Modification Study on Quantum Tunneling Radiation of Kinnersley Black Hole
Abstract
:1. Introduction
2. Spinor Field Coupling Models and Modified Dynamical Equations for Fermions in Curved Spacetime
3. The Modification of Lorentz-Breaking Theory on the Quantum Tunneling Radiation of Kinnersley Black Holes under Linear Acceleration Motion
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kostelecký, V.A.; Tasson, J.D. Prospects for Large Relativity Violations in Matter-Gravity Couplings. Phys. Rev. Lett. 2009, 102, 010402. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Tasson, J.D. Matter-gravity couplings and Lorentz violation. Phys. Rev. D 2011, 83, 016013. [Google Scholar] [CrossRef]
- Pihan-le, B.H.; Guerlin, C.; Hees, A.; Peaucelle, R.; Tasson, J.D.; Bailey, Q.G.; Mo, G.; Delva, P.; Meynadier, F.; Touboul, P.; et al. New Test of Lorentz Invariance Using the MICROSCOPE Space Mission. Phys. Rev. Lett. 2019, 123, 231102. [Google Scholar]
- Mirshekari, S.; Yunes, N.; Will, C.M. Constraining Lorentz-violating, modified dispersion relations with gravitational waves. Phys. Rev. D 2012, 85, 024041. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Mewes, M. Testing local Lorentz invariance with short-range gravity. Phys. Lett. B 2017, 766, 137–143. [Google Scholar] [CrossRef]
- Tasson, J.D. What do we know about Lorentz invariance? Rep. Prog. Phys. 2014, 77, 062901. [Google Scholar] [CrossRef]
- Bailey, Q.G.; Kostelecký, V.A.; Xu, R. Short-range gravity and Lorentz violation. Phys. Rev. D 2015, 91, 022006. [Google Scholar] [CrossRef]
- Bonder, Y.; Peterson, C. Explicit Lorentz violation in a static and spherically-symmetric spacetime. Phys. Rev. D 2020, 101, 064056. [Google Scholar] [CrossRef]
- Kostelecký, V.A. Riemann–Finsler geometry and Lorentz-violating kinematics. Phys. Lett. B 2011, 701, 137–143. [Google Scholar] [CrossRef]
- Altschul, B.; Bailey, Q.G.; Kostelecký, V.A. Lorentz violation with an antisymmetric tensor. Phys. Rev. D 2010, 81, 065028. [Google Scholar] [CrossRef]
- Shao, C.-G.; Chen, Y.-F.; Tan, Y.-J.; Yang, S.-Q.; Luo, J.; Tobar, M.-E.; Long, J.-C.; Weisman, E.; Kostelecký, V.A. Combined Search for a Lorentz-Violating Force in Short-Range Gravity Varying as the Inverse Sixth Power of Distance. Phys. Rev. Lett. 2019, 122, 011102. [Google Scholar] [CrossRef] [PubMed]
- Sha, B.; Liu, Z.-E. Lorentz-breaking theory and tunneling radiation correction to Vaidya–Bonner de Sitter Black Hole. Eur. Phys. J. C 2022, 82, 648. [Google Scholar] [CrossRef]
- Garcia de Andrade, L.C. Non-Riemannian acoustic black holes: Hawking radiation and Lorentz symmetry breaking. arXiv 2004, arXiv:gr-qc/0411103. [Google Scholar]
- Jacobson, T. Lorentz violation and Hawking radiation. arXiv 2004, arXiv:1405.3466. [Google Scholar]
- Kanzi, S.; Sakallı, İ. Greybody radiation and quasinormal modes of Kerr-like black hole in Bumblebee gravity model. Eur. Phys. J. C 2021, 81, 501. [Google Scholar] [CrossRef]
- Mangut, M.; Gürsel, H.; Kanzi, S.; Sakallı, İ. Probing the Lorentz Invariance Violation via Gravitational Lensing and Analytical Eigenmodes of Perturbed Slowly Rotating Bumblebee Black Holes. Universe 2023, 9, 225. [Google Scholar] [CrossRef]
- Nascimento, J.R.; Petrov, A.Y.; Reyes, C.M. On the Lorentz-breaking theory with higher derivatives in spinor sector. Phys. Rev. D 2015, 92, 045030. [Google Scholar] [CrossRef]
- Colladay, D.; Kostelecký, V.A. CPT violation and the standard model. Phys. Rev. D 1997, 55, 6760. [Google Scholar] [CrossRef]
- Carroll, S.M.; Field, G.B.; Jackiw, R. Limits on a Lorentz- and parity-violating modification of electrodynamics. Phys. Rev. D 1990, 41, 1231. [Google Scholar] [CrossRef]
- Kostelecký, V.A. Gravity, Lorentz violation, and the standard model. Phys. Rev. D 2004, 69, 105009. [Google Scholar] [CrossRef]
- Casana, R.; Carvalho, E.S.; Ferreira, M.M., Jr. Dimensional reduction of the CPT-even electromagnetic sector of the standard model extension. Phys. Rev. D 2011, 84, 045008. [Google Scholar] [CrossRef]
- Nascimento, J.R.; Passos, E.; Petrov, A.Y.; Brito, F.A. Lorentz-CPT violation, radiative corrections and finite temperature. J. High Energy Phys. 2007, 06, 016. [Google Scholar] [CrossRef]
- Gomes, M.; Nascimento, J.R.; Petrov, A.Y.; da Silva, A.J. Aetherlike Lorentz-breaking actions. Phys. Rev. D 2010, 81, 045018. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, M.-Q.; Liu, Z.-E.; Sha, B.; Tan, X.; Liu, Y. The solution of a modified Hamilton–Jacobi equation with Lorentz-violating scalar field. Gen. Relat. Gravit. 2020, 52, 1. [Google Scholar] [CrossRef]
- Liu, Y.-Z.; Tan, X.; Zhang, J.; Li, R.; Yang, S.-Z. The Correction of Quantum Tunneling Rate and Entropy of Non-Stationary Spherically Symmetric Black Hole by Lorentz Breaking. Universe 2023, 9, 306. [Google Scholar] [CrossRef]
- Murata, J.; Tanaka, S. A review of short-range gravity experiments in the LHC era. Class. Quant. Grav. 2015, 32, 033001. [Google Scholar] [CrossRef]
- Mewes, M. Signals for Lorentz violation in gravitational waves. Phys. Rev. D 2019, 99, 104062. [Google Scholar] [CrossRef]
- Kruglov, S.I. Modified wave equation for spinless particles and its solutions in an external magnetic field. Mod. phys. Lett. A 2013, 28, 1350014. [Google Scholar] [CrossRef]
- Amelino-Camelia, G. Phenomenology of Planck-scale Lorentz-symmetry test theories. New J. Phys. 2004, 6, 188. [Google Scholar] [CrossRef]
- Kruglov, S.I. Modified Dirac equation with Lorentz invariance violation and its solutions for particles in an external magnetic field. Phys. Lett. B 2012, 718, 228–231. [Google Scholar] [CrossRef]
- Yang, S.-Z.; Lin, K.; Li, J.; Jiang, Q.-Q. Lorentz invariance violation and modified hawking fermions tunneling radiation. Adv. High Energy Phys. 2016, 68, 190401. [Google Scholar] [CrossRef]
- Yang, S.-Z.; Lin, K. Modified fermions tunneling radiation from Kerr-Newman-de Sitter black hole. Sci. Sin-Phys. Mech. As. 2019, 49, 019503. [Google Scholar] [CrossRef]
- Li, R.; Yu, Z.-H.; Yang, S.-Z. Modification method of NUT-Kerr-Newman-de Sitter black hole entropy by Lorentz symmetry breaking and beyond the semi-classical approximation. Europhys. Lett. 2022, 139, 59001. [Google Scholar] [CrossRef]
- Bonner, W.-B.; Vaidya, P.C. Spherically symmetric radiation of charge in Einstein–Maxwell theory. Gen. Relativ. Gravit. 1970, 1, 127–130. [Google Scholar] [CrossRef]
- Yang, S.-Z.; Lin, K. Hawking tunneling radiation in Lorentz-violating scalar field theory. Acta Phys. Sin. 2019, 68, 060401. [Google Scholar] [CrossRef]
- Kinnersley, W. Field of an Arbitrarily Accelerating Point Mass. Phys. Rev. 1969, 186, 1335. [Google Scholar] [CrossRef]
- Carleo, A.; Lambiase, G.; Mastrototaro, L. Energy extraction via magnetic reconnection in Lorentz breaking Kerr–Sen and Kiselev black holes. Eur. Phys. J. C 2022, 82, 776. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Zhang, J.; Liu, Y.-Z. Modification Study on Quantum Tunneling Radiation of Kinnersley Black Hole. Universe 2023, 9, 496. https://doi.org/10.3390/universe9120496
Wang C, Zhang J, Liu Y-Z. Modification Study on Quantum Tunneling Radiation of Kinnersley Black Hole. Universe. 2023; 9(12):496. https://doi.org/10.3390/universe9120496
Chicago/Turabian StyleWang, Cong, Jie Zhang, and Yu-Zhen Liu. 2023. "Modification Study on Quantum Tunneling Radiation of Kinnersley Black Hole" Universe 9, no. 12: 496. https://doi.org/10.3390/universe9120496
APA StyleWang, C., Zhang, J., & Liu, Y. -Z. (2023). Modification Study on Quantum Tunneling Radiation of Kinnersley Black Hole. Universe, 9(12), 496. https://doi.org/10.3390/universe9120496