce Shi, Zaijin Li, Yi Qu, Lin Li, Zhongliang Qiao, Guojun Liu, Lina Zeng and Dongxin Xu
Crystals 2022, 12(11), 1564; https://doi.org/10.3390/cryst12111564 - 2 Nov 2022
Cited by 6 | Viewed by 3091
Abstract
In this paper, we review the progress of the development and application of external cavity quantum cascade lasers (ECQCLs). We concentrated on ECQCLs based on the wide tunable range for multi-component detection and applications. ECQCLs in the mid-infrared band have a series of [...] Read more.
In this paper, we review the progress of the development and application of external cavity quantum cascade lasers (ECQCLs). We concentrated on ECQCLs based on the wide tunable range for multi-component detection and applications. ECQCLs in the mid-infrared band have a series of unique spectral properties, which can be widely used in spectroscopy, gas detection, protein detection, medical diagnosis, free space optical communication, and so on, especially wide tuning range, the tuning range up to hundreds of wavenumbers; therefore, ECQCLs show great applications potential in many fields. In this paper, the main external cavity structures of ECQCLs are reviewed and compared, such as the Littrow structure, the Littman structure, and some new structures. Some new structures include the intra-cavity out-coupling structure, multimode interference (MMI) structure, and acousto-optic modulator (AOM) control structure. At the same time, the application research of ECQCLs in gas detection, protein detection, and industry detection are introduced in detail. The results show that the use of diffraction gratings as optical feedback elements can not only achieve wide tuning, but it also has low cost, which is beneficial to reduce the complexity of the laser structure. Therefore, the use of diffraction gratings as optical feedback elements is still the mainstream direction of ECQCLs, and ECQCLs offer a further new option for multi-component detection. Full article
(This article belongs to the Special Issue Frontiers of Semiconductor Lasers)
Show Figures

Figure 1

14 pages, 6830 KiB  
Article
Setup and Analysis of a Mid-Infrared Stand-Off System to Detect Traces of Explosives on Fabrics
by Lisa B. Dreier, Christoph Kölbl, Vincent Jeuk, Claudia Beleites, Anja Köhntopp and Frank Duschek
Sensors 2022, 22(20), 7839; https://doi.org/10.3390/s22207839 - 15 Oct 2022
Cited by 3 | Viewed by 2392
Abstract
The increasing number of terrorist attacks within the last decade has demonstrated that taking preventive protective measures is highly important. In addition to existing measures, automated detection systems for fast and reliable explosive detection are required. A sensitive spectroscopic system based on mid-infrared [...] Read more.
The increasing number of terrorist attacks within the last decade has demonstrated that taking preventive protective measures is highly important. In addition to existing measures, automated detection systems for fast and reliable explosive detection are required. A sensitive spectroscopic system based on mid-infrared spectroscopy has been developed and applied to explosive samples on different types of fabric under various geometric conditions. Using this system, traces of TNT, RDX, PETN and ammonium nitrate can be detected in less than a second. Various approaches for data pretreatment (wavelength calibration) and subsequent analysis (normalization, removal of atmospheric water absorption lines) are presented and the remaining challenges on the road to a fully automated system, including a robust classification algorithm, are discussed. Full article
Show Figures

Figure 1

22 pages, 4474 KiB  
Article
Standoff Infrared Measurements of Chemical Plume Dynamics in Complex Terrain Using a Combination of Active Swept-ECQCL Laser Spectroscopy with Passive Hyperspectral Imaging
by Mark C. Phillips, Bruce E. Bernacki, Patrick T. Conry and Michael J. Brown
Remote Sens. 2022, 14(15), 3756; https://doi.org/10.3390/rs14153756 - 5 Aug 2022
Cited by 4 | Viewed by 2726
Abstract
Chemical plume detection and modeling in complex terrain present numerous challenges. We present experimental results from outdoor releases of two chemical tracers (sulfur hexafluoride and Freon-152a) from different locations in mountainous terrain. Chemical plumes were detected using two standoff instruments collocated at a [...] Read more.
Chemical plume detection and modeling in complex terrain present numerous challenges. We present experimental results from outdoor releases of two chemical tracers (sulfur hexafluoride and Freon-152a) from different locations in mountainous terrain. Chemical plumes were detected using two standoff instruments collocated at a distance of 1.5 km from the plume releases. A passive long-wave infrared hyperspectral imaging system was used to show time- and space-resolved plume transport in regions near the source. An active infrared swept-wavelength external cavity quantum cascade laser system was used in a standoff configuration to measure quantitative chemical column densities with high time resolution and high sensitivity along a single measurement path. Both instruments provided chemical-specific detection of the plumes and provided complementary information over different temporal and spatial scales. The results show highly variable plume propagation dynamics near the release points, strongly dependent on the local topography and winds. Effects of plume stagnation, plume splitting, and plume mixing were all observed and are explained based on local topographic and wind conditions. Measured plume column densities at distances ~100 m from the release point show temporal fluctuations over ~1 s time scales and spatial variations over ~1 m length scales. The results highlight the need for high-speed and spatially resolved measurement techniques to provide validation data at the relevant spatial and temporal scales required for high-fidelity terrain-aware microscale plume propagation models. Full article
(This article belongs to the Special Issue Hyperspectral Remote Sensing: Current Situation and New Challenges)
Show Figures

Graphical abstract

14 pages, 2865 KiB  
Article
Infrared Spectroscopy with a Fiber-Coupled Quantum Cascade Laser for Attenuated Total Reflection Measurements Towards Biomedical Applications
by Ine L. Jernelv, Karina Strøm, Dag Roar Hjelme and Astrid Aksnes
Sensors 2019, 19(23), 5130; https://doi.org/10.3390/s19235130 - 23 Nov 2019
Cited by 18 | Viewed by 4788
Abstract
The development of rapid and accurate biomedical laser spectroscopy systems in the mid-infrared has been enabled by the commercial availability of external-cavity quantum cascade lasers (EC-QCLs). EC-QCLs are a preferable alternative to benchtop instruments such as Fourier transform infrared spectrometers for sensor development [...] Read more.
The development of rapid and accurate biomedical laser spectroscopy systems in the mid-infrared has been enabled by the commercial availability of external-cavity quantum cascade lasers (EC-QCLs). EC-QCLs are a preferable alternative to benchtop instruments such as Fourier transform infrared spectrometers for sensor development as they are small and have high spectral power density. They also allow for the investigation of multiple analytes due to their broad tuneability and through the use of multivariate analysis. This article presents an in vitro investigation with two fiber-coupled measurement setups based on attenuated total reflection spectroscopy and direct transmission spectroscopy for sensing. A pulsed EC-QCL (1200–900 cm 1 ) was used for measurements of glucose and albumin in aqueous solutions, with lactate and urea as interferents. This analyte composition was chosen as an example of a complex aqueous solution with relevance for biomedical sensors. Glucose concentrations were determined in both setup types with root-mean-square error of cross-validation (RMSECV) of less than 20 mg/dL using partial least-squares (PLS) regression. These results demonstrate accurate analyte measurements, and are promising for further development of fiber-coupled, miniaturised in vivo sensors based on mid-infrared spectroscopy. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

35 pages, 13829 KiB  
Review
Applying Quantum Cascade Laser Spectroscopy in Plasma Diagnostics
by Jürgen Röpcke, Paul B. Davies, Stephan Hamann, Mario Hannemann, Norbert Lang and Jean-Pierre H. Van Helden
Photonics 2016, 3(3), 45; https://doi.org/10.3390/photonics3030045 - 25 Jul 2016
Cited by 24 | Viewed by 7809
Abstract
The considerably higher power and wider frequency coverage available from quantum cascade lasers (QCLs) in comparison to lead salt diode lasers has led to substantial advances when QCLs are used in pure and applied infrared spectroscopy. Furthermore, they can be used in both [...] Read more.
The considerably higher power and wider frequency coverage available from quantum cascade lasers (QCLs) in comparison to lead salt diode lasers has led to substantial advances when QCLs are used in pure and applied infrared spectroscopy. Furthermore, they can be used in both pulsed and continuous wave (cw) operation, opening up new possibilities in quantitative time resolved applications in plasmas both in the laboratory and in industry as shown in this article. However, in order to determine absolute concentrations accurately using pulsed QCLs, careful attention has to be paid to features like power saturation phenomena. Hence, we begin with a discussion of the non-linear effects which must be considered when using short or long pulse mode operation. More recently, cw QCLs have been introduced which have the advantage of higher power, better spectral resolution and lower fluctuations in light intensity compared to pulsed devices. They have proved particularly useful in sensing applications in plasmas when very low concentrations have to be monitored. Finally, the use of cw external cavity QCLs (EC-QCLs) for multi species detection is described, using a diagnostics study of a methane/nitrogen plasma as an example. The wide frequency coverage of this type of QCL laser, which is significantly broader than from a distributed feedback QCL (DFB-QCL), is a substantial advantage for multi species detection. Therefore, cw EC-QCLs are state of the art devices and have enormous potential for future plasma diagnostic studies. Full article
(This article belongs to the Special Issue Quantum Cascade Lasers - Advances and New Applications)
Show Figures

Graphical abstract

15 pages, 5798 KiB  
Article
Recent Advances and Applications of External Cavity-QCLs towards Hyperspectral Imaging for Standoff Detection and Real-Time Spectroscopic Sensing of Chemicals
by Ralf Ostendorf, Lorenz Butschek, Stefan Hugger, Frank Fuchs, Quankui Yang, Jan Jarvis, Christian Schilling, Marcel Rattunde, André Merten, Jan Grahmann, Dusan Boskovic, Thorsten Tybussek, Klaus Rieblinger and Joachim Wagner
Photonics 2016, 3(2), 28; https://doi.org/10.3390/photonics3020028 - 13 May 2016
Cited by 74 | Viewed by 9024
Abstract
External-cavity quantum cascade lasers (EC-QCL) are now established as versatile wavelength-tunable light sources for analytical spectroscopy in the mid-infrared (MIR) spectral range. We report on the realization of rapid broadband spectral tuning with kHz scan rates by combining a QCL chip with a [...] Read more.
External-cavity quantum cascade lasers (EC-QCL) are now established as versatile wavelength-tunable light sources for analytical spectroscopy in the mid-infrared (MIR) spectral range. We report on the realization of rapid broadband spectral tuning with kHz scan rates by combining a QCL chip with a broad gain spectrum and a resonantly driven micro-opto-electro-mechanical (MOEMS) scanner with an integrated diffraction grating in Littrow configuration. The capability for real-time spectroscopic sensing based on MOEMS EC-QCLs is demonstrated by transmission measurements performed on polystyrene reference absorber sheets, as well as on hazardous substances, such as explosives. Furthermore, different applications for the EC-QCL technology in spectroscopic sensing are presented. These include the fields of process analysis with on- or even inline capability and imaging backscattering spectroscopy for contactless identification of solid and liquid contaminations on surfaces. Recent progress in trace detection of explosives and related precursors in relevant environments as well as advances in food quality monitoring by discriminating fresh and mold contaminated peanuts based on their MIR backscattering spectrum is shown. Full article
(This article belongs to the Special Issue Quantum Cascade Lasers - Advances and New Applications)
Show Figures

Graphical abstract

9 pages, 2379 KiB  
Article
Influence of Ethanol on Breath Acetone Measurements Using an External Cavity Quantum Cascade Laser
by Raymund Centeno, Julien Mandon, Frans J. M. Harren and Simona M. Cristescu
Photonics 2016, 3(2), 22; https://doi.org/10.3390/photonics3020022 - 27 Apr 2016
Cited by 17 | Viewed by 6481
Abstract
Broadly tunable external cavity quantum cascade lasers (EC-QCLs) in combination with off-axis integrated cavity enhanced spectroscopy (OA-ICOS) provide high molecular gas sensitivity and selectivity. We used an EC-QCL in the region of 1150–1300 cm−1 in both broadband scan mode, as well as [...] Read more.
Broadly tunable external cavity quantum cascade lasers (EC-QCLs) in combination with off-axis integrated cavity enhanced spectroscopy (OA-ICOS) provide high molecular gas sensitivity and selectivity. We used an EC-QCL in the region of 1150–1300 cm−1 in both broadband scan mode, as well as narrow scanning mode around 1216 cm−1, respectively, for detection of acetone in exhaled breath. This wavelength region is essential for accurate determination of breath acetone due to the relative low spectral influence of other endogenous molecules like water, carbon dioxide or methane. We demonstrated that ethanol has a strong spectroscopic influence on the acetone concentration in exhaled breath, an important detail that has been overlooked so far. An ethanol correction is proposed and validated with the reference measurements from a proton-transfer reaction mass spectrometer (PTR-MS) for the same breath samples from ten persons. With the ethanol correction, both broadband and narrowband molecular spectroscopy represent an attractive way to accurately assess the exhaled breath acetone. The importance of considering spectroscopic ethanol influence is essential, especially for the narrowband scans, (e.g., 1216 cm−1), for which the error in determining the acetone concentrations can rise up to 39% if it is not considered. Full article
(This article belongs to the Special Issue Quantum Cascade Lasers - Advances and New Applications)
Show Figures

Graphical abstract

Back to TopTop