Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Didelphis virginiana

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1953 KiB  
Article
Seasonal Variation in Mammalian Mesopredator Spatiotemporal Overlap on a Barrier Island Complex
by Timothy D. Bransford, Spencer A. Harris and Elizabeth A. Forys
Animals 2024, 14(16), 2431; https://doi.org/10.3390/ani14162431 - 22 Aug 2024
Viewed by 1466
Abstract
Due to lack of apex predators in human-dominated landscapes, mesopredator relationships are complex and spatiotemporal niche partitioning strategies can vary, especially when seasonal shifts in resource availability occur. Our objective was to understand spatiotemporal niche overlap across seasons among mesopredators inhabiting a barrier [...] Read more.
Due to lack of apex predators in human-dominated landscapes, mesopredator relationships are complex and spatiotemporal niche partitioning strategies can vary, especially when seasonal shifts in resource availability occur. Our objective was to understand spatiotemporal niche overlap across seasons among mesopredators inhabiting a barrier island complex. We placed 19 unbaited cameras throughout Fort De Soto County Park, Florida, USA between February 2021 and July 2023. Of six mesopredator species detected, three species had >75 detections during both the wet and dry seasons (coyote, Canis latrans; Virginia opossum, Didelphis virginiana; and raccoon, Procyon lotor). Using general linear mixed models, we determined that during the wet season coyote–raccoon and raccoon–opossum detections were positively associated with each other (p < 0.05). During the dry season, raccoon–opossum detections were positively associated, and opossums were more likely to be detected around mangroves. After calculating coefficients of overlap, we found all three species varied their temporal activity between seasons. During the dry season exclusively, all three mesopredators occupied different temporal niches. The park’s isolated but developed nature has potentially led to a destabilized mesopredator community. Understanding seasonal mesopredator dynamics of Fort De Soto is particularly important because this park supports a high number of nesting shorebirds and sea turtles, which are known food sources for mesopredators. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

23 pages, 41407 KiB  
Article
Fauna Associated with American Alligator (Alligator mississippiensis) Nests in Coastal South Carolina, USA
by Thomas R. Rainwater, Randeep Singh, Clarissa A. Tuten, Aaron M. Given, Parker W. Gibbons, Bo Song, Steven G. Platt, Philip M. Wilkinson and Catherine M. Bodinof Jachowski
Animals 2024, 14(4), 620; https://doi.org/10.3390/ani14040620 - 14 Feb 2024
Cited by 4 | Viewed by 3584
Abstract
Crocodilians are considered to be “ecosystem engineers” because their modification of habitats provides opportunities for feeding, drinking, breeding, and other vital life activities to a wide variety of other animals. One such habitat modification is the construction of nest mounds during the breeding [...] Read more.
Crocodilians are considered to be “ecosystem engineers” because their modification of habitats provides opportunities for feeding, drinking, breeding, and other vital life activities to a wide variety of other animals. One such habitat modification is the construction of nest mounds during the breeding season by most crocodilian species, including American alligators (Alligator mississippiensis). While many reports exist describing wildlife associated with alligator nests, no studies have quantified faunal associates and their corresponding behaviors while visiting nests. To address this data gap, we used automated game cameras to monitor wildlife and their behaviors at alligator nests during the egg incubation period (June–September) in coastal South Carolina, USA (2016–2021). We documented a total of 81 species (79 vertebrates and 2 invertebrates) at 78 alligator nests representing six taxonomic groups, including 48 birds (59.2%), 9 mammals (11.1%), 19 reptiles (23.4%), 3 amphibians (3.7%), 1 malacostracan (1.2%), and 1 insect (1.2%). Collectively, faunal associates primarily used alligator nests for feeding/foraging (51.8%), traveling (29.3%), and loafing (19.9%) and to a much lesser extent basking, burrowing/shelter, breeding, and nesting. However, trends in alligator nest use varied among faunal associate groups (birds, mammals, reptiles, amphibians, etc.), subgroups (e.g., passerines, raptors, wading birds, and waterfowl), and species. Several novel behaviors by some nest associates were also noted during the study, including the first observations of Virginia oppossum (Didelphis virginiana) opening and predating nests, bobcat (Lynx rufus) consuming alligator hatchlings, and Carolina wren (Thryothorus ludovicianus) feeding on the contents of a recently predated alligator egg. The results of this study indicate that a diverse assemblage of vertebrates (and some invertebrates) use alligator nest sites in coastal South Carolina for a variety of life activities during the egg incubation period, and the proportion of the behaviors exhibited varies among animal groups and species. This study provides a first step for investigations regarding the net impacts of alligator nest-faunal associate interactions and ultimately the greater ecological role of alligators and other crocodilians. Full article
(This article belongs to the Special Issue Ecology and Conservation of Crocodiles)
Show Figures

Figure 1

17 pages, 846 KiB  
Review
Murine Typhus: A Review of a Reemerging Flea-Borne Rickettsiosis with Potential for Neurologic Manifestations and Sequalae
by Lucas S. Blanton
Infect. Dis. Rep. 2023, 15(6), 700-716; https://doi.org/10.3390/idr15060063 - 26 Oct 2023
Cited by 12 | Viewed by 5771
Abstract
Murine typhus is an acute febrile illness caused by Rickettsia typhi, an obligately intracellular Gram-negative coccobacillus. Rats (Rattus species) and their fleas (Xenopsylla cheopis) serve as the reservoir and vector of R. typhi, respectively. Humans become infected [...] Read more.
Murine typhus is an acute febrile illness caused by Rickettsia typhi, an obligately intracellular Gram-negative coccobacillus. Rats (Rattus species) and their fleas (Xenopsylla cheopis) serve as the reservoir and vector of R. typhi, respectively. Humans become infected when R. typhi-infected flea feces are rubbed into flea bite wounds or onto mucous membranes. The disease is endemic throughout much of the world, especially in tropical and subtropical seaboard regions where rats are common. Murine typhus is reemerging as an important cause of febrile illness in Texas and Southern California, where an alternate transmission cycle likely involves opossums (Didelphis virginiana) and cat fleas (Ctenocephalides felis). Although primarily an undifferentiated febrile illness, a range of neurologic manifestations may occur, especially when treatment is delayed. Serology is the mainstay of diagnostic testing, but confirmation usually requires demonstrating seroconversion or a fourfold increase in antibody titer from acute- and convalescent-phase sera (antibodies are seldom detectable in the first week of illness). Thus, early empiric treatment with doxycycline, the drug of choice, is imperative. The purpose of this review is to highlight murine typhus as an important emerging and reemerging infectious disease, review its neurologic manifestations, and discuss areas in need of further study. Full article
(This article belongs to the Special Issue Emerging and Reemerging Infections of the Central Nervous System)
Show Figures

Figure 1

44 pages, 6835 KiB  
Review
History, Rats, Fleas, and Opossums. II. The Decline and Resurgence of Flea-Borne Typhus in the United States, 1945–2019
by Gregory M. Anstead
Trop. Med. Infect. Dis. 2021, 6(1), 2; https://doi.org/10.3390/tropicalmed6010002 - 28 Dec 2020
Cited by 22 | Viewed by 7299
Abstract
Flea-borne typhus, due to Rickettsia typhi and R. felis, is an infection causing fever, headache, rash, and diverse organ manifestations that can result in critical illness or death. This is the second part of a two-part series describing the rise, decline, and [...] Read more.
Flea-borne typhus, due to Rickettsia typhi and R. felis, is an infection causing fever, headache, rash, and diverse organ manifestations that can result in critical illness or death. This is the second part of a two-part series describing the rise, decline, and resurgence of flea-borne typhus (FBT) in the United States over the last century. These studies illustrate the influence of historical events, social conditions, technology, and public health interventions on the prevalence of a vector-borne disease. Flea-borne typhus was an emerging disease, primarily in the Southern USA and California, from 1910 to 1945. The primary reservoirs in this period were the rats Rattus norvegicus and Ra. rattus and the main vector was the Oriental rat flea (Xenopsylla cheopis). The period 1930 to 1945 saw a dramatic rise in the number of reported cases. This was due to conditions favorable to the proliferation of rodents and their fleas during the Depression and World War II years, including: dilapidated, overcrowded housing; poor environmental sanitation; and the difficulty of importing insecticides and rodenticides during wartime. About 42,000 cases were reported between 1931–1946, and the actual number of cases may have been three-fold higher. The number of annual cases of FBT peaked in 1944 at 5401 cases. American involvement in World War II, in the short term, further perpetuated the epidemic of FBT by the increased production of food crops in the American South and by promoting crowded and unsanitary conditions in the Southern cities. However, ultimately, World War II proved to be a powerful catalyst in the control of FBT by improving standards of living and providing the tools for typhus control, such as synthetic insecticides and novel rodenticides. A vigorous program for the control of FBT was conducted by the US Public Health Service from 1945 to 1952, using insecticides, rodenticides, and environmental sanitation and remediation. Government programs and relative economic prosperity in the South also resulted in slum clearance and improved housing, which reduced rodent harborage. By 1956, the number of cases of FBT in the United States had dropped dramatically to only 98. Federally funded projects for rat control continued until the mid-1980s. Effective antibiotics for FBT, such as the tetracyclines, came into clinical practice in the late 1940s. The first diagnostic test for FBT, the Weil-Felix test, was found to have inadequate sensitivity and specificity and was replaced by complement fixation in the 1940s and the indirect fluorescent antibody test in the 1980s. A second organism causing FBT, R. felis, was discovered in 1990. Flea-borne typhus persists in the United States, primarily in South and Central Texas, the Los Angeles area, and Hawaii. In the former two areas, the opossum (Didelphis virginiana) and cats have replaced rats as the primary reservoirs, with the cat flea (Ctenocephalides felis) now as the most important vector. In Hawaii, 73% of cases occur in Maui County because it has lower rainfall than other areas. Despite great successes against FBT in the post-World War II era, it has proved difficult to eliminate because it is now associated with our companion animals, stray pets, opossums, and the cat flea, an abundant and non-selective vector. In the new millennium, cases of FBT are increasing in Texas and California. In 2018–2019, Los Angeles County experienced a resurgence of FBT, with rats as the reservoir. Full article
Show Figures

Figure 1

4 pages, 157 KiB  
Letter
Letter to the Editor: Venezuelan Equine Encephalitis virus 1B Invasion and Epidemic Control—South Texas, 1971
by Robert G. McLean
Trop. Med. Infect. Dis. 2020, 5(2), 104; https://doi.org/10.3390/tropicalmed5020104 - 22 Jun 2020
Cited by 2 | Viewed by 2740
Abstract
The epidemic strain of Venezuelan equine encephalitis virus (VEE) 1B invaded south Texas in 1971. The success of the eventual containment and control of the virus invasion was the early recognition and immediate detection, cooperation, coordination, and participation among multiple federal agencies. There [...] Read more.
The epidemic strain of Venezuelan equine encephalitis virus (VEE) 1B invaded south Texas in 1971. The success of the eventual containment and control of the virus invasion was the early recognition and immediate detection, cooperation, coordination, and participation among multiple federal agencies. There were 4739 wild vertebrate animals trapped on a ranch in the area with only 1 VEE virus isolation from a Virgina opossum (Didelphis virginiana). A large number of mosquitoes were also collected on the ranch and tested, resulting in 240 VEE virus isolations. Virus isolations were obtained from 58% of the 33 equines tested. Wild vertebrates did not play a significant role in the outbreak. Full article
(This article belongs to the Special Issue Arthropod-Borne Viruses: The Outbreak Edition)
11 pages, 243 KiB  
Review
West Nile Virus Associations in Wild Mammals: An Update
by J. Jeffrey Root and Angela M. Bosco-Lauth
Viruses 2019, 11(5), 459; https://doi.org/10.3390/v11050459 - 21 May 2019
Cited by 31 | Viewed by 4905
Abstract
Although West Nile virus (WNV) is generally thought to circulate among mosquitoes and birds, several historic and recent works providing evidence of WNV activity in wild mammals have been published. Indeed, a previous review tabulated evidence of WNV exposure in at least 100 [...] Read more.
Although West Nile virus (WNV) is generally thought to circulate among mosquitoes and birds, several historic and recent works providing evidence of WNV activity in wild mammals have been published. Indeed, a previous review tabulated evidence of WNV exposure in at least 100 mammalian species. Herein, we provide an update on WNV activity in wild and select other mammals that have been reported since the last major review article on this subject was published in early 2013. Of interest, new species, such as Hoffman’s two-toed sloths (Choloepus hoffmanni), are now included in the growing list of wild mammals that have been naturally exposed to WNV. Furthermore, new instances of WNV viremia as well as severe disease presumably caused by this virus have been reported in wild mammals (e.g., the Virginia opossum [Didelphis virginiana]) from natural and semi-captive (e.g., zoological institution) settings. Regrettably, few recent challenge studies have been conducted on wild mammals, which would provide key information as to their potential role(s) in WNV cycles. Largely based on these recent findings, important future lines of research are recommended to assess which mammalian species are commonly exposed to WNV, which mammal species develop viremias sufficient for infecting mosquitoes, and which mammal species might be negatively affected by WNV infection at the species or population level. Full article
(This article belongs to the Special Issue West Nile Virus 2019)
12 pages, 2577 KiB  
Article
Progress towards Bait Station Integration into Oral Rabies Vaccination Programs in the United States: Field Trials in Massachusetts and Florida
by Brian M. Bjorklund, Betsy S. Haley, Ryan J. Bevilacqua, Monte D. Chandler, Anthony G. Duffiney, Karl W. Von Hone, Dennis Slate, Richard B. Chipman, Ashlee Martin and Timothy P. Algeo
Trop. Med. Infect. Dis. 2017, 2(3), 40; https://doi.org/10.3390/tropicalmed2030040 - 21 Aug 2017
Cited by 7 | Viewed by 4844
Abstract
Bait stations for distribution of oral rabies vaccine baits are designed for rabies management in highly-developed areas where traditional distribution of oral rabies vaccine baits may be difficult. As part of national efforts to contain and eliminate the raccoon (Procyon lotor) [...] Read more.
Bait stations for distribution of oral rabies vaccine baits are designed for rabies management in highly-developed areas where traditional distribution of oral rabies vaccine baits may be difficult. As part of national efforts to contain and eliminate the raccoon (Procyon lotor) variant of the rabies virus (raccoon rabies) in the eastern United States, the United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services program, distributed vaccine baits by bait stations experimentally and operationally in Massachusetts during 2006-present, and in Florida during 2009–2015. In Massachusetts, a rabies virus-neutralizing antibody (RVNA) response of 42.1% for raccoons captured in areas baited with high density bait stations during 2011–2015 was achieved, compared with 46.2% in areas baited by hand, suggesting the continuation of this as a strategy for the oral rabies vaccination (ORV) program there, and for similar locations. Non-target competition for vaccine baits is problematic, regardless of distribution method. In Massachusetts, bait station visitation rates for targeted raccoons and non-target opossums (Didelphis virginiana) were similar (1.18:1) during 2006–2009 (p > 0.05). Bait station modifications for reducing non-target uptake were tested, and in Massachusetts, reduced non-target bait access was achieved with two design alternatives (p < 0.001). However, no difference was noted between the control and these two alternative designs in Florida. Due to ongoing trials of new vaccines and baits, the bait station performance of an adenovirus rabies glycoprotein recombinant vaccine bait, ONRAB® bait (Artemis Technologies, Guelph, ON, Canada) and a vaccinia-rabies glycoprotein recombinant vaccine bait, RABORAL V-RG®bait (Merial Limited, Athens, GA, USA), was compared. While uptake of the ONRAB bait was greater in Massachusetts (p < 0.001) in this limited trial, both types performed equally well in Florida. Since bait station tampering or theft as well as potential human bait contacts has been problematic, performance of camouflaged versus unpainted white bait stations was analyzed in terms of internal temperatures and maintaining a stable bait storage environment. In Massachusetts, camouflaged bait station interiors did not reach higher average temperatures than plain white bait stations in partially- or fully-shaded locations, while in Florida, camouflaged bait stations were significantly warmer in light exposure categories (p < 0.05). As ORV operations expand into more heavily-urbanized areas, bait stations will be increasingly important for vaccine bait distribution, and continued refinements in the strategy will be key to that success. Full article
(This article belongs to the Special Issue Rabies Symptoms, Diagnosis, Prophylaxis and Treatment)
Show Figures

Figure 1

Back to TopTop