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Abstract: Murine typhus is an acute febrile illness caused by Rickettsia typhi, an obligately intracellular
Gram-negative coccobacillus. Rats (Rattus species) and their fleas (Xenopsylla cheopis) serve as the
reservoir and vector of R. typhi, respectively. Humans become infected when R. typhi-infected
flea feces are rubbed into flea bite wounds or onto mucous membranes. The disease is endemic
throughout much of the world, especially in tropical and subtropical seaboard regions where rats are
common. Murine typhus is reemerging as an important cause of febrile illness in Texas and Southern
California, where an alternate transmission cycle likely involves opossums (Didelphis virginiana) and
cat fleas (Ctenocephalides felis). Although primarily an undifferentiated febrile illness, a range of
neurologic manifestations may occur, especially when treatment is delayed. Serology is the mainstay
of diagnostic testing, but confirmation usually requires demonstrating seroconversion or a fourfold
increase in antibody titer from acute- and convalescent-phase sera (antibodies are seldom detectable
in the first week of illness). Thus, early empiric treatment with doxycycline, the drug of choice, is
imperative. The purpose of this review is to highlight murine typhus as an important emerging and
reemerging infectious disease, review its neurologic manifestations, and discuss areas in need of
further study.
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1. Introduction

Murine typhus, also known as endemic typhus or flea-borne typhus, is an acute
undifferentiated febrile illness [1]. The disease is caused by Rickettsia typhi, an obligately
intracellular Gram-negative coccobacillus [2]. Murine typhus is endemic to much of
the world, especially along seaboard regions of the tropics and subtropics, where rats
and their fleas play a role in the maintenance and transmission to humans [3]. It is an
underappreciated cause of febrile illness in many parts of the world, as confirmatory
diagnosis is difficult, and signs/symptoms mimic various other infectious diseases [4]. In
parts of the United States, the disease is reemerging as an important cause of febrile illness,
especially in Southern California and throughout Texas. In these regions, an alternate
cycle of transmission involving opossums and cat fleas is thought to drive the reemergence
of murine typhus [5]. The ubiquity and cosmopolitan nature of the cat flea, the wide
distribution of opossums in North America, and the apparent increase in incidence in the
last two decades all sound the alarm that murine typhus has the potential to emerge in
locations where it is not yet endemic. Although generally considered mild in severity,
especially when compared to other rickettsioses such as Rocky Mountain spotted fever
(RMSF) and louse-borne epidemic typhus, severe manifestations and death can occur [6–9].
Murine typhus has been associated with a range of neurologic manifestations, and although
those on the more severe spectrum are relatively uncommon, their relative frequency will
increase as the disease continues to emerge. This general review of the literature aims
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to highlight murine typhus as an important emerging and reemerging infectious disease,
review its neurologic manifestations, and discuss potential areas of further study to mitigate
spread and prevent sequelae of R. typhi.

2. Microbiology

The genus Rickettsia is divided into four phylogenetic groups, which include the
typhus, spotted fever, transitional, and ancestral groups (Figure 1) [10,11]. The typhus and
spotted fever groups comprise the majority of clinically relevant pathogenic rickettsiae.
While the spotted fever group includes over 20 tick-borne species, the typhus group is
made up of only two species: Rickettsia prowazekii and R. typhi, which are primarily louse-
and flea-borne, respectively. Rickettsia typhi is the bacterium responsible for murine typhus.
Rickettsia felis is another species that infects fleas, but it does not belong to the typhus
group. Rather, it is in the transitional group and is purported to cause febrile illness (flea-
borne spotted fever) [10,12]. In addition to R. felis, other similar rickettsiae (referred to as
R. felis-like organisms) have also been found within fleas [13,14].
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Rickettsia typhi is a small 1.3 × 0.4 µm Gram-negative coccobacillus [2]. Through
genome reduction, rickettsiae have evolved to develop a niche for obligate intracellular life
using the host cell to provide necessary elements for survival—they are unable to produce
the enzymes necessary for the synthesis of lipids, nucleotides, and the metabolism of
carbohydrates [15]. Rickettsia typhi has a small 1.1 Mb genome [16], and isolates originating
from distant geographic regions are genetically conserved [17], likely a result of dispersal
of Rattus and rat fleas by trade involving sailing ship. The organism contains and expresses
genes for several autotransporters (sca1, sca2, sca3, sca4, and sca5) [18]. The sca5 gene
encodes outer membrane protein B, which plays a role in cellular adhesion and entry [19,20].
Unlike organisms of the spotted fever group, R. typhi does not contain a functional gene
for outer membrane protein A [20]. Rickettsia typhi encodes for numerous other genes that
potentially play a role in its survival within the host [16]. Genes for a type IV secretion
system and potentially membranolytic proteins could aid cellular invasion and escape from
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the endosome [21–23]. A phosphatidylinositol 3-kinase effector is involved in autophagy
to allow the organism to avoid autolysosomal destruction [24]. The presence of genes
encoding numerous secretion system components may offer R. typhi methods to influence
cell function [25,26]. Intracellular replication is facilitated by eluding IL-1α-mediated
inflammasome induction [27].

In fleas, R. typhi infects the midgut epithelial cells [28]. In humans, the organism
primarily infects endothelial cells [29]. Endothelial injury is the central pathophysiologic
process that leads to the manifestations of murine typhus and in severe cases leads to
neurologic sequelae and other end-organ manifestations (see sections below).

3. Pathology, Pathogenesis, and Immunity

Few autopsies of individuals who died as a result of murine typhus are detailed in
the literature [30–33]. As with other severe rickettsioses, pathologic findings demonstrate
systemic endothelial infection. The characteristic lymphohistiocytic vasculitis may be found
in any organ and includes interstitial pneumonitis, portal triaditis, interstitial nephritis,
and myocarditis. In regard to neuropathology, detailed descriptions are only noted in four
autopsy cases [30–32]. Gross changes of the central nervous system, reported in three of
these cases, were described as cerebral edema and congestion, varying in severity from
mild to severe [31,32]. In one case, mild cerebellar tonsilar herniation was noted [31].
Microscopically, findings in the brain have included multifocal petechiae in the white
matter, ischemic necrosis of neurons within the cerebral and hippocampal watershed
areas, and perivascular mononuclear infiltrates—the typical vascular injury associated with
rickettsial infection [30–32].

The typhus nodule—a classic finding in those with louse-borne epidemic typhus—has
been noted, albeit not universally, in some fatal cases of murine typhus [31,34]. Typhus
nodules represent inflammatory nodule-like lesions located within the central nervous
system. They are composed of lymphocytes, plasma cells, and glial cells located around
blood vessels. Typhus nodules are a well-described neuropathological finding in those with
louse-borne epidemic typhus and were once thought to be relatively specific for R. prowazekii
infection. The paucity of histopathologic descriptions of fatal murine typhus, compared
to the well documented features of the much more severe louse-borne typhus, obscures
the true prevalence of typhus nodules in those with murine typhus. A retrospective
examination of seven archived formalin-fixed, paraffin-embedded tissue blocks (originating
from patients believed to have died of louse-borne typhus in Hamburg, Germany during
WWII) amplified R. typhi DNA from blocks of two of these historical cases. These cases
were also noted to have typhus nodules. Immunohistochemical studies on these tissues
demonstrated that lymphocytes, the predominant cellular infiltrate, were composed of CD8
and CD4 T cells in a roughly 60% to 40% mix, respectively. Microglia and macrophages
were also identified by immunohistochemical staining, but B cells and neutrophils were
rarely present. In addition to showing that R. typhi played a role as a cause of death in
war-ravaged Europe, the study also demonstrates that typhus nodules occur as a result of
infection with both R. prowazekii and R. typhi [34].

Other neuropathological findings have included mononuclear infiltration of the
meninges in two autopsy cases [32] and perivasculitis of the pituitary in two others [30,32].
One report described the involvement of the spinal cord, which consisted of perivascular
infiltrates of macrophages and lymphocytes [30].

Rickettsia-induced endothelial damage is the hallmark pathophysiologic process that
leads to the severe manifestations of murine typhus and other rickettsioses [29]. As injury
accumulates systemically, extravasation of intravascular fluid into the interstitium can
occur, contributing to hypovolemia and decreased organ perfusion. This can lead to acute
kidney injury as a result of prerenal azotemia and eventual acute tubular necrosis. In
the lung and central nervous system, endothelial damage can lead to pneumonitis and
meningoencephalitis, respectively. Hepatic injury, a frequent occurrence manifesting as
elevated hepatic transaminases on routine blood work, results from multifocal infection of
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portal and hepatic sinusoidal endothelium. Occular manifestations of these processes are
evident by choroidal vascular injury noted on retinal examination [35].

The primary mechanism of R. typhi inoculation in humans is rubbing or scratching in-
fected flea feces into flea bite wounds, abrasions, or onto mucous membranes. Considering
the cutaneous route of inoculation, as with other organisms in the genus Rickettsia, dendritic
cells are a crucial element of the early immune response [29]. Natural killer cells are an
important aspect of controlling rickettsiae during early infection. Adaptive responses with
CD8 and CD4 T lymphocytes follow [36–39].

4. Ecology of an Emerging and Reemerging Infection

In the early part of the 20th century, in North America, it was recognized that there
existed an illness that resembled louse-borne epidemic typhus, but unlike the classic
form, it was milder and did not occur in large outbreaks [40–42]. The lack of household
clustering, occurrence during warmer weather, lack of associated body louse infestations,
and the apparent link to food stuffs led to the hypothesis that the disease centered around
rodents and their ectoparasites [43]. Indeed, Dyer and Mooser would later independently
confirm that rats and their fleas harbored bacteria responsible for this endemic form of
typhus [44–46]. Throughout most of the world, rat species (Rattus rattus and R. norvegicus)
and rat fleas (Xenopsylla cheopis) are the reservoirs and vectors of R. typhi, respectively
(Figure 2) [47]. Rats are not grossly affected by infection with R. typhi, but prolonged
bacteremia allows X. cheopis to acquire infection during feeding. Transmission is primarily
horizontal. In fleas, the bacterium establishes itself within midgut epithelial cells, which are
then shed into the feces [48]. The organism is also vertically passaged to flea progeny [49].
Infection does not affect flea lifespan or fecundity [50]. Murine typhus is epidemiologically
linked to rats throughout much of the world and was closely linked to cases in the U.S.
prior to intense vector control efforts beginning in the mid-1940s [3,51]. The ubiquity of
rats throughout the world and their ability to thrive where humans are established make
the possibility of emergence in non-endemic areas possible [47].
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Figure 2. Rickettsia typhi is maintained by Rattus species and transmitted to humans by rat
fleas (Xenopsylla cheopis), especially in the urban setting. Rickettsia typhi likely utilizes opossums
(Didelphis virginina) as an amplyfying host in suburban areas of North America, where it is transmitted
to humans by cat fleas (Ctenocephalides felis).

During World War II, dichlorodiphenyltrichloroethane (DDT) was used effectively to
prevent malaria and outbreaks of louse-borne epidemic typhus. After the war, it became
commercially available in the U.S. and was widely implemented in various fashions to
control insect pests for home and agricultural purposes [52]. Although rat control measures
had been previously implemented in campaigns to control murine typhus, it was not until
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DDT was systematically used on rat runs and rat harborages that traction was achieved in
the control of murine typhus [53,54]. Approximately 5400 cases were reported at the U.S.’s
peak incidence in 1944. By 1956, after the initiation of targeted DDT dusting, reported
cases of murine typhus fell to less than 100 [51]. The effectiveness of DDT was noted by
decreasing rat flea infestation rates [55] and from the fall of cases in counties targeting rats
with DDT versus counties not participating in this vector-control measure [54].

Interestingly, despite the apparent disappearance of cases in much of the U.S., small
numbers of cases continued to be reported in parts of Southern California and the southern-
most counties of Texas [56,57]. In these areas, an alternate cycle of transmission involving
opossums (Didelphis virginiana) and cat fleas (Ctenocephalides felis) exists, as first established
in an ecologic study performed in suburban areas of Los Angeles, California (Figure 2) [57].
Most evidence supporting D. virginiana as a link to cases of murine typhus has been cir-
cumstantial (opossums have a high seroprevalence to typhus group rickettsiae and harbor
R. typhi-infected cat fleas) [57–61]. More direct evidence—isolation of the bacterium from
the spleen and prolonged rickettsemia after experimental infection—has been demonstrated
from only a single opossum [57,62]. In an animal model, using Monodelphis domestica (the
laboratory opossum) as a surrogate to D. virginiana, intradermal inoculation of R. typhi
caused prolonged rickettsemia, infected tissues, and pathology typical of a rickettsiosis.
Despite disseminated infection, these opossums remained clinically well, suggesting their
ability to act as an amplifying host [63].

Experimentally, the cat flea (C. felis) has demonstrated the ability to acquire R. typhi [64].
This flea species has long been implicated as a possible vector for R. typhi [56,65,66]. In
addition to frequently infecting opossums, C. felis infests domestic cats (as its name implies),
dogs, and a variety of other mammals [67]. The role of domestic animals, such as cats, in the
transmission cycle of R. typhi is not well established. Experimental infections have resulted
in short durations of bacteremia [68], and the low prevalence of R. typhi-infected fleas
collected from cats do not support their role as being a principal element to the bacterium’s
maintenance and transmission [69–71]. The cosmopolitan nature of the cat flea supports
the possibility of R. typhi emerging in non-endemic areas [67].

5. Epidemiology of an Underrecognized and Reemerging Cause of Infection

Murine typhus is a cause of undifferentiated febrile illness throughout much of the
world [3]. It is most recognized in tropical and subtropical regions, especially port cities
where rats, the primary mammalian reservoir, thrive [72]. It is believed that for every
case of murine typhus that achieves a diagnosis, several others remain unrecognized [47].
Indeed, there is a surprising seroprevalence rate in regions where the disease is reemerging
or is not considered highly endemic. This indicates that many cases remain undiagnosed
or are not reported [73–76]. Cases increase in frequency in the spring, peak in the summer,
and decrease in the fall [3,77,78].

Outbreaks of murine typhus occur when there exists inadequate reservoir and vector
control [79,80]. The disease is well recognized in Southeast Asia, where it is an important
cause of fever (especially in urban areas) in Thailand [81], Laos [82,83], Indonesia [84], and
Vietnam [85]. There are also contemporary reports of murine typhus in Asia, where it has
been reported in Nepal [86], Bangladesh [87], and India [88]. Murine typhus is endemic
to southern European and other countries around the Mediterranean [9,89,90]. Once a
frequently reported disease in South America, murine typhus is now seldom recognized as
a cause of febrile illness. It is unclear if there was a true decline, perhaps related to the broad
use of DDT in malaria control programs, underreporting, or lack of clinical recognition.
When sought by clinicians and researchers, the presence of murine typhus as a reemerging
disease entity in South America becomes evident [91]. In North America, cases are rec-
ognized in Mexico [92,93] and in the U.S. states of Hawaii, California, and Texas [94–96].
There has been an alarming increase in California, with foci around homeless encamp-
ments, and in Texas, where the distribution of disease is moving northward [33,96,97]. The
increased recognition of cases in Southern California, Texas, Mexico, and South America
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highlights the reemergence of the pathogen in these regions. It has also been described in
travelers where it has been reported to have been acquired via travel to Asia, Africa, and
the Americas [98–102].

6. Clinical Manifestations of an Acute Undifferentiated Febrile Illness

Murine typhus is an undifferentiated febrile illness with signs and symptoms that
mimic a variety of infectious and noninfectious syndromes (see the diagnosis section below
for the differential diagnosis). The illness usually starts abruptly [103] after an incubation
period of 4 to 15 days [104]. Early symptoms accompanying fever include headache
(detailed in the neurologic manifestations section below), chills (63%), malaise (67%), and
myalgias (52%). Gastrointestinal symptoms vary in frequency and may include anorexia
(48%), nausea/vomiting (27%), diarrhea (19%), and abdominal pain (18%). Cough occurs in
27% and develops as the illness progresses. Less common symptoms include conjunctivitis
(18%), sore throat (14%), and photophobia (10%) [8].

An important sign (also sometimes reported as a symptom) of murine typhus is rash.
Although often considered a sine qua non of rickettsial illness, rash occurs in only about
half of those with murine typhus. It is seen in 18% at presentation [6] and occurs in 48%
at some point during illness [8]. The rash is described as macular (49%), maculopapular
(29%), papular (14%), and seldom petechial (6%). It is most often distributed on the trunk
(88%), but also occurs on the legs (45%), arms (37%), hands (5%), and feet (5%) [6]. The
palms and soles are involved in less than 3% [78]. When present, the rash can be subtle,
and it is difficult to detect in those with darkly pigmented skin. Thus, it is more frequently
described in those with lightly pigmented skin (81%) than those with darkly pigmented
skin (20%) [104]. Other physical signs include hepatomegaly (22%), splenomegaly (17%),
and lymphadenopathy (13%) [8].

A variety of laboratory abnormalities accompany the illness. None of these are specific
for murine typhus and can be seen in a variety of other febrile illnesses. Abnormalities on
a complete blood count may reveal thrombocytopenia (42%), anemia (38%), leukopenia
(24%), and leukocytosis (18%) [8]. Abnormalities on metabolic panels (indicative of systemic
endothelial damage and extravasation of intravascular fluid into the interstitium) include
hypoalbuminemia (60%), hypoproteinemia (45%), and hyponatremia (35%) [6,8]. The
latter is a result of the appropriate secretion of antidiuretic hormone [105]. Hepatic and
cellular injury are manifested with serum elevations in hepatic transaminases (79%), lactate
dehydrogenase (73%), and alkaline phosphatase (41%). Creatinine kinase levels are elevated
in 29% [8]. Extremely high levels of creatine kinase, as a result of frank rhabdomyolysis,
have been reported to occur during the course of murine typhus [106]. C-reactive protein
and procalcitonin are often elevated [107].

Most patients with murine typhus will recover uneventfully, but illness can be pro-
tracted, with fever and other symptoms lasting upward of 3 weeks. Severe sequelae of
infection can occur, however. Acute kidney injury is a result of prerenal azotemia. When
severe or prolonged, acute tubular necrosis can result [108–110]. Hemodialysis is some-
times temporarily needed. Respiratory failure requiring mechanical ventilation can also
occur [111]. Severe rickettsial disease has been noted to be associated with the follow-
ing risk factors: alcoholism, glucose-6-phosphate deficiency, and the use of sulfonamide
antibiotics [112,113]. The case fatality rate of murine typhus is 0.4% in both the pre- and
post-antibiotic eras [7,114]. The similar contemporary case-fatality rate likely indicates a
subset of individuals where either effective treatment was not received or it was adminis-
tered late during the course of disease. Of those hospitalized, 10% require intensive care,
and the case-fatality is as high as 4% [6].

7. Neurologic Manifestations and Sequelae

The most common neurologic manifestation of murine typhus is headache. Occurring
in 81%, it is the most frequent complaint after fever [8]. It is usually frontal in location, but
it is sometimes distributed occipitally [103]. Headache manifests early and persists through-
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out the febrile course; it subsides during defervescence. It is often described as the worst
symptom associated with murine typhus, and there is little relief with analgesics [103,104].
Other less frequent neurologic manifestations include confusion or delirium (8%), stupor
(4%), seizures (4%), and ataxia (1%) [6].

The prominence of fever, severe headache, and the occasional complaints of photopho-
bia (10%) [8] and nuchal rigidity (6%) [104], may warrant obtaining a lumbar puncture for
analysis of cerebrospinal fluid (CSF). In two early publications detailing cases of murine ty-
phus, symptoms prompted lumbar puncture in 20 (11%) and 45 (36%) of 120 and 126 cases,
respectively [103,104]. When obtained, the CSF is most often normal. When indicative of
meningoencephalitis, the CSF resembles that of many viral etiologies, with a clear appear-
ance and low white cell count compared to conventional community-acquired bacterial
causes (median white cell count of 10 vs. 410, respectively). Elevated protein concentration
is noted in 46% [115]. Hypoglycorrhachia has been reported with CSF to blood glucose
ratios < 0.5 in 38% [115,116]. Unfortunately, there are no specific biomarkers to differentiate
R. typhi-induced central nervous system injury from that of other infections [117]. Meningi-
tis or meningoencephalitis has been described to occur in approximately 2% of individuals
with murine typhus [118], but in a large case series of patients from Canary Islands, Spain,
a series reporting a relatively high rate of severe manifestations, meningitis occurred in
5.6% [9]. As in other rickettsial diseases, the case fatality rate of murine typhus is quite
high—27%—when meningoencephalitis occurs [115].

Other seemingly rare but severe neurologic manifestations have been reported: cranial
nerve palsies (facial and abducens) [119–121] and status epilepticus [31,122]. Most patients
recover with no neurologic sequelae. This is unlike what has been described for more severe
rickettsioses, such as RMSF [123–125]. Nevertheless, long-term neurocognitive disability
has been reported in a few patients diagnosed with murine typhus [126–128].

Ocular manifestations occur but are often subclinical. In a small series of patients
receiving formal ophthalmologic exams during the course of murine typhus, eight of nine
(89%) had bilateral ocular involvement attributed to the infection, but most of these patients
(63%) had no ocular symptoms [35]. When symptoms occur, complaints include decreased
visual acuity, blurry vision, floaters, ocular redness, and conjunctivitis [35,129]. Sudden
unilateral loss of vision due to optic neuritis has been reported [35]. White retinal lesions
and retinal hemorrhages are noted most often on exam, but optic disk edema has also been
noted. With treatment, ocular involvement is self-limited, as demonstrated by resolving
fundoscopic changes on follow up exams [35,129]. Parinaud’s oculoglandular syndrome
(unilateral conjunctivitis with associated ipsilateral regional lymphadenopathy) as a result
of murine typhus has been reported [130,131].

8. Diagnosis

The early diagnosis of murine typhus relies on a high index of clinical suspicion. Early
recognition that a febrile illness may be due to a Rickettsia species is paramount, as empiric
treatment to avoid severe manifestations or death, is necessary while awaiting confirma-
tory diagnostic testing. As an undifferentiated febrile illness, the differential diagnosis is
extensive. Other infections caused by organisms in the family Rickettsiaceae (i.e., spotted
fever group rickettsioses, rickettsialpox, louse-borne typhus, flying-squirrel-associated ty-
phus, and scrub typhus) and Anaplasmataceae (e.g., ehrlichioses and anaplasmosis) present
similarly. Endocarditis, meningococcemia, disseminated gonococcal infection, secondary
syphilis, relapsing fever, leptospirosis, typhoid fever, rubella, rubeola, roseola, mononu-
cleosis from Ebstein–Barr virus and cytomegalovirus, acute retroviral syndrome, and
arboviral infections such as dengue fever all have overlapping signs and symptoms. Fi-
nally, a variety of noninfectious syndromes (e.g., thrombotic thrombocytopenic purpura,
immune thrombocytopenic purpura, Kawasaki disease, and various vasculitides) should
be considered [132].

Serology is the primary diagnostic method to confirm murine typhus, with the indirect
fluorescent antibody (IFA) assay being the mainstay serologic test [133]. Antibodies are
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seldom present in the first few days of illness though. Roughly 50% of those with murine
typhus will have detectable antibodies within a week of illness onset. By the second week
of illness, diagnostic titers are present in almost all patients [6]. Confirmatory serologic
diagnosis requires seroconversion or fourfold rise in titers from testing performed on acute-
and convalescent-phase specimens [134]. Unfortunately, the IgM isoform does not appear
much earlier than IgG and may suffer from more cross-reactivity. A single reactive IgG
during a clinically compatible illness may be supportive for the diagnosis of murine typhus,
but it must be noted that anti-R. typhi antibodies can persist for some time (the median titer
a year after infection is 1:800) [135]. Thus, the presence of reactive antibodies may reflect a
previous illness. In Galveston County, Texas, and on Honshu Island, Japan, seroprevalence
studies have demonstrated a seroprevalence of 7.8% and 7.7% at titers of at ≥1:128 and
≥1:160, respectively [76,97]. Thus, in areas where the disease is endemic, there may be a
substantial seroprevalence within the population.

Enzyme-linked immunosorbent assays for diagnosing typhus group rickettsioses have
been developed, but they are not yet in regular use and still require acute- and convalescent-
phase specimens [136]. The Weil–Felix reaction has proven to be both insensitive and
nonspecific for the diagnosis of rickettsioses [137]. Rickettsia typhi and R. prowazekii share
similar antigens, so antibodies stimulated by infection with R. prowazekii will react to
diagnostic antigens derived from R. typhi. Thus, a species-specific diagnosis is not possible
from standard serologic assays. Cross-absorption techniques have been employed to
determine species-specific reactivity, but this testing is cumbersome and only performed in
the research setting [138].

Several nucleic acid amplification techniques have been studied for the detection of
rickettsiae. These include conventional and quantitative real-time polymerase chain reac-
tion (PCR), loop-mediated isothermal amplification (LAMP), and recombinase polymerase
amplification (RPA) [139,140]. Despite the availability of platforms with excellent analytic
sensitivity, such as quantitative real-time PCR (which can detect only a few copies of target
DNA per reaction volume), the limited number of circulating organisms limits the utility
of PCR to detect R. typhi from clinical blood specimens. The median clinical sensitivity of
PCR from blood and skin specimens is 5% [134]. LAMP and RPA methods are attractive
technologies that can be employed in the field or in rudimentary laboratory settings where
a thermocycler may not be available. As with PCR, these techniques are likely limited by
the number of circulating rickettsiae within the blood. Detection of 23S rRNA, a target that
has multiple copies, via reverse transcriptase PCR may offer enhanced analytic sensitivity
compared to PCR assays targeting single-copy genes [141]. Next-generation sequencing
has been used to amplify R. typhi DNA from clinical blood specimens [142–144].

The direct detection of R. typhi can be accomplished by immunohistochemical tech-
niques, using typhus group-specific antibody, to directly visualize the organism within
formal fixed, paraffin-embedded tissue sections [30,145]. The clinical performance of im-
munohistochemistry (IHC) for diagnosing murine typhus is unknown, but the test has a
70% sensitivity and 100% specificity for RMSF [132]. The lack of rash for biopsy in approxi-
mately 50%, and the few laboratories performing IHC limit the utility of this technique to
the average clinician.

The isolation of R. typhi in culture is seldom undertaken. It requires specialized cell
culture techniques and should be performed in biosafety level 3 laboratory conditions to
avoid aerosolization and infection of laboratory workers. Thus, isolation is generally only
performed in the research setting.

9. Treatment and Prevention

It is important to start immediate empiric therapy when murine typhus is suspected,
as current diagnostics fail to reliably offer confirmatory results in a timely manner. Prompt
treatment can quickly abate symptoms, such as fever and headache, and prevent progres-
sion to severe manifestations [146], such as central nervous system complications. Length
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of hospitalization has been demonstrated to be shorter when early suspicion leads to
prompt treatment [147].

Tetracyclines are the drug class of choice, with doxycycline being the preferred
agent [148]. The in vitro susceptibility testing of antibiotics against rickettsiae is not stan-
dardized nor available through commercial reference laboratories, but studies using meth-
ods employing cell culture and embryonated hens’ eggs have demonstrated minimum
inhibitory concentrations (MIC) of 0.06–0.25 µg/mL for tetracyclines [149]. The use of doxy-
cycline is supported by a wealth of observational data documenting its successful use [150].
A randomized open-label controlled trial, comparing doxycycline versus azithromycin,
found that patients defervesced at a median time of 34 h after starting their first dose of
doxycycline [146]. For adults, doxycycline is given at 100 mg twice daily. Many clinicians
give a one-time 200 mg loading dose, followed by 100 mg twice daily. Doxycycline is
well absorbed, so oral administration is usually adequate. When nausea/vomiting or
critical illness prevents reliable enteral absorption, the intravenous form should be used.
A duration of 5 to 7 days is sufficient. Older tetracyclines are effective but must be taken
more frequently and have more adverse events [151]. Newer tetracycline-like antibiotics
(i.e., tigecycline, eravacycline, and omadacycline) have activity against R. typhi [152], but
clinical experience with these drugs during rickettsial illness is limited [153–155].

A few other antibiotics have been found to inhibit the growth of rickettsiae in vitro.
These include chloramphenicol, some macrolides (i.e., clarithromycin and azithromycin),
fluoroquinolones, and rifampin. Chloramphenicol (50–75 mg/kg/day divided into four
doses) has historically been used as an alternative to tetracyclines [150]. A case series
evaluating the effectiveness of different regimens for murine typhus suggests it takes
about a day longer to defervesce on chloramphenicol compared to doxycycline [156].
Chloramphenicol is no longer available in the U.S.

Murine typhus has been successfully treated with fluoroquinolones, such as ciprofloxacin.
In a retrospective examination, the time to defervesce on ciprofloxacin was longer than
doxycycline (4.2 days and 2.9 days, respectively) [156]. Treatment failures have been
noted [150,157]. Azithromycin has been used, but it was deemed inferior to doxycycline
in a controlled trial. There were more clinical failures (22.5% vs. 1.4%), and the mean
time to defervesce was longer (48 h vs. 34 h) for azithromycin compared to doxycy-
cline, respectively [146]. Many commonly prescribed antibiotics, such as trimethoprim-
sulfamethoxazole, cephalosporins, and penicillins, have no in vitro activity against
rickettsiae [149]. In fact, sulfonamide use is considered a risk factor for developing se-
vere rickettsial illness [158].

Doxycyline (2.2 mg/kg twice daily) is the preferred treatment for children [159]. Short
and infrequent courses of doxycycline do not cause noticeable color changes in developing
permanent teeth [160–162]. The use of doxycycline for rickettsioses in young children is
endorsed by the American Academy of Pediatrics Committee on Infectious Diseases [159].
Most pregnant women with murine typhus have favorable outcomes, but poor neonatal
outcomes from those with suboptimal treatment have been reported [163,164]. Doxycycline
does not seem to be associated with the severe adverse events in pregnant women that
have been reported with older tetracyclines [165,166].

There is no available vaccine for the prevention of murine typhus or other rickettsioses.
Identification of antigens that stimulate CD4+ and CD8+ T cells to secrete protective
cytokines, the stimulation of cytotoxic T cells, and the stimulation of anti-rickettsial an-
tibodies are all believed to be crucial in vaccine development. In experimental models,
reactivity to rickettsial outer membrane protein B may offer protection from subsequent
R. typhi infection [29].

The aforementioned campaign using DDT to control rat flea populations, as well as
the subsequent fall of cases in the United States, exemplifies the effectiveness of vector
control measures to curb disease transmission [51,54]. The extensive use of DDT in Latin
America to control malaria is temporally associated with a marked decrease in reporting or
recognition of murine typhus in this region [91,167]. It is unknown if similar methods to
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control fleas on other mammalian hosts (i.e., opossums) would effectively control murine
typhus. In one study, DDT used on rat runs and harborages failed to cause the collateral
effect of controlling flea infestations on opossums trapped in areas where these treatments
were applied [168]. Although there is no direct supportive evidence, it seems prudent to
control fleas around homes, yards, and domestic animals (i.e., cats and dogs) to prevent the
occurrence of murine typhus in endemic areas.

10. Conclusions and Future Directions

Murine typhus is an often-overlooked cause of febrile illness. Undifferentiated in
regard to signs and symptoms, it resembles a variety of other infections. It is therefore diffi-
cult to recognize, often delaying necessary doxycycline treatment [169]. When treatment
is delayed, prolonged illness, severe manifestations (e.g., respiratory failure, renal failure,
meningoencephalitis), or death may occur. The reemergence of murine typhus in parts of
California and Texas is an alert to other regions, as the reservoirs and vectors of R. typhi are
widely distributed. As the prevalence of murine typhus increases, so will the number of
cases complicated by life-threatening manifestations.

A key endeavor to curb disease progression from a mild febrile illness to one with
severe life-threatening consequences is the development of rapid tests effective at early
stages of illness. Doxycyline is a very effective therapy, but a rickettsiosis must be clinically
recognized to prompt empiric use. The ability to offer clinicians sensitive and specific
results at the point-of-care would provide the necessary diagnostic data to guide accurate
medical decision making. An ideal test might include the detection of a secreted serum
biomarker via an easy-to-use lateral flow assay. Developing targeted methods to break the
transmission cycle to humans is also paramount. The dramatic post-World War II decline in
the incidence of murine typhus throughout the U.S. is an excellent example of how vector-
control efforts were able to limit disease transmission. Unfortunately, the strategy of using
DDT had collateral environmental impacts. Novel targeted strategies to control fleas on
reservoir hosts (i.e., opossums) in endemic areas may offer an alternative means to breaking
the cycle of transmission. Such methods might include the use of baits, targeting opossums,
laden with commercially available orally ingested anti-flea medications (e.g., spinosad).
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