On the Radial Solutions of the Dirac Equation in the Kerr-Newman Black Hole Surrounded by a Cloud of Strings
Abstract
:1. Introduction
2. Black Holes with a Cloud of Strings
2.1. Energy-Momentum Tensor for a Black Hole with a Cloud of Strings
2.2. Energy-Momentum Tensor for a Charged Black Hole
2.3. Line Element for a Static and Charged Black Hole with a Cloud of Strings
2.4. Rotating Charged Black Hole with Cloud of Strings
3. Dirac Equation in Kerr–Newman Black Hole Surrounded by a Cloud of Strings
3.1. Introduction
3.2. Dirac Equation in the Kerr–Newman Black Hole with a Cloud of Strings
3.3. Solution of the Radial Equation
4. Final Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tetrode, H. Allgemein-relativistische Quantentheorie des Elektrons. Z. Phys. 1928, 50, 336–346. [Google Scholar] [CrossRef]
- Fock, V. Geometrisierung der Diracschen theorie des elektrons. Z. Phys. 1929, 57, 261–277. [Google Scholar] [CrossRef]
- Weyl, H. Elektron und Gravitation. I. Z. Phys. 1929, 56, 330–352. [Google Scholar] [CrossRef]
- Schrödinger, E. Diracsches Elektron im Schwerefeld I; Akademie der Wissenschaften: Berlin, Germany, 1932; pp. 105–126. [Google Scholar]
- Dirac, P.A.M. Electron wave equation in Riemannian space. In Max-Planck-Festschrift, Verlag der Wissenschaften; Kockel, B., Macke, W., Papapetrou, A., Eds.; VEB Deutscher Verlag der Wissenschaften: Berlin, Germany, 1959; pp. 339–344. [Google Scholar]
- Audretsch, J.; Schäfer, G. Quantum mechanics of electromagnetically bounded spin-1/2 particles in an expanding universe: I. Influence of the expansion. Gen. Relativ. Gravit. 1978, 9, 243–255. [Google Scholar] [CrossRef]
- Audretsch, J.; Schäfer, G. Quantum mechanics of electromagnetically bounded spin-1/2 particles in expanding universes: II. Energy spectrum of the hydrogen atom. Gen. Relativ. Gravit. 1978, 9, 489–500. [Google Scholar] [CrossRef]
- Barut, A.; Duru, I. Exact solutions of the Dirac equation in spatially flat Robertson-Walker space-times. Phys. Rev. D 1987, 36, 3705. [Google Scholar] [CrossRef]
- Castagnino, M.; El Hasi, C.; Mazzitelli, F.; Paz, J. On the Dirac equation in anisotropic backgrounds. Phys. Lett. A 1988, 128, 25–28. [Google Scholar] [CrossRef]
- de A Marques, G.; Bezerra, V.B. Non-relativistic quantum systems on topological defects spacetimes. Class. Quantum Gravity 2002, 19, 985. [Google Scholar] [CrossRef]
- Parker, L. Quantized fields and particle creation in expanding universes. II. Phys. Rev. D 1971, 3, 346. [Google Scholar] [CrossRef]
- Parker, L. One-electron atom in curved space-time. Phys. Rev. Lett. 1980, 44, 1559. [Google Scholar] [CrossRef]
- Parker, L. One-electron atom as a probe of spacetime curvature. Phys. Rev. D 1980, 22, 1922. [Google Scholar] [CrossRef]
- Parker, L. The atom as a probe of curved space-time. Gen. Relativ. Gravit. 1981, 13, 307–311. [Google Scholar] [CrossRef]
- Parker, L.; Pimentel, L.O. Gravitational perturbation of the hydrogen spectrum. Phys. Rev. D 1982, 25, 3180. [Google Scholar] [CrossRef]
- Leen, T.; Parker, L.; Pimentel, L.O. Remote quantum mechanical detection of gravitational radiation. Gen. Relativ. Gravit. 1983, 15, 761–776. [Google Scholar] [CrossRef]
- Chandrasekhar, S. The solution of Dirac’s equation in Kerr geometry. Proc. R. Soc. Lond. A Math. Phys. Sci. 1976, 349, 571–575. [Google Scholar]
- Page, D.N. Dirac equation around a charged, rotating black hole. Phys. Rev. D 1976, 14, 1509. [Google Scholar] [CrossRef]
- Chandrasekhar, S.; Detweiler, S. On the reflexion and transmission of neutrino waves by a Kerr black hole. Proc. R. Soc. Lond. A Math. Phys. Sci. 1977, 352, 325–338. [Google Scholar]
- Dolan, S.R.; Gair, J.R. The massive Dirac field on a rotating black hole spacetime: Angular solutions. Class. Quantum Gravity 2009, 26, 175020. [Google Scholar] [CrossRef]
- Sakalli, I.; Halilsoy, M. Solution of the Dirac equation in the near horizon geometry of an extreme Kerr black hole. Phys. Rev. D 2004, 69, 124012. [Google Scholar] [CrossRef]
- Semiz, I. Dirac equation is separable on the dyon black hole metric. Phys. Rev. D 1992, 46, 5414. [Google Scholar] [CrossRef]
- Kraniotis, G. The massive Dirac equation in the Kerr-Newman-de Sitter and Kerr-Newman black hole spacetimes. J. Phys. Commun. 2019, 3, 035026. [Google Scholar] [CrossRef]
- Chakrabarti, S. On mass-dependent spheroidal harmonics of spin one-half. Proc. R. Soc. Lond. A Math. Phys. Sci. 1984, 391, 27–38. [Google Scholar]
- Mukhopadhyay, B.; Chakrabarti, S.K. Solution of Dirac equation around a spinning black hole. Nucl. Phys. B 2000, 582, 627–645. [Google Scholar] [CrossRef] [Green Version]
- Cebeci, H.; Özdemir, N. The Dirac equation in Kerr-Taub-NUT spacetime. Class. Quantum Gravity 2013, 30, 175005. [Google Scholar] [CrossRef]
- Cotăescu, I.I. Approximative analytical solutions of the Dirac equation in Schwarzschild spacetime. Mod. Phys. Lett. A 2007, 22, 2493–2498. [Google Scholar] [CrossRef]
- Mukhopadhyay, B.; Chakrabarti, S.K. Semi-analytical solution of Dirac equation in Schwarzschild geometry. Class. Quantum Gravity 1999, 16, 3165. [Google Scholar] [CrossRef]
- Röken, C. The massive Dirac equation in Kerr geometry: Separability in Eddington–Finkelstein-type coordinates and asymptotics. Gen. Relativ. Gravit. 2017, 49, 39. [Google Scholar] [CrossRef]
- Einstein, S.; Finkelstein, R. A class of solutions of the Dirac equation in the Kerr–Newman space. J. Math. Phys. 1977, 18, 664–671. [Google Scholar] [CrossRef]
- Batic, D. Scattering for massive Dirac fields on the Kerr metric. J. Math. Phys. 2007, 48, 022502. [Google Scholar] [CrossRef]
- Dolan, S.R. Scattering and absorption of gravitational plane waves by rotating black holes. Class. Quantum Gravity 2008, 25, 235002. [Google Scholar] [CrossRef]
- Jin, W.M. Scattering of massive Dirac fields on the Schwarzschild black hole spacetime. Class. Quantum Gravity 1998, 15, 3163. [Google Scholar] [CrossRef]
- Dolan, S.R. Quasinormal mode spectrum of a Kerr black hole in the eikonal limit. Phys. Rev. D 2010, 82, 104003. [Google Scholar] [CrossRef]
- Jing, J.; Pan, Q. Dirac quasinormal frequencies of the Kerr–Newman black hole. Nucl. Phys. B 2005, 728, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.T. Dirac quasinormal modes in Schwarzschild black hole spacetimes. Phys. Rev. D 2003, 68, 024003. [Google Scholar] [CrossRef]
- Oppenheimer, J.R.; Volkoff, G.M. On Massive Neutron Cores. Phys. Rev. 1939, 55, 374–381. [Google Scholar] [CrossRef]
- Ford, K.W.; Wheeler, J.A. Geons, Black Holes, and Quantum Foam: A Life in Physics; W. W. Norton Company: New York, NY, USA, 1998. [Google Scholar]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; Macmillan: Stuttgart, Germany, 1973. [Google Scholar]
- Schwarzschild, K. Über das gravitationsfeld eines massenpunktes nach der einsteinschen theorie. SPAW 1916, 18, 189–196. [Google Scholar]
- Schwarzschild, K. Uber das Gravitationsfeld eines Massenpunktes nach der Einstein’schen Theorie. Berlin Sitzungsberichte 1916, 18. [Google Scholar]
- Finkelstein, D. Past-future asymmetry of the gravitational field of a point particle. Phys. Rev. 1958, 110, 965. [Google Scholar] [CrossRef]
- Kruskal, M.D. Maximal extension of Schwarzschild metric. Phys. Rev. 1960, 119, 1743. [Google Scholar] [CrossRef]
- Kerr, R.P. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 1963, 11, 237. [Google Scholar] [CrossRef]
- Newman, E.T.; Couch, E.; Chinnapared, K.; Exton, A.; Prakash, A.; Torrence, R. Metric of a rotating, charged mass. J. Math. Phys. 1965, 6, 918–919. [Google Scholar] [CrossRef]
- Janis, A.; Newman, E. Structure of gravitational sources. J. Math. Phys. 1965, 6, 902–914. [Google Scholar] [CrossRef]
- Einstein, A. Approximative integration of the field equations of gravitation. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1916, 1916, 1. [Google Scholar]
- Saulson, P.R. Josh Goldberg and the physical reality of gravitational waves. Gen. Relativ. Gravit. 2011, 43, 3289–3299. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; et al. GW150914: The Advanced LIGO detectors in the era of first discoveries. Phys. Rev. Lett. 2016, 116, 131103. [Google Scholar] [CrossRef]
- Abbott, B.; Jawahar, S.; Lockerbie, N.; Tokmakov, K. LIGO Scientific Collaboration and Virgo Collaboration (2016) GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Phys. Rev. D. Phys. Rev. D 2016, 93, 122003. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Adya, V.; et al. All-sky search for periodic gravitational waves in the O1 LIGO data. Phys. Rev. D 2017, 96, 062002. [Google Scholar] [CrossRef]
- Osterbrock, D. Book Review: Astrophysics of Gaseous Nebulae and Active Galactic Nuclei./University Science Books, 1988. J. R. Astron. Soc. Can. 1989, 83, 345–347. [Google Scholar]
- Antonucci, R. Unified models for active galactic nuclei and quasars. Annu. Rev. Astron. Astrophys. 1993, 31, 473–521. [Google Scholar] [CrossRef]
- Gillessen, S.; Plewa, P.; Eisenhauer, F.; Sari, R.; Waisberg, I.; Habibi, M.; Pfuhl, O.; George, E.; Dexter, J.; von Fellenberg, S.; et al. An update on monitoring stellar orbits in the galactic center. Astrophys. J. 2017, 837, 30. [Google Scholar] [CrossRef]
- Abuter, R.; Amorim, A.; Anugu, N.; Bauböck, M.; Benisty, M.; Berger, J.; Blind, N.; Bonnet, H.; Brandner, W.; Buron, A.; et al. Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 2018, 615, L15. [Google Scholar]
- Abuter, R.; Amorim, A.; Bauböck, M.; Berger, J.; Bonnet, H.; Brandner, W.; Clénet, Y.; Du Foresto, V.C.; de Zeeuw, P.; Dexter, J.; et al. A geometric distance measurement to the Galactic center black hole with 0.3% uncertainty. Astron. Astrophys. 2019, 625, L10. [Google Scholar]
- Aasi, J.; Abbott, B.; Abbott, R.; Abbott, T.; Abernathy, M.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; et al. Advanced ligo. Class. Quantum Gravity 2015, 32, 074001. [Google Scholar]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. First M87 event horizon telescope results. IV. Imaging the central supermassive black hole. Astrophys. J. Lett. 2019, 875, L4. [Google Scholar]
- Letelier, P.S. Clouds of strings in general relativity. Phys. Rev. D 1979, 20, 1294. [Google Scholar] [CrossRef]
- Barbosa, D.; Bezerra, V. On the rotating Letelier spacetime. Gen. Relativ. Gravit. 2016, 48, 149. [Google Scholar] [CrossRef]
- Letelier, P.S. Fluids of strings in general relativity. Il Nuovo Cimento B (1971–1996) 1981, 63, 519–528. [Google Scholar] [CrossRef]
- Kar, S. Stringy black holes and energy conditions. Phys. Rev. D 1997, 55, 4872. [Google Scholar] [CrossRef]
- Larsen, F. String model of black hole microstates. Phys. Rev. D 1997, 56, 1005. [Google Scholar] [CrossRef]
- Soleng, H.H. Dark matter and non-newtonian gravity from general relativity coupled to a fluid of strings. Gen. Relativ. Gravit. 1995, 27, 367–378. [Google Scholar] [CrossRef]
- Toledo, J.; Bezerra, V. Some remarks on the thermodynamics of charged AdS black holes with cloud of strings and quintessence. Eur. Phys. J. C 2019, 79, 110. [Google Scholar] [CrossRef] [Green Version]
- Toledo, J.D.M.; Bezerra, V. The Reissner–Nordström black hole surrounded by quintessence and a cloud of strings: Thermodynamics and quasinormal modes. Int. J. Mod. Phys. D 2019, 28, 1950023. [Google Scholar] [CrossRef]
- Mustafa, G.; Hussain, I. Radial and circular motion of photons and test particles in the Schwarzschild black hole with quintessence and string clouds. Eur. Phys. J. C 2021, 81, 419. [Google Scholar] [CrossRef]
- Ganguly, A.; Ghosh, S.G.; Maharaj, S.D. Accretion onto a black hole in a string cloud background. Phys. Rev. D 2014, 90, 064037. [Google Scholar] [CrossRef]
- Mustafa, G.; Atamurotov, F.; Hussain, I.; Shaymatov, S.; Övgün, A. Shadows and gravitational weak lensing by the Schwarzschild black hole in the string cloud background with quintessential field. Chin. Phys. C 2022, 46, 125107. [Google Scholar] [CrossRef]
- He, A.; Tao, J.; Xue, Y.; Zhang, L. Shadow and photon sphere of black hole in clouds of strings and quintessence. Chin. Phys. C 2022, 46, 065102. [Google Scholar] [CrossRef]
- Stachel, J. Thickening the string. I. The string perfect dust. Phys. Rev. D 1980, 21, 2171. [Google Scholar] [CrossRef]
- Smalley, L.L.; Krisch, J.P. Spinning string fluid dynamics in general relativity. Class. Quantum Gravity 1997, 14, 3501. [Google Scholar] [CrossRef]
- Sen, A. Developments in Superstring Theory. arXiv 1998, arXiv:hep-ph/9810356. [Google Scholar]
- Strominger, A.; Vafa, C. Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 1996, 379, 99–104. [Google Scholar] [CrossRef]
- Parthasarathy, R.; Viswanathan, K. Modification of black-hole entropy by strings. Phys. Lett. B 1997, 400, 27–31. [Google Scholar] [CrossRef]
- Reissner, H. Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie. Ann. Phys. 1916, 355, 106–120. [Google Scholar] [CrossRef] [Green Version]
- Nordström, G. On the Energy of the Gravitation field in Einstein’s Theory. K. Ned. Akad. Van Wet. Proc. Ser. B Phys. Sci. 1918, 20, 1238–1245. [Google Scholar]
- Kiselev, V. Quintessence and black holes. Class. Quantum Gravity 2003, 20, 1187. [Google Scholar] [CrossRef]
- Newman, E.T.; Janis, A. Note on the Kerr Spinning-Particle Metric. J. Math. Phys. 1965, 6, 915–917. [Google Scholar] [CrossRef]
- Khanapurkar, S.; Varma, A.; Mittal, N.; Gupta, N.; Singh, T.P. Einstein-Cartan-Dirac equations in the Newman-Penrose formalism. Phys. Rev. D 2018, 98, 064046. [Google Scholar] [CrossRef]
- Newman, E.; Penrose, R. An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys. 1962, 3, 566–578, solutions. [Google Scholar] [CrossRef]
- Ronveaux, A.; Arscott, F.M. Heun’s Differential Equations; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filho, S.S.d.A.; Bezerra, V.B.; Toledo, J.M. On the Radial Solutions of the Dirac Equation in the Kerr-Newman Black Hole Surrounded by a Cloud of Strings. Axioms 2023, 12, 187. https://doi.org/10.3390/axioms12020187
Filho SSdA, Bezerra VB, Toledo JM. On the Radial Solutions of the Dirac Equation in the Kerr-Newman Black Hole Surrounded by a Cloud of Strings. Axioms. 2023; 12(2):187. https://doi.org/10.3390/axioms12020187
Chicago/Turabian StyleFilho, Saulo S. de Albuquerque, Valdir Barbosa Bezerra, and Jefferson Morais Toledo. 2023. "On the Radial Solutions of the Dirac Equation in the Kerr-Newman Black Hole Surrounded by a Cloud of Strings" Axioms 12, no. 2: 187. https://doi.org/10.3390/axioms12020187
APA StyleFilho, S. S. d. A., Bezerra, V. B., & Toledo, J. M. (2023). On the Radial Solutions of the Dirac Equation in the Kerr-Newman Black Hole Surrounded by a Cloud of Strings. Axioms, 12(2), 187. https://doi.org/10.3390/axioms12020187