Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Danggui Buxue Tang

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10669 KiB  
Article
Insights into the Regulatory Effect of Danggui Buxue Tang in Postpartum Dairy Cows Through an Integrated Analysis of Multi-Omics and Network Analysis
by Kang Yong, Zhengzhong Luo, Zheng Zhou, Yixin Huang, Chuanshi Zhang and Suizhong Cao
Life 2025, 15(3), 408; https://doi.org/10.3390/life15030408 - 5 Mar 2025
Viewed by 804
Abstract
Postpartum dairy cows often face significant challenges due to metabolic disorders. Danggui Buxue Tang (DBT), a botanical drug composed of Astragali radix and Angelica sinensis radix in a 5:1 ratio, has been recognized for its potential to alleviate metabolic disorders. Its regulatory mechanisms [...] Read more.
Postpartum dairy cows often face significant challenges due to metabolic disorders. Danggui Buxue Tang (DBT), a botanical drug composed of Astragali radix and Angelica sinensis radix in a 5:1 ratio, has been recognized for its potential to alleviate metabolic disorders. Its regulatory mechanisms on livestock metabolic health have remained unexplored. This study integrated the analyses of serum pharmacochemistry, network pharmacology, serum metabolomics, and fecal microbiota to investigate the regulatory effects of DBT on metabolic adaptation in postpartum dairy cows. Following the oral administration of DBT, levels of blood non-esterified fatty acids and beta-hydroxybutyrate were decreased in multiparous dairy cows one week after calving. Five absorbed prototype metabolites of DBT were identified, specifically formononetin and nicotinic acid, both of which play roles in the regulation of lipid metabolic homeostasis. Furthermore, DBT modified the composition of the gut microbial community and glycerophospholipid levels. Decreases in serum phosphatidylethanolamine and phosphatidylcholine levels were closely correlated with the relative abundance of Bacillus and the concentration of circulating beta-hydroxybutyrate. These findings suggest that DBT contributes positively to metabolic health in postpartum dairy cows by regulating the gut microbiota and glycerophospholipid metabolism, providing new insights into strategies for promoting metabolic adaptation in dairy cows. Full article
(This article belongs to the Special Issue Natural Bioactives: Exploring Their Therapeutic Potential)
Show Figures

Figure 1

22 pages, 8916 KiB  
Article
The Positive Regulatory Effect of DBT on Lipid Metabolism in Postpartum Dairy Cows
by Zheng Zhou, Kang Yong, Zhengzhong Luo, Zhenlong Du, Tao Zhou, Xiaoping Li, Xueping Yao, Liuhong Shen, Shumin Yu, Yixin Huang and Suizhong Cao
Metabolites 2025, 15(1), 58; https://doi.org/10.3390/metabo15010058 - 16 Jan 2025
Cited by 1 | Viewed by 1077
Abstract
Background/Objectives: The transition from a non-lactating to a lactating state is a critical period for lipid metabolism in dairy cows. Danggui Buxue Tang (DBT), stimulating energy metabolism, ameliorates diseases related to lipid metabolism disorders and is expected to be an effective supplement for [...] Read more.
Background/Objectives: The transition from a non-lactating to a lactating state is a critical period for lipid metabolism in dairy cows. Danggui Buxue Tang (DBT), stimulating energy metabolism, ameliorates diseases related to lipid metabolism disorders and is expected to be an effective supplement for alleviating excessive lipid mobilisation in periparturient dairy cows. This study aimed to investigate the effects of supplemental DBT on serum biochemical indices, faecal microbial communities, and plasma metabolites in dairy cows. Methods: Thirty cows were randomly divided into three groups: H-DBT group, L-DBT group, and control group. DBT administration was started on the day of calving and continued once daily for seven days. Faecal and blood samples were collected on calving day, 7 days after calving, and 14 days after calving. The levels of serum biochemical indices were measured at three time points in the three groups using commercial kits. Cows in the H-DBT group and control group were selected for metabolome and 16S rRNA amplicon sequencing. Results: Our research shows that, in dairy cows 7 days postpartum, DBT significantly reduced serum 3-hydroxybutyric acid (BHB) concentrations and the number of cows with BHB concentrations ≥ 1 mmol/L. Additionally, DBT increased serum total cholesterol contents at both 7 and 14 days postpartum. Analysis of the microbiota community showed that DBT modulated the composition and structure of the hindgut microbiota. Metabolomic analysis revealed decreased plasma acetylcarnitine, 2-hydroxybutyric acid, and BHB levels 7 days postpartum, whereas the TCA cycle was enhanced. At 14 days postpartum, DBT altered the plasma bile acid profile, especially glycine-conjugated bile acids, including GCDCA, GUDCA, and GDCA. Correlation analyses showed that the relative abundances of Bacillus, Solibacillus, Dorea, and Romboutsia were strongly correlated with the differential metabolites, which is crucial for the beneficial effects of DBT. Conclusions: DBT improves energy status and lipid metabolism in postpartum dairy cows by modulating hindgut microbiota and serum lipid metabolites. Full article
(This article belongs to the Special Issue Research on Lipid Metabolism in Animals)
Show Figures

Graphical abstract

14 pages, 2407 KiB  
Article
The Osteogenic Function of Danggui Buxue Tang, a Herbal Decoction Containing Astragali Radix and Angelicae Sinensis Radix, Is Optimized by Boiling the Two Herbs Together: Signaling Analyses Revealed by Systems Biology
by Kenneth K L Kwan, Tin Yan Wong, Anna X. D. Yu, Tina T. X. Dong, Henry H. L. Lam and Karl W. K. Tsim
Processes 2021, 9(7), 1119; https://doi.org/10.3390/pr9071119 - 28 Jun 2021
Cited by 2 | Viewed by 2620
Abstract
The therapeutic efficacy of a herbal mixture, being multi-target, multi-function and multi-pathway, is the niche of traditional Chinese medicine (TCM). Systems biology can dissect the network of signaling mechanisms in a complex biological system. In preparing TCM decoctions, the boiling of herbs together [...] Read more.
The therapeutic efficacy of a herbal mixture, being multi-target, multi-function and multi-pathway, is the niche of traditional Chinese medicine (TCM). Systems biology can dissect the network of signaling mechanisms in a complex biological system. In preparing TCM decoctions, the boiling of herbs together in water is a common practice; however, the rationale of this specific preparation has not been fully revealed. An approach of mass-spectrometry-based multi-omics was employed to examine the profiles of the cellular pathways, so as to understand the pharmacological efficacy of Danggui Buxue Tang (DBT), a Chinese herbal mixture containing Astragali Radix and Angelicae Sinensis Radix, in cultured rat osteoblasts and mesenchymal stem cells. The results, generated from omics analyses, were compared from DBT-treated osteoblasts to those of treating the herbal extract by simple mixing of extracts from Astragali Radix and Angelicae Sinensis Radix, i.e., herbal mixture without boiling together. The signaling pathways responsible for energy metabolism and amino acid metabolism showed distinct activation, as triggered by DBT, in contrast to simple mixing of two herbal extracts. The result supports that boiling the herbs together is designed to maximize the osteoblastic function of DBT, such as in energy and lipid metabolism. This harmony of TCM formulation, by having interactive functions of two herbs during preparation, is being illustrated. The systems biology approach provides new and essential insights into the synergy of herbal preparation. Well-defined multiple targets and multiple pathways in different levels of omics are the key to modernizing TCM. Full article
(This article belongs to the Section Pharmaceutical Processes)
Show Figures

Figure 1

19 pages, 2073 KiB  
Article
Repressed Exercise-Induced Hepcidin Levels after Danggui Buxue Tang Supplementation in Male Recreational Runners
by Chih-Wei Chang, Chao-Yen Chen, Ching-Chi Yen, Yu-Tse Wu and Mei-Chich Hsu
Nutrients 2018, 10(9), 1318; https://doi.org/10.3390/nu10091318 - 18 Sep 2018
Cited by 12 | Viewed by 7553
Abstract
This study was to investigate the protective and recovery effects of Danggui Buxue Tang (DBT) supplementation on exercise performance, hepcidin, iron status, and other related biochemical parameters after being challenged by a single bout of intense aerobic exercise. A total of 36 recreationally [...] Read more.
This study was to investigate the protective and recovery effects of Danggui Buxue Tang (DBT) supplementation on exercise performance, hepcidin, iron status, and other related biochemical parameters after being challenged by a single bout of intense aerobic exercise. A total of 36 recreationally active males were pair-matched and randomly assigned to receive DBT or a placebo for 11 days, while using clusters based on their aerobic capacities. On the eighth day of the supplementation, the participants performed a 13-km run with maximal effort. Blood and urine samples were collected and analysed before treatment (Pre-Tre) and immediately after (Post-Ex), 24 h after (24-h Rec), and 72 h after (72-h Rec) the run. DBT supplementation dramatically shortened the finish times by 14.0% (12.3 min) when compared with that in the placebo group. Significant group × time effects were observed in serum hepcidin and iron levels. DBT supplementation repressed hepcidin levels at Post-Ex and 24-h Rec, thereby causing a significant increase in iron levels by 63.3% and 31.4% at Post-Ex and 72-h Rec, respectively. However, DBT supplementation had no significant anti-inflammatory or haemolysis-preventative effects. Short-term DBT supplementation shortened the running time and repressed exercise-induced hepcidin levels, thereby boosting iron levels and accelerating iron homeostasis during recovery. Full article
Show Figures

Figure 1

16 pages, 11365 KiB  
Article
The Traditional Chinese Medicine DangguiBuxue Tang Sensitizes Colorectal Cancer Cells to Chemoradiotherapy
by Shun-Ting Chen, Tzung-Yan Lee, Tung-Hu Tsai, Yin-Cheng Lin, Chin-Ping Lin, Hui-Ru Shieh, Ming-Ling Hsu, Chih-Wen Chi, Ming-Cheng Lee, Hen-Hong Chang and Yu-Jen Chen
Molecules 2016, 21(12), 1677; https://doi.org/10.3390/molecules21121677 - 6 Dec 2016
Cited by 37 | Viewed by 6572
Abstract
Chemotherapy is an important treatment modality for colon cancer, and concurrent chemoradiation therapy (CCRT) is the preferred treatment route for patients with stage II and III rectal cancer. We examined whether DangguiBuxue Tang (DBT), a traditional Chinese herbal extract, sensitizes colorectal cancer cells [...] Read more.
Chemotherapy is an important treatment modality for colon cancer, and concurrent chemoradiation therapy (CCRT) is the preferred treatment route for patients with stage II and III rectal cancer. We examined whether DangguiBuxue Tang (DBT), a traditional Chinese herbal extract, sensitizes colorectal cancer cells to anticancer treatments. The polysaccharide-depleted fraction of DBT (DBT-PD) contains greater amounts of astragaloside IV (312.626 µg/g) and ferulic acid (1.404 µg/g) than does the original formula. Treatment of the murine colon carcinoma cell line (CT26) with DBT-PD inhibits growth, whereas treatment with comparable amounts of purified astragaloside IV and ferulic acid showed no significant effect. Concurrent treatment with DBT-PD increases the growth inhibitory effect of 5-fluorouracil up to 4.39-fold. DBT-PD enhances the effect of radiation therapy (RT) with a sensitizer enhancement ratio (SER) of up to 1.3. It also increases the therapeutic effect of CCRT on CT26 cells. Cells treated with DBP-PD showed ultrastructural changes characteristic of autophagy, including multiple cytoplasmic vacuoles with double-layered membranes, vacuoles containing remnants of degraded organelles, marked swelling and vacuolization of mitochondria, and autolysosome-like vacuoles. We conclude that DBT-PD induces autophagy-associated cell death in CT26 cells, and may have potential as a chemotherapy or radiotherapy sensitizer in colorectal cancer treatment. Full article
Show Figures

Figure 1

24 pages, 1589 KiB  
Article
Chemical Profile Analysis and Comparison of Two Versions of the Classic TCM Formula Danggui Buxue Tang by HPLC-DAD-ESI-IT-TOF-MSn
by Ya-Zhou Zhang, Feng Xu, Tao Yi, Jian-Ye Zhang, Jun Xu, Yi-Na Tang, Xi-Chen He, Jing Liu and Hu-Biao Chen
Molecules 2014, 19(5), 5650-5673; https://doi.org/10.3390/molecules19055650 - 30 Apr 2014
Cited by 19 | Viewed by 8924
Abstract
Danggui Buxue Tang (DBT) is a Traditional Chinese Medicine (TCM) formula primarily used to treat symptoms associated with menopause in women. Usually, DBT is composed of one portion of Radix Angelicae Sinensis (RAS) and five portions of Radix Astragali (RA). Clinically, Radix Hedysari [...] Read more.
Danggui Buxue Tang (DBT) is a Traditional Chinese Medicine (TCM) formula primarily used to treat symptoms associated with menopause in women. Usually, DBT is composed of one portion of Radix Angelicae Sinensis (RAS) and five portions of Radix Astragali (RA). Clinically, Radix Hedysari (RH) is sometimes used by TCM physicians to replace RA in DBT. In order to verity whether the chemical constituents of the DBT1 (RA:RAS = 5:1, w/w) and DBT2 (RH:RAS = 5:1, w/w) share similarities the chemical profiles of the two DBTs crude extracts and urine samples were analyzed and compared with the aid of HPLC-DAD-ESI-IT-TOF-MSn, which determines the total ion chromatogram (TIC) and multi-stage mass spectra (MSn). Then, the DBT1 and DBT2 were identified and compared on the basis of the TIC and the MSn. In the first experiment (with crude extracts), 69 compounds (C1C69) were identified from the DBT1; 46 compounds (c1c46) were identified from the DBT2. In the second experiment(with urine samples), 44 compounds (M1M44) were identified from the urine samples of rats that had been administered DBT1, and 34 compounds (m1m34) were identified from the urine samples of rats that had been administered DBT2. Identification and comparison of the chemical compositions were carried out between the DBT1 and DBT2 of the crude extracts and urine samples respectively. Our results showed that the two crude extracts of the DBTs have quite different chemical profiles. The reasons for their differences were that the special astragalosides in DBT1 and the isoflavonoid glycosides formed the malonic acid esters undergo single esterification and acetyl esters undergo acetylation in DBT1. In contrast, the urine from DBT1-treated rats strongly resembled that of DBT2-treated rats. These metabolites originate mainly from formononetin, calycosin and their related glycosides, and they were formed mainly by the metabolic process of reduction, deglycosylation, demethylation, hydrogenation and sulfation. The HPLC-DAD-ESI-IT-TOF-MSn method was successfully applied for the rapid chemical profiles evaluation of two DBTs and their related urine samples. Full article
(This article belongs to the Section Metabolites)
Show Figures

Figure 1

Back to TopTop