Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = DMD gene variants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4943 KiB  
Case Report
Early Cardiac Dysfunction in Duchenne Muscular Dystrophy: A Case Report and Literature Update
by Maria Lupu, Iustina Mihaela Pintilie, Raluca Ioana Teleanu, Georgiana Gabriela Marin, Oana Aurelia Vladâcenco and Emilia Maria Severin
Int. J. Mol. Sci. 2025, 26(4), 1685; https://doi.org/10.3390/ijms26041685 - 16 Feb 2025
Cited by 1 | Viewed by 1754
Abstract
Duchenne Muscular Dystrophy (DMD) is a severe X-linked recessive disorder characterized by progressive muscle degeneration due to dystrophin deficiency. Cardiac involvement, particularly dilated cardiomyopathy, significantly impacts morbidity and mortality, typically manifesting after age 10. This case report presents a rare instance of early-onset [...] Read more.
Duchenne Muscular Dystrophy (DMD) is a severe X-linked recessive disorder characterized by progressive muscle degeneration due to dystrophin deficiency. Cardiac involvement, particularly dilated cardiomyopathy, significantly impacts morbidity and mortality, typically manifesting after age 10. This case report presents a rare instance of early-onset cardiac involvement in a 3-year-old male with a confirmed deletion in exon 55 of the dystrophin gene. The patient developed dilated cardiomyopathy at 3 years and 8 months, with progressive left ventricular dysfunction despite early treatment with corticosteroids, ACE inhibitors, and beta-blockers. Genetic mechanisms and genotype–phenotype correlations related to cardiac involvement were reviewed, highlighting emerging therapies such as exon skipping, vamorolone, ifetroban, and rimeporide. Studies indicate that variants in exons 12, 14–17, 31–42, 45, and 48–49 are associated with more severe cardiac impairment. This case emphasizes the need for early, ongoing cardiac assessment and personalized treatment to address disease heterogeneity. While current DMD care standards improve survival, optimizing management through early intervention and novel therapies remains essential. Further research is needed to better understand genotype–phenotype correlations and improve cardiac outcomes for patients with DMD. Full article
Show Figures

Figure 1

10 pages, 553 KiB  
Review
Unraveling the Genetic Heartbeat: Decoding Cardiac Involvement in Duchenne Muscular Dystrophy
by Valeria Novelli, Francesco Canonico, Renzo Laborante, Martina Manzoni, Alessandra Arcudi, Giulio Pompilio, Eugenio Mercuri, Giuseppe Patti and Domenico D’Amario
Biomedicines 2025, 13(1), 102; https://doi.org/10.3390/biomedicines13010102 - 4 Jan 2025
Viewed by 1404
Abstract
Cardiomyopathy represents the most important life-limiting condition of Duchenne muscular dystrophy (DMD) patients after the age of 20. Genetic alterations in the DMD gene result in the absence of functional dystrophin protein, leading to skeletal/cardiac muscle impairment. The DMD incidence is one in [...] Read more.
Cardiomyopathy represents the most important life-limiting condition of Duchenne muscular dystrophy (DMD) patients after the age of 20. Genetic alterations in the DMD gene result in the absence of functional dystrophin protein, leading to skeletal/cardiac muscle impairment. The DMD incidence is one in 5000 live male births. Identifying the genetic background, in addition to DMD disease-causing variants, is one of the unmet needs in understanding the cardiac disease’s pathogenetic mechanisms and its prognostic implications. The clinical scenario is made even more intricate by the difficulty in predicting the onset and progression of cardiomyopathy, as no clear genotype/phenotype correspondence has been found thus far. The evaluation of genes involved in the onset of primary cardiomyopathies could explore the hypothesis that changes in cytoskeletal and sarcomeric protein function are the modulators of ventricular dysfunction in DMD patients. In the last decade, with the advent of next-generation sequencing (NGS) technology, many disease-causing genes and modifiers have been identified. Assessing the genetic origin of the phenotypic variability of the disease in both the onset and progression of cardiomyopathy in DMD would be extremely helpful in managing these patients. This review article aims to spotlight the genetic background associated with Cardiomyopathy in DMD patients toward a more predictive personalized model of care. Full article
(This article belongs to the Special Issue Diagnosis, Pathogenesis and Treatment of Muscular Dystrophy)
Show Figures

Figure 1

16 pages, 1775 KiB  
Article
Expanding the Molecular Genetic Landscape of Dystrophinopathies and Associated Phenotypes
by Katja Neuhoff, Ozge Aksel Kilicarslan, Corinna Preuße, Ann-Kathrin Zaum, Heike Kölbel, Hanns Lochmüller, Ulrike Schara-Schmidt, Kiran Polavarapu, Andreas Roos and Andrea Gangfuß
Biomedicines 2024, 12(12), 2738; https://doi.org/10.3390/biomedicines12122738 - 29 Nov 2024
Cited by 1 | Viewed by 1118
Abstract
Background/Objectives: X-linked dystrophinopathies are a group of neuromuscular diseases caused by pathogenic variants in the DMD gene (MIM *300377). Duchenne muscular dystrophy (DMD; MIM #310200) is the most common inherited muscular dystrophy. Methods: We screened datasets of 403 male, genetically confirmed [...] Read more.
Background/Objectives: X-linked dystrophinopathies are a group of neuromuscular diseases caused by pathogenic variants in the DMD gene (MIM *300377). Duchenne muscular dystrophy (DMD; MIM #310200) is the most common inherited muscular dystrophy. Methods: We screened datasets of 403 male, genetically confirmed X-linked dystrophinopathy patients and identified 13 pathogenic variants of the DMD gene that have not been described in the literature thus far. For all patients we provide additional data on the clinical course, genotype–phenotype correlations as well as histological datasets of nine patients. In two cases, we used RNA-Seq analyses, showing that this method can be particularly helpful in cases of deep intrinsic variants. Results: We were able to show, that a combination of the different datasets is helpful to counsel families and provides a better understanding of the underlying pathophysiology. Conclusions: Overall, we elaborated upon the persistent challenge of determining the course of disease from genetic analysis alone, rather supporting the concept of a clinical continuum of dystrophinopathies with our combined clinical, histological and molecular genetic findings. Full article
(This article belongs to the Special Issue Diagnosis, Pathogenesis and Treatment of Muscular Dystrophy)
Show Figures

Figure 1

17 pages, 22700 KiB  
Article
Identification of Schizophrenia Susceptibility Loci in the Urban Taiwanese Population
by Chih-Chung Huang, Yi-Guang Wang, Chun-Lun Hsu, Ta-Chuan Yeh, Wei-Chou Chang, Ajeet B. Singh, Chin-Bin Yeh, Yi-Jen Hung, Kuo-Sheng Hung and Hsin-An Chang
Medicina 2024, 60(8), 1271; https://doi.org/10.3390/medicina60081271 - 6 Aug 2024
Cited by 2 | Viewed by 1783
Abstract
Background and Objectives: Genomic studies have identified several SNP loci associated with schizophrenia in East Asian populations. Environmental factors, particularly urbanization, play a significant role in schizophrenia development. This study aimed to identify schizophrenia susceptibility loci and characterize their biological functions and [...] Read more.
Background and Objectives: Genomic studies have identified several SNP loci associated with schizophrenia in East Asian populations. Environmental factors, particularly urbanization, play a significant role in schizophrenia development. This study aimed to identify schizophrenia susceptibility loci and characterize their biological functions and molecular pathways in Taiwanese urban Han individuals. Materials and Methods: Participants with schizophrenia were recruited from the Taiwan Precision Medicine Initiative at Tri-Service General Hospital. Genotype–phenotype association analysis was performed, with significant variants annotated and analyzed for functional relevance. Results: A total of 137 schizophrenia patients and 26,129 controls were enrolled. Ten significant variants (p < 1 × 10−5) and 15 expressed genes were identified, including rs1010840 (SOWAHC and RGPD6), rs11083963 (TRPM4), rs11619878 (LINC00355 and LINC01052), rs117010638 (AGBL1 and MIR548AP), rs1170702 (LINC01680 and LINC01720), rs12028521 (KAZN and PRDM2), rs12859097 (DMD), rs1556812 (ATP11A), rs78144262 (LINC00977), and rs9997349 (ENPEP). These variants and associated genes are involved in immune response, blood pressure regulation, muscle function, and the cytoskeleton. Conclusions: Identified variants and associated genes suggest a potential genetic predisposition to schizophrenia in the Taiwanese urban Han population, highlighting the importance of potential comorbidities, considering population-specific genetic and environmental interactions. Full article
(This article belongs to the Section Psychiatry)
Show Figures

Figure 1

13 pages, 1589 KiB  
Article
An Integrated Transcriptomics and Genomics Approach Detects an X/Autosome Translocation in a Female with Duchenne Muscular Dystrophy
by Alba Segarra-Casas, Vicente A. Yépez, German Demidov, Steven Laurie, Anna Esteve-Codina, Julien Gagneur, Yolande Parkhurst, Robert Muni-Lofra, Elizabeth Harris, Chiara Marini-Bettolo, Volker Straub and Ana Töpf
Int. J. Mol. Sci. 2024, 25(14), 7793; https://doi.org/10.3390/ijms25147793 - 16 Jul 2024
Cited by 1 | Viewed by 1819
Abstract
Duchenne and Becker muscular dystrophies, caused by pathogenic variants in DMD, are the most common inherited neuromuscular conditions in childhood. These diseases follow an X-linked recessive inheritance pattern, and mainly males are affected. The most prevalent pathogenic variants in the DMD gene [...] Read more.
Duchenne and Becker muscular dystrophies, caused by pathogenic variants in DMD, are the most common inherited neuromuscular conditions in childhood. These diseases follow an X-linked recessive inheritance pattern, and mainly males are affected. The most prevalent pathogenic variants in the DMD gene are copy number variants (CNVs), and most patients achieve their genetic diagnosis through Multiplex Ligation-dependent Probe Amplification (MLPA) or exome sequencing. Here, we investigated a female patient presenting with muscular dystrophy who remained genetically undiagnosed after MLPA and exome sequencing. RNA sequencing (RNAseq) from the patient’s muscle biopsy identified an 85% reduction in DMD expression compared to 116 muscle samples included in the cohort. A de novo balanced translocation between chromosome 17 and the X chromosome (t(X;17)(p21.1;q23.2)) disrupting the DMD and BCAS3 genes was identified through trio whole genome sequencing (WGS). The combined analysis of RNAseq and WGS played a crucial role in the detection and characterisation of the disease-causing variant in this patient, who had been undiagnosed for over two decades. This case illustrates the diagnostic odyssey of female DMD patients with complex structural variants that are not detected by current panel or exome sequencing analysis. Full article
(This article belongs to the Special Issue Molecular Advances in Muscular Dystrophy)
Show Figures

Figure 1

10 pages, 1497 KiB  
Case Report
De Novo p.Asp3368Gly Variant of Dystrophin Gene Associated with X-Linked Dilated Cardiomyopathy and Skeletal Myopathy: Clinical Features and In Silico Analysis
by Maria d’Apolito, Alessandra Ranaldi, Francesco Santoro, Sara Cannito, Matteo Gravina, Rosa Santacroce, Ilaria Ragnatela, Alessandra Margaglione, Giovanna D’Andrea, Grazia Casavecchia, Natale Daniele Brunetti and Maurizio Margaglione
Int. J. Mol. Sci. 2024, 25(5), 2787; https://doi.org/10.3390/ijms25052787 - 28 Feb 2024
Cited by 3 | Viewed by 2139
Abstract
Dystrophin (DMD) gene mutations are associated with skeletal muscle diseases such as Duchenne and Becker Muscular Dystrophy (BMD) and X-linked dilated cardiomyopathy (XL-DCM). To investigate the molecular basis of DCM in a 37-year-old woman. Clinical and genetic investigations were performed. Genetic [...] Read more.
Dystrophin (DMD) gene mutations are associated with skeletal muscle diseases such as Duchenne and Becker Muscular Dystrophy (BMD) and X-linked dilated cardiomyopathy (XL-DCM). To investigate the molecular basis of DCM in a 37-year-old woman. Clinical and genetic investigations were performed. Genetic testing was performed with whole exome sequencing (WES) using the Illumina platform. According to the standard protocol, a variant found by WES was confirmed in all available members of the family by bi-directional capillary Sanger resequencing. The effect of the variant was investigated by using an in silico prediction of pathogenicity. The index case was a 37-year-old woman diagnosed with DCM at the age of 33. A germline heterozygous A>G transversion at nucleotide 10103 in the DMD gene, leading to an aspartic acid–glycine substitution at the amino acid 3368 of the DMD protein (c.10103A>G p.Asp3368Gly), was identified and confirmed by PCR-based Sanger sequencing of the exon 70. In silico prediction suggests that this variant could have a deleterious impact on protein structure and functionality (CADD = 30). The genetic analysis was extended to the first-degree relatives of the proband (mother, father, and sister) and because of the absence of the variant in both parents, the p.Asp3368Gly substitution was considered as occurring de novo. Then, the direct sequencing analysis of her 8-year-old son identified as hemizygous for the same variant. The young patient did not present any signs or symptoms attributable to DCM, but reported asthenia and presented with bilateral calf hypertrophy at clinical examination. Laboratory testing revealed increased levels of creatinine kinase (maximum value of 19,000 IU/L). We report an early presentation of dilated cardiomyopathy in a 33-year-old woman due to a de novo pathogenic variant of the dystrophin (DMD) gene (p.Asp3368Gly). Genetic identification of this variant allowed an early diagnosis of a skeletal muscle disease in her son. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 2873 KiB  
Article
Networking to Optimize Dmd exon 53 Skipping in the Brain of mdx52 Mouse Model
by Mathilde Doisy, Ophélie Vacca, Claire Fergus, Talia Gileadi, Minou Verhaeg, Amel Saoudi, Thomas Tensorer, Luis Garcia, Vincent P. Kelly, Federica Montanaro, Jennifer E. Morgan, Maaike van Putten, Annemieke Aartsma-Rus, Cyrille Vaillend, Francesco Muntoni and Aurélie Goyenvalle
Biomedicines 2023, 11(12), 3243; https://doi.org/10.3390/biomedicines11123243 - 7 Dec 2023
Cited by 5 | Viewed by 2836
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene that disrupt the open reading frame and thus prevent production of functional dystrophin proteins. Recent advances in DMD treatment, notably exon skipping and AAV gene therapy, have achieved some success aimed [...] Read more.
Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene that disrupt the open reading frame and thus prevent production of functional dystrophin proteins. Recent advances in DMD treatment, notably exon skipping and AAV gene therapy, have achieved some success aimed at alleviating the symptoms related to progressive muscle damage. However, they do not address the brain comorbidities associated with DMD, which remains a critical aspect of the disease. The mdx52 mouse model recapitulates one of the most frequent genetic pathogenic variants associated with brain involvement in DMD. Deletion of exon 52 impedes expression of two brain dystrophins, Dp427 and Dp140, expressed from distinct promoters. Interestingly, this mutation is eligible for exon skipping strategies aimed at excluding exon 51 or 53 from dystrophin mRNA. We previously showed that exon 51 skipping can restore partial expression of internally deleted yet functional Dp427 in the brain following intracerebroventricular (ICV) injection of antisense oligonucleotides (ASO). This was associated with a partial improvement of anxiety traits, unconditioned fear response, and Pavlovian fear learning and memory in the mdx52 mouse model. In the present study, we investigated in the same mouse model the skipping of exon 53 in order to restore expression of both Dp427 and Dp140. However, in contrast to exon 51, we found that exon 53 skipping was particularly difficult in mdx52 mice and a combination of multiple ASOs had to be used simultaneously to reach substantial levels of exon 53 skipping, regardless of their chemistry (tcDNA, PMO, or 2′MOE). Following ICV injection of a combination of ASO sequences, we measured up to 25% of exon 53 skipping in the hippocampus of treated mdx52 mice, but this did not elicit significant protein restoration. These findings indicate that skipping mouse dystrophin exon 53 is challenging. As such, it has not yet been possible to answer the pertinent question whether rescuing both Dp427 and Dp140 in the brain is imperative to more optimal treatment of neurological aspects of dystrophinopathy. Full article
(This article belongs to the Special Issue Muscular Dystrophies: Pathophysiology and Therapy)
Show Figures

Figure 1

14 pages, 846 KiB  
Article
Higher Prevalence of Nonsense Pathogenic DMD Variants in a Single-Center Cohort from Brazil: A Genetic Profile Study That May Guide the Choice of Disease-Modifying Treatments
by Vitor Lucas Lopes Braga, Danielle Pessoa Lima, Tamiris Carneiro Mariano, Pedro Lucas Grangeiro de Sá Barreto Lima, Ana Beatriz de Almeida Maia, Wallace William da Silva Meireles, Kécia Tavares de Oliveira Pessoa, Cristiane Mattos de Oliveira, Erlane Marques Ribeiro, Paulo Ribeiro Nóbrega and André Luiz Santos Pessoa
Brain Sci. 2023, 13(11), 1521; https://doi.org/10.3390/brainsci13111521 - 28 Oct 2023
Cited by 3 | Viewed by 2534
Abstract
Dystrophinopathies are muscle diseases caused by pathogenic variants in DMD, the largest gene described in humans, representing a spectrum of diseases ranging from asymptomatic creatine phosphokinase elevation to severe Duchenne muscular dystrophy (DMD). Several therapeutic strategies are currently in use or [...] Read more.
Dystrophinopathies are muscle diseases caused by pathogenic variants in DMD, the largest gene described in humans, representing a spectrum of diseases ranging from asymptomatic creatine phosphokinase elevation to severe Duchenne muscular dystrophy (DMD). Several therapeutic strategies are currently in use or under development, each targeting different pathogenic variants. However, little is known about the genetic profiles of northeast Brazilian patients with dystrophinopathies. We describe the spectrum of pathogenic DMD variants in a single center in northeast Brazil. This is an observational, cross-sectional study carried out through molecular-genetic analysis of male patients diagnosed with dystrophinopathies using Multiplex Ligation-dependent Probe Amplification (MLPA) followed by Next-Generation Sequencing (NGS)-based strategies. A total of 94 male patients were evaluated. Deletions (43.6%) and duplications (10.6%) were the most recurring patterns of pathogenic variants. However, small variants were present in 47.1% of patients, most of them nonsense variants (27.6%). This is the largest South American single-center case series of dystrophinopathies to date. We found a higher frequency of treatment-amenable nonsense single-nucleotide variants than most previous studies. These findings may have implications for diagnostic strategies in less-known populations, as a higher frequency of nonsense variants may mean a higher possibility of treating patients with disease-modifying drugs. Full article
(This article belongs to the Special Issue Neurogenetic Disorders across Human Life: From Infancy to Adulthood)
Show Figures

Figure 1

13 pages, 2443 KiB  
Article
Identification of Genetic Variants Associated with Severe Myocardial Bridging through Whole-Exome Sequencing
by Tsung-Lin Yang, Jafit Ting, Min-Rou Lin, Wei-Chiao Chang and Chun-Ming Shih
J. Pers. Med. 2023, 13(10), 1509; https://doi.org/10.3390/jpm13101509 - 18 Oct 2023
Cited by 1 | Viewed by 1807
Abstract
Myocardial bridging (MB) is a congenital coronary artery anomaly and an important cause of angina. The genetic basis of MB is currently unknown. This study used a whole-exome sequencing technique and analyzed genotypic differences. Eight coronary angiography-confirmed cases of severe MB and eight [...] Read more.
Myocardial bridging (MB) is a congenital coronary artery anomaly and an important cause of angina. The genetic basis of MB is currently unknown. This study used a whole-exome sequencing technique and analyzed genotypic differences. Eight coronary angiography-confirmed cases of severe MB and eight age- and sex-matched control patients were investigated. In total, 139 rare variants that are potentially pathogenic for severe MB were identified in 132 genes. Genes with multiple rare variants or co-predicted by ClinVar and CADD/REVEL for severe MB were collected, from which heart-specific genes were selected under the guidance of tissue expression levels. Functional annotation indicated significant genetic associations with abnormal skeletal muscle mass, cardiomyopathies, and transmembrane ion channels. Candidate genes were reviewed regarding the functions and locations of each individual gene product. Among the gene candidates for severe MB, rare variants in DMD, SGCA, and TTN were determined to be the most crucial. The results suggest that altered anchoring proteins on the cell membrane and intracellular sarcomere unit of cardiomyocytes play a role in the development of the missed trajectory of coronary vessels. Additional studies are required to support the diagnostic application of cardiac sarcoglycan and dystroglycan complexes in patients with severe MB. Full article
Show Figures

Figure 1

16 pages, 1882 KiB  
Article
Exome Sequencing and Optical Genome Mapping in Molecularly Unsolved Cases of Duchenne Muscular Dystrophy: Identification of a Causative X-Chromosomal Inversion Disrupting the DMD Gene
by Leoni S. Erbe, Sabine Hoffjan, Sören Janßen, Moritz Kneifel, Karsten Krause, Wanda M. Gerding, Kristina Döring, Anne-Katrin Güttsches, Andreas Roos, Elena Buena Atienza, Caspar Gross, Thomas Lücke, Hoa Huu Phuc Nguyen, Matthias Vorgerd and Cornelia Köhler
Int. J. Mol. Sci. 2023, 24(19), 14716; https://doi.org/10.3390/ijms241914716 - 28 Sep 2023
Cited by 13 | Viewed by 2872
Abstract
Duchenne muscular dystrophy (DMD) is a severe progressive muscle disease that mainly affects boys due to X-linked recessive inheritance. In most affected individuals, MLPA or sequencing-based techniques detect deletions, duplications, or point mutations in the dystrophin-encoding DMD gene. However, in a small subset [...] Read more.
Duchenne muscular dystrophy (DMD) is a severe progressive muscle disease that mainly affects boys due to X-linked recessive inheritance. In most affected individuals, MLPA or sequencing-based techniques detect deletions, duplications, or point mutations in the dystrophin-encoding DMD gene. However, in a small subset of patients clinically diagnosed with DMD, the molecular cause is not identified with these routine methods. Evaluation of the 60 DMD patients in our center revealed three cases without a known genetic cause. DNA samples of these patients were analyzed using whole-exome sequencing (WES) and, if unconclusive, optical genome mapping (OGM). WES led to a diagnosis in two cases: one patient was found to carry a splice mutation in the DMD gene that had not been identified during previous Sanger sequencing. In the second patient, we detected two variants in the fukutin gene (FKTN) that were presumed to be disease-causing. In the third patient, WES was unremarkable, but OGM identified an inversion disrupting the DMD gene (~1.28 Mb) that was subsequently confirmed with long-read sequencing. These results highlight the importance of reanalyzing unsolved cases using WES and demonstrate that OGM is a useful method for identifying large structural variants in cases with unremarkable exome sequencing. Full article
(This article belongs to the Special Issue Genetic Basis and Epidemiology of Myopathies: 3rd Edition)
Show Figures

Figure 1

30 pages, 1917 KiB  
Review
Tripartite Motif-Containing Protein 32 (TRIM32): What Does It Do for Skeletal Muscle?
by Seung Yeon Jeong, Jun Hee Choi, Jooho Kim, Jin Seok Woo and Eun Hui Lee
Cells 2023, 12(16), 2104; https://doi.org/10.3390/cells12162104 - 19 Aug 2023
Cited by 8 | Viewed by 2995
Abstract
Tripartite motif-containing protein 32 (TRIM32) is a member of the tripartite motif family and is highly conserved from flies to humans. Via its E3 ubiquitin ligase activity, TRIM32 mediates and regulates many physiological and pathophysiological processes, such as growth, differentiation, muscle regeneration, immunity, [...] Read more.
Tripartite motif-containing protein 32 (TRIM32) is a member of the tripartite motif family and is highly conserved from flies to humans. Via its E3 ubiquitin ligase activity, TRIM32 mediates and regulates many physiological and pathophysiological processes, such as growth, differentiation, muscle regeneration, immunity, and carcinogenesis. TRIM32 plays multifunctional roles in the maintenance of skeletal muscle. Genetic variations in the TRIM32 gene are associated with skeletal muscular dystrophies in humans, including limb–girdle muscular dystrophy type 2H (LGMD2H). LGMD2H-causing genetic variations of TRIM32 occur most frequently in the C-terminal NHL (ncl-1, HT2A, and lin-41) repeats of TRIM32. LGMD2H is characterized by skeletal muscle dystrophy, myopathy, and atrophy. Surprisingly, most patients with LGMD2H show minimal or no dysfunction in other tissues or organs, despite the broad expression of TRIM32 in various tissues. This suggests more prominent roles for TRIM32 in skeletal muscle than in other tissues or organs. This review is focused on understanding the physiological roles of TRIM32 in skeletal muscle, the pathophysiological mechanisms mediated by TRIM32 genetic variants in LGMD2H patients, and the correlations between TRIM32 and Duchenne muscular dystrophy (DMD). Full article
(This article belongs to the Special Issue Recent Research on Muscle Homeostasis and Regeneration)
Show Figures

Figure 1

6 pages, 430 KiB  
Case Report
Step-by-Step Double-Trouble OBAIRH and DMD Diagnosis in a One-Year-Old Boy
by Olga Shchagina, Vera Kurilova, Elena Zinina, Vyacheslav Porubov, Svetlana Efishova and Aleksander Polyakov
Int. J. Mol. Sci. 2023, 24(15), 12357; https://doi.org/10.3390/ijms241512357 - 2 Aug 2023
Viewed by 1423
Abstract
We present a case of a combination of two rare hereditary disorders: obesity, adrenal insufficiency and red hair syndrome (OBAIRH) and Duchenne muscular dystrophy (DMD) in a boy. Both diseases were diagnosed during the first year of life. OBAIRH was suggested based on [...] Read more.
We present a case of a combination of two rare hereditary disorders: obesity, adrenal insufficiency and red hair syndrome (OBAIRH) and Duchenne muscular dystrophy (DMD) in a boy. Both diseases were diagnosed during the first year of life. OBAIRH was suggested based on the ethnicity and family history of the patient, while DMD was based on an extreme increase in transaminase and CK (creatine kinase) levels during a biochemical analysis of his blood. The OBAIRH syndrome was caused by a pathogenic homozygous variant in the regulatory region of the POMC gene (NM_001035256.3): c.-71+1G>A, while DMD was caused by the de novo deletion of exons 38–45 of the DMD (NM_004006.3) gene (NC_000023.10:g.(?_32380941)(31950285_?)del). Full article
Show Figures

Figure 1

15 pages, 3546 KiB  
Article
Assessment of Therapeutic Potential of a Dual AAV Approach for Duchenne Muscular Dystrophy
by Sonia Albini, Laura Palmieri, Auriane Dubois, Nathalie Bourg, William Lostal and Isabelle Richard
Int. J. Mol. Sci. 2023, 24(14), 11421; https://doi.org/10.3390/ijms241411421 - 13 Jul 2023
Cited by 12 | Viewed by 4381
Abstract
Duchenne muscular dystrophy (DMD) is a yet incurable rare genetic disease that affects the skeletal and cardiac muscles, leading to progressive muscle wasting and premature death. DMD is caused by the lack of dystrophin, a muscle protein essential for the biochemical support and [...] Read more.
Duchenne muscular dystrophy (DMD) is a yet incurable rare genetic disease that affects the skeletal and cardiac muscles, leading to progressive muscle wasting and premature death. DMD is caused by the lack of dystrophin, a muscle protein essential for the biochemical support and integrity of muscle fibers. Gene replacement strategies for Duchenne muscular dystrophy (DMD) employing the adeno-associated virus (AAV) face the challenge imposed by the limited packaging capacity of AAV, only allowing the accommodation of a short version of dystrophin (µDys) that is still far removed from correcting human disease. The need to develop strategies leading to the expression of a best performing dystrophin variant led to only few studies reporting on the use of dual vectors, but none reported on a method to assess in vivo transgene reconstitution efficiency, the degree of which directly affects the use of safe AAV dosing. We report here on the generation of a dual AAV vector approach for the expression of a larger dystrophin version (quasidystrophin) based on homologous recombination, and the development of a methodology employing a strategic droplet digital PCR design, to determine the recombination efficiency as well as the occurrence of unwanted concatemerization events or aberrant expression from the single vectors. We demonstrated that, upon systemic delivery in the dystrophic D2.B10-Dmdmdx/J (DBA2mdx) mice, our dual AAV approach led to high transgene reconstitution efficiency and negligible Inverted Terminal Repeats (ITR)-dependent concatemerization, with consequent remarkable protein restoration in muscles and improvement of muscle pathology. This evidence supports the suitability of our system for gene therapy application and the potential of this methodology to assess and improve the feasibility for therapeutic translation of multiple vector approaches. Full article
(This article belongs to the Special Issue Advances in Gene and Cell Therapy)
Show Figures

Figure 1

22 pages, 2903 KiB  
Article
Analysis of the Mutational Landscape of Osteosarcomas Identifies Genes Related to Metastasis and Prognosis and Disrupted Biological Pathways of Immune Response and Bone Development
by Sara Ferreira Pires, Juliana Sobral de Barros, Silvia Souza da Costa, Gabriel Bandeira do Carmo, Marília de Oliveira Scliar, André van Helvoort Lengert, Érica Boldrini, Sandra Regini Morini da Silva, Daniel Onofre Vidal, Mariana Maschietto and Ana Cristina Victorino Krepischi
Int. J. Mol. Sci. 2023, 24(13), 10463; https://doi.org/10.3390/ijms241310463 - 21 Jun 2023
Cited by 9 | Viewed by 2910
Abstract
Osteosarcoma (OS) is the most prevalent type of bone tumor, but slow progress has been achieved in disentangling the full set of genomic events involved in its initiation and progression. We assessed by NGS the mutational spectrum of 28 primary OSs from Brazilian [...] Read more.
Osteosarcoma (OS) is the most prevalent type of bone tumor, but slow progress has been achieved in disentangling the full set of genomic events involved in its initiation and progression. We assessed by NGS the mutational spectrum of 28 primary OSs from Brazilian patients, and identified 445 potentially deleterious SNVs/indels and 1176 copy number alterations (CNAs). TP53 was the most recurrently mutated gene, with an overall rate of ~60%, considering SNVs/indels and CNAs. The most frequent CNAs (~60%) were gains at 1q21.2q21.3, 6p21.1, and 8q13.3q24.22, and losses at 10q26 and 13q14.3q21.1. Seven cases presented CNA patterns reminiscent of complex events (chromothripsis and chromoanasynthesis). Putative RB1 and TP53 germline variants were found in five samples associated with metastasis at diagnosis along with complex genomic patterns of CNAs. PTPRQ, KNL1, ZFHX4, and DMD alterations were prevalent in metastatic or deceased patients, being potentially indicative of poor prognosis. TNFRSF11B, involved in skeletal system development and maintenance, emerged as a candidate for osteosarcomagenesis due to its biological function and a high frequency of copy number gains. A protein–protein network enrichment highlighted biological pathways involved in immunity and bone development. Our findings reinforced the high genomic OS instability and heterogeneity, and led to the identification of novel disrupted genes deserving further evaluation as biomarkers due to their association with poor outcomes. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Oncology in Brazil 2.0)
Show Figures

Figure 1

9 pages, 3053 KiB  
Article
Alu-Mediated Insertions in the DMD Gene: A Difficult Puzzle to Interpret Clinically
by Annalaura Torella, Alberto Budillon, Mariateresa Zanobio, Francesca Del Vecchio Blanco, Esther Picillo, Luisa Politano, Vincenzo Nigro and Giulio Piluso
Int. J. Mol. Sci. 2023, 24(11), 9241; https://doi.org/10.3390/ijms24119241 - 25 May 2023
Cited by 3 | Viewed by 1694
Abstract
Disrupting variants in the DMD gene are associated with Duchenne or Becker muscular dystrophy (DMD/BMD) or with hyperCKemia, all of which present very different degrees of clinical severity. The clinical phenotypes of these disorders could not be distinguished in infancy or early childhood. [...] Read more.
Disrupting variants in the DMD gene are associated with Duchenne or Becker muscular dystrophy (DMD/BMD) or with hyperCKemia, all of which present very different degrees of clinical severity. The clinical phenotypes of these disorders could not be distinguished in infancy or early childhood. Accurate phenotype prediction based on DNA variants may therefore be required in addition to invasive tests, such as muscle biopsy. Transposon insertion is one of the rarest mutation types. Depending on their position and characteristics, transposon insertions may affect the quality and/or quantity of dystrophin mRNA, leading to unpredictable alterations in gene products. Here, we report the case of a three-year-old boy showing initial skeletal muscle involvement in whom we characterized a transposon insertion (Alu sequence) in exon 15 of the DMD gene. In similar cases, the generation of a null allele is predicted, resulting in a DMD phenotype. However, mRNA analysis of muscle biopsy tissue revealed skipping of exon 15, which restored the reading frame, thus predicting a milder phenotype. This case is similar to very few others already described in the literature. This case further enriches our knowledge of the mechanisms perturbing splicing and causing exon skipping in DMD, helping to properly guide clinical diagnosis. Full article
(This article belongs to the Special Issue New Perspectives in Molecular Diagnosis of Neuromuscular Disorders)
Show Figures

Figure 1

Back to TopTop