Expanding the Molecular Genetic Landscape of Dystrophinopathies and Associated Phenotypes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Editorial Policies and Ethical Considerations
2.2. Study Participants
2.2.1. Phenotype Predictions
2.2.2. Molecular Genetic Findings
3. Results
3.1. Overall Molecular Genetic Findings
3.1.1. Deep Intronic Variants
3.1.2. Missense Variants
3.2. Clinical Presentations
3.3. Muscle Biopsy Findings
4. Discussion
4.1. Phenotype–Genotype Correlations
4.2. CNS Abnormalities and Correlation with Location of Variants
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crisafulli, S.; Sultana, J.; Fontana, A.; Salvo, F.; Messina, S.; Gianluca, T. Global epidemiology of Duchenne muscular dystrophy: An updated systematic review and meta-analysis. Orphanet J. Rare Dis. 2020, 15, 141. [Google Scholar] [CrossRef] [PubMed]
- Eagle, M.; Baudouin, S.V.; Chandler, C.; Giddings, D.R.; Bullock, R.; Bushby, K. Survival in Duchenne muscular dystrophy: Improvements in life expectancy since 1967 and the impact of home nocturnal ventilation. Neuromuscul. Disord. NMD 2002, 12, 926–929. [Google Scholar] [CrossRef] [PubMed]
- Becker, P.E.; Kiener, F. Eine neue x-chromosomale Muskeldystrophie. Arch. Psychiatr. Nervenkrankh. Ver. Mit Z. Die Gesamte Neurol. Psychiatr. 1955, 193, 427–448. [Google Scholar] [CrossRef] [PubMed]
- Bushby, K.M.D.; Thambyayah, M.; Gardner-Medwin, D. Prevalence and incidence of Becker muscular dystrophy. Lancet 1991, 337, 1022–1024. [Google Scholar] [CrossRef]
- Flanigan, K.M.; Dunn, D.M.; von Niederhausern, A.; Soltanzadeh, P.; Gappmaier, E.; Howard, M.T.; Sampson, J.B.; Mendell, J.R.; Wall, C.; King, W.M.; et al. Mutational spectrum of DMD mutations in dystrophinopathy patients: Application of modern diagnostic techniques to a large cohort. Hum. Mutat. 2009, 30, 1657–1666. [Google Scholar] [CrossRef]
- Zhong, J.; Xie, Y.; Bhandari, V.; Chen, G.; Dang, Y.; Liao, H.; Zhang, J.; Lan, D. Clinical and genetic characteristics of female dystrophinopathy carriers. Mol. Med. Rep. 2019, 19, 3035–3044. [Google Scholar] [CrossRef]
- Gowers, W.R. Pseudo-Hypertrophic Muscular Paralysis. 1879. Available online: https://play.google.com/books/reader?id=VxROl1WOaO4C&pg=GBS.PA24&hl=de (accessed on 19 November 2024).
- Suthar, R.; Sankhyan, N. Duchenne Muscular Dystrophy: A Practice Update. Indian J. Pediatr. 2018, 85, 276–281. [Google Scholar] [CrossRef]
- Hoffman, E.P.; Brown, R.H.; Kunkel, L.M. Dystrophin: The protein product of the duchenne muscular dystrophy locus. Cell 1987, 51, 919–928. [Google Scholar] [CrossRef]
- Bushby, K.M.; Gardner-Medwin, D. The clinical, genetic and dystrophin characteristics of Becker muscular dystrophy. I. Nat. Hist. J. Neurol. 1993, 240, 98–104. [Google Scholar] [CrossRef]
- Saito, T.; Tatara, K.; Kawai, M. Changes in clinical condition and causes of death of inpatients with Duchenne muscular dystrophy in Japan from 1999 to 2012. Rinsho Shinkeigaku = Clin. Neurol. 2014, 54, 783–790. [Google Scholar] [CrossRef]
- Sultan, A.; Fayaz, M. Prevalence of cardiomyopathy in Duchenne and Becker’s muscular dystrophy. J. Ayub Med. Coll. Abbottabad JAMC 2008, 20, 7–13. Available online: https://pubmed.ncbi.nlm.nih.gov/19385447/ (accessed on 16 February 2023). [PubMed]
- Thada, P.K.; Bhandari, J.; Umapathi, K.K. (Eds.) Becker Muscular Dystrophy. In StatPearls [Internet]; StatPearls Publishing: St. Petersburg, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK556092/ (accessed on 25 September 2024).
- Kingston, H.M.; Harper, P.S.; Pearson, P.L.; Davies, K.E.; Williamson, R.; Page, D. Localisation of gene for Becker muscular dystrophy. Lancet, 1983; 2, 1200. [Google Scholar] [CrossRef]
- Roberts, R.G.; Coffey, A.J.; Bobrow, M.; Bentley, D.R. Determination of the exon structure of the distal portion of the dystrophin gene by vectorette PCR. Genomics 1992, 13, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Monaco, A.P.; Neve, R.L.; Colletti-Feener, C.; Bertelson, C.J.; Kurnit, D.M.; Kunkel, L.M. Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature 1986, 323, 646–650. [Google Scholar] [CrossRef]
- Bladen, C.L.; Salgado, D.; Monges, S.; Foncuberta, M.E.; Kekou, K.; Kosma, K.; Dawkins, H.; Lamont, L.; Roy, A.J.; Chamova, T.; et al. The TREAT-NMD DMD Global Database: Analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum. Mutat. 2015, 36, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Erbe, L.S.; Hoffjan, S.; Janßen, S.; Kneifel, M.; Krause, K.; Gerding, W.M.; Döring, K.; Güttsches, A.K.; Roos, A.; Buena Atienza, E.; et al. Exome Sequencing and Optical Genome Mapping in Molecularly Unsolved Cases of Duchenne Muscular Dystrophy: Identification of a Causative X-Chromosomal Inversion Disrupting the DMD Gene. Int. J. Mol. Sci. 2023, 24, 14716. [Google Scholar] [CrossRef] [PubMed]
- Koeks, Z.; Bladen, C.L.; Salgado, D.; van Zwet, E.; Pogoryelova, O.; McMacken, G.; Monges, S.; Foncuberta, M.E.; Kekou, K.; Kosma, K.; et al. Clinical Outcomes in Duchenne Muscular Dystrophy: A Study of 5345 Patients from the TREAT-NMD DMD Global Database. J. Neuromuscul. Dis. 2017, 4, 293–306. [Google Scholar] [CrossRef]
- Triana-Fonseca, P.; Parada-Márquez, J.F.; Silva-Aldana, C.T.; Zambrano-Arenas, D.; Arias-Gomez, L.L.; Morales-Fonseca, N.; Medina-Méndez, E.; Restrepo, C.M.; Silgado-Guzmán, D.F.; Fonseca-Mendoza, D.J. Genetic Profile of the Dystrophin Gene Reveals New Mutations in Colombian Patients Affected with Muscular Dystrophinopathy. Appl. Clin. Genet. 2021, 14, 399–408. [Google Scholar] [CrossRef]
- Koenig, M.; Monaco, A.P.; Kunkel, L.M. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 1988, 53, 219–228. [Google Scholar] [CrossRef]
- Koenig, M.; Kunkel, L.M. Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility. J. Biol. Chem. 1990, 265, 4560–4566. [Google Scholar] [CrossRef]
- Campbell, K.P.; Kahl, S.D. Association of dystrophin and an integral membrane glycoprotein. Nature 1989, 338, 259–262. [Google Scholar] [CrossRef]
- Connors, N.C.; Adams, M.E.; Froehner, S.C.; Kofuji, P. The potassium channel Kir4.1 associates with the dystrophin-glycoprotein complex via alpha-syntrophin in glia. J. Biol. Chem. 2004, 279, 28387–28392. [Google Scholar] [CrossRef] [PubMed]
- Muntoni, F.; Torelli, S.; Ferlini, A. Dystrophin and mutations: One gene, several proteins, multiple phenotypes. Lancet Neurol. 2003, 2, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Koenig, M.; Beggs, A.H.; Moyer, M.; Scherpf, S.; Heindrich, K.; Bettecken, T.; Meng, G.; Müller, C.R.; Lindlöf, M.; Kaariainen, H.; et al. The molecular basis for Duchenne versus Becker muscular dystrophy: Correlation of severity with type of deletion. Am. J. Hum. Genet. 1989, 45, 498–506. [Google Scholar] [PubMed]
- Monaco, A.P.; Bertelson, C.J.; Liechti-Gallati, S.; Moser, H.; Kunkel, L.M. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 1988, 2, 90–95. [Google Scholar] [CrossRef]
- Beggs, A.H.; Hoffman, E.P.; Snyder, J.R.; Arahata, K.; Specht, L.; Shapiro, F.; Angelini, C.; Sugita, H.; Kunkel, L.M. Exploring the molecular basis for variability among patients with Becker muscular dystrophy: Dystrophin gene and protein studies. Am. J. Hum. Genet. 1991, 49, 54–67. [Google Scholar]
- Hoffman, E.P.; Kunkel, L.M.; Angelini, C.; Clarke, A.; Johnson, M.; Harris, J.B. Improved diagnosis of Becker muscular dystrophy by dystrophin testing. Neurology 1989, 39, 1011–1017. [Google Scholar] [CrossRef]
- Lalic, T.; Vossen, R.H.A.M.; Coffa, J.; Schouten, J.P.; Guc-Scekic, M.; Radivojevic, D.; Djurisic, M.; Breuning, M.H.; White, S.J.; den Dunnen, J.T. Deletion and duplication screening in the DMD gene using MLPA. Eur. J. Hum. Genet. EJHG 2005, 13, 1231–1234. [Google Scholar] [CrossRef]
- Grimm, T.; Kress, W.; Meng, G.; Müller, C.R. Risk assessment and genetic counseling in families with Duchenne muscular dystrophy. Acta Myol. 2012, 31, 179–183. [Google Scholar]
- Nallamilli, B.R.R.; Chaubey, A.; Valencia, C.A.; Stansberry, L.; Behlmann, A.M.; Ma, Z.; Mathur, A.; Shenoy, S.; Ganapathy, V.; Jagannathan, L.; et al. A single NGS-based assay covering the entire genomic sequence of the DMD gene facilitates diagnostic and newborn screening confirmatory testing. Hum. Mutat. 2021, 42, 626–638. [Google Scholar] [CrossRef]
- Joyce, N.C.; Oskarsson, B.; Jin, L.-W. Muscle biopsy evaluation in neuromuscular disorders. Phys. Med. Rehabil. Clin. N. Am. 2012, 23, 609–631. [Google Scholar] [CrossRef]
- Jaganathan, K.; Kyriazopoulou Panagiotopoulou, S.; McRae, J.F.; Darbandi, S.F.; Knowles, D.; Li, Y.I.; Kosmicki, J.A.; Arbelaez, J.; Cui, W.; Schwartz, G.B.; et al. Predicting Splicing from Primary Sequence with Deep Learning. Cell 2019, 176, 535–548.e24. [Google Scholar] [CrossRef] [PubMed]
- Desmet, F.-O.; Hamroun, D.; Lalande, M.; Collod-Béroud, G.; Claustres, M.; Béroud, C. Human Splicing Finder: An online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009, 37, e67. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Gurvich, O.L.; Maiti, B.; Weiss, R.B.; Aggarwal, G.; Howard, M.T.; Flanigan, K.M. DMD exon 1 truncating point mutations: Amelioration of phenotype by alternative translation initiation in exon 6. Hum. Mutat. 2009, 30, 633–640. [Google Scholar] [CrossRef]
- Kerr, T.P.; Sewry, C.A.; Robb, S.A.; Roberts, R.G. Long mutant dystrophins and variable phenotypes: Evasion of nonsense-mediated decay? Hum. Genet. 2001, 109, 402–407. [Google Scholar] [CrossRef]
- Torella, A.; Zanobio, M.; Zeuli, R.; Del Vecchio Blanco, F.; Savarese, M.; Giugliano, T.; Garofalo, A.; Piluso, G.; Politano, L.; Nigro, V. The position of nonsense mutations can predict the phenotype severity: A survey on the DMD gene. PLoS ONE 2020, 15, e0237803. [Google Scholar] [CrossRef]
- Flanigan, K.M.; Dunn, D.M.; von Niederhausern, A.; Soltanzadeh, P.; Howard, M.T.; Sampson, J.B.; Swoboda, K.J.; Bromberg, M.B.; Mendell, J.R.; Taylor, L.E.; et al. Nonsense mutation-associated Becker muscular dystrophy: Interplay between exon definition and splicing regulatory elements within the DMD gene. Hum. Mutat. 2011, 32, 299–308. [Google Scholar] [CrossRef]
- Juan-Mateu, J.; González-Quereda, L.; Rodríguez, M.J.; Verdura, E.; Lázaro, K.; Jou, C.; Nascimento, A.; Jiménez-Mallebrera, C.; Colomer, J.; Monges, S.; et al. Interplay between DMD point mutations and splicing signals in Dystrophinopathy phenotypes. PLoS ONE 2013, 8, e59916. [Google Scholar] [CrossRef]
- Okubo, M.; Noguchi, S.; Hayashi, S.; Nakamura, H.; Komaki, H.; Matsuo, M.; Nishino, I. Exon skipping induced by nonsense/frameshift mutations in DMD gene results in Becker muscular dystrophy. Hum. Genet. 2020, 139, 247–255. [Google Scholar] [CrossRef]
- Darmahkasih, A.J.; Rybalsky, I.; Tian, C.; Shellenbarger, K.C.; Horn, P.S.; Lambert, J.T.; Wong, B.L. Neurodevelopmental, behavioral, and emotional symptoms common in Duchenne muscular dystrophy. Muscle Nerve 2020, 61, 466–474. [Google Scholar] [CrossRef]
- Thangarajh, M.; Hendriksen, J.; McDermott, M.P.; Martens, W.; Hart, K.A.; Griggs, R.C. Relationships between DMD mutations and neurodevelopment in dystrophinopathy. Neurology 2019, 93, e1597–e1604. [Google Scholar] [CrossRef] [PubMed]
- Traverso, M.; Assereto, S.; Baratto, S.; Iacomino, M.; Pedemonte, M.; Diana, M.C.; Ferretti, M.; Broda, P.; Minetti, C.; Gazzerro, E.; et al. Clinical and molecular consequences of exon 78 deletion in DMD gene. J. Hum. Genet. 2018, 63, 761–764. [Google Scholar] [CrossRef] [PubMed]
- Talsness, D.M.; Belanto, J.J.; Ervasti, J.M. Disease-proportional proteasomal degradation of missense dystrophins. Proc. Natl. Acad. Sci. USA 2015, 112, 12414–12419. [Google Scholar] [CrossRef] [PubMed]
- Doorenweerd, N.; Mahfouz, A.; van Putten, M.; Kaliyaperumal, R.; T’Hoen, P.A.C.; Hendriksen, J.G.M.; Aartsma-Rus, A.M.; Verschuuren, J.J.G.M.; Niks, E.H.; Reinders, M.J.T.; et al. Timing and localization of human dystrophin isoform expression provide insights into the cognitive phenotype of Duchenne muscular dystrophy. Sci. Rep. 2017, 7, 12575. [Google Scholar] [CrossRef]
- Naidoo, M.; Anthony, K. Dystrophin Dp71 and the Neuropathophysiology of Duchenne Muscular Dystrophy. Mol. Neurobiol. 2020, 57, 1748–1767. [Google Scholar] [CrossRef]
- Preethish-Kumar, V.; Shah, A.; Kumar, M.; Ingalhalikar, M.; Polavarapu, K.; Afsar, M.; Rajeswaran, J.; Vengalil, S.; Nashi, S.; Thomas, P.T.; et al. In Vivo Evaluation of White Matter Abnormalities in Children with Duchenne Muscular Dystrophy Using DTI AJNR. Am. J. Neuroradiol. 2020, 41, 1271–1278. [Google Scholar] [CrossRef]
- Banihani, R.; Smile, S.; Yoon, G.; Dupuis, A.; Mosleh, M.; Snider, A.; McAdam, L. Cognitive and Neurobehavioral Profile in Boys with Duchenne Muscular Dystrophy. J. Child Neurol. 2015, 30, 1472–1482. [Google Scholar] [CrossRef]
- Roberts, R.G.; Barby, T.F.; Manners, E.; Bobrow, M.; Bentley, D.R. Direct detection of dystrophin gene rearrangements by analysis of dystrophin mRNA in peripheral blood lymphocytes. Am. J. Hum. Genet. 1991, 49, 298–310. [Google Scholar]
- Ito, T.; Takeshima, Y.; Yagi, M.; Kamei, S.; Wada, H.; Nakamura, H.; Matsuo, M. Analysis of dystrophin mRNA from skeletal muscle but not from lymphocytes led to identification of a novel nonsense mutation in a carrier of Duchenne musculardystrophy. J. Neurol. 2003, 250, 581–587. [Google Scholar] [CrossRef]
- Roos, A.; Thompson, R.; Horvath, R.; Lochmüller, H.; Sickmann, A. Intersection of Proteomics and Genomics to “Solve the Unsolved” in Rare Disorders such as Neurodegenerative and Neuromuscular Diseases. Proteom. Clin. Appl. 2018, 12. [Google Scholar] [CrossRef]
Patient Number | Present Age (in Years) | Present Ambulatory Status | Age of Onset (in Years) | Type of First Symptom | Exon/Intron | Pathogenic Variant in the DMD Gene | Protein Change | Interpretation | Prediction Based on Genetic Findings | Age at Muscle Biopsy (in Years) | CK at Muscle Biopsy (Ref.Range < 165 U/L) | CNS Involvement | Cardiac Involvement | Ventilatory Support |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 18 | 0.5 h Walking possible | 2 | Motor delay | Exon 5 | c.336G>T, c.337A>T | p.Trp112Cys, p.Asn113Tyr | Missense, Missense | BMD | 4 | 11,474 | Learning disability (IQ 70) | Mild left ventricular dilatation | Not needed |
2 | 17 | 100 m Walking possible | 0.5 | Frequent falls | Intron 10 | c.1149+273T>G | p.Gly384Leufs*3 | Nonsense | DMD | 3 | 38,493 | None | None | Not needed |
3 | 12 | 1 h Walking possible | Unk | Unk | Exon 17 | c.2041_2042delGT | p.Val681Asnfs*38 | Nonsense | DMD | ND | NA | None | Left ventricular ejection fraction 50% | Not needed |
4 | 16 | 100–150 m Walking possible | 4 | Motor delay | Intron 19 | c.2381-2A>T | p.? | Splice site | DMD | 5 | 10,464 | Speech delay, motor tics | None | Not needed |
5 | 10 | 0.5–1 h Walking possible | 4 | Motor delay | Exon/Intron 29 | c.4071+1delG | p.? | Splice site | UNK | 4 | 7187 | Speech delay | None | Not needed |
6 | 9 | 3–4 km Walking possible | 4 | Motor delay | Exon 39 | c.5516_5517del | p.Thr1839Argfs*2 | Nonsense | DMD | ND | NA | Difficulties concentrating | Mild left ventricular dilatation | Not needed |
7 | 7 | No limitations | 5 | Motor delay | Intron 47 | c.6912+2T>C | p.? | Splice site | BMD | ND | NA | None | None | Not needed |
8 | 14 | LOA 7 | 3 | Motor delay | Exon 48 | c.7093delG | p.Val2365Phefs*6 | Nonsense | DMD | 4 | 26,433 | None | Left ventricular dilatation | Not needed |
9 | 12 | Ambulatory at home | 3 | Motor delay | Exon 51 | c.7484C>G | p.Ser2495Stop | Nonsense | DMD | 1 | 18,332 | Mild intellectual disability (IQ 60) | None | Not needed |
10 | 1 | No limitations | 1 | Motor delay | Exon 59 | c.8890_8891dup | p.Asp2965Alafs*25 | Nonsense | UNK | 1 | 18,308 | None | None | Not needed |
11 | 7 | 10–15 min Walking possible | 1 | Motor delay | Exon 65 | c.9527A>G | p.Asp3176Gly | Missense | DMD | 2 | 11,731 | Autistic behavior, global developmental delay | None | Not needed |
12 | 18 | No limitations | 10 | Motor delay | Exon 74 | c.10406_10409dup | p.Leu3471Phefs*21 | Nonsense | BMD | ND | NA | None | None | Not needed |
13 | 10 | 3–4 km Walking possible | 1 | Motor delay | Intron 77 | c.11015-545A>G | p.? | Splice site | BMD | 3 | 2800 | Autistic behavior, global developmental delay | None | Not needed |
Patient Number | Muscle | Fiber Type Predominance | Lymphocyte Infiltrates | Fiber Regeneration | Fascicular Structure Preserved | Perimysial Connective Tissue | Adipocyte Proliferation | Variability in Fiber Size | Group Information | Centralized Cell Nuclei | Phagocytosis | Cell Necrosis | Intracellular Glycogen or Lipid Proliferation | Dys 1 | Dys 2 | Dys 3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | MQFR | Both | ++ | + | + | + | + | + | + | <3% | + | + | − | +/− | +/− | +/− |
2 | MQFR | Both | Unk | + | + | + | + | ++ | Unk | <3% | Unk | + | − | − − | − − | − − |
3 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
4 | MVLR | Both | + | − | + | + | − | + | Unk | <3% | + | − | − | − − | − − | Neg. |
5 | MVLR | Type 1 fibers | Unk | Unk | + | + | − | + | + | <3% | + | + | − | − − | − − | Neg. |
6 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
7 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
8 | MVLR | Type 2 fibers | + | − | + | + | + | ++ | Unk | <3% | Unk | + | − | Neg. | Neg. | Neg. |
9 | MQFR | Type 1 fibers | + | + | + | − | − | ++ | + | <3% | Unk | ++ | − | Neg. | Neg. | Neg. |
10 | MVLR | Both | − | + | + | − | + | + | + | <3% | + | + | − | Neg. | Neg. | Neg. |
11 | MVLR | Both | + | ++ | + | − | − | + | + | <3% | Unk | ++ | − | − − | − − | Neg. |
12 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
13 | MVLR | Type 2 fibers | − | − | + | + | + | Physio−logical | − | <3% | − | − | − | + | Neg. | − − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neuhoff, K.; Kilicarslan, O.A.; Preuße, C.; Zaum, A.-K.; Kölbel, H.; Lochmüller, H.; Schara-Schmidt, U.; Polavarapu, K.; Roos, A.; Gangfuß, A. Expanding the Molecular Genetic Landscape of Dystrophinopathies and Associated Phenotypes. Biomedicines 2024, 12, 2738. https://doi.org/10.3390/biomedicines12122738
Neuhoff K, Kilicarslan OA, Preuße C, Zaum A-K, Kölbel H, Lochmüller H, Schara-Schmidt U, Polavarapu K, Roos A, Gangfuß A. Expanding the Molecular Genetic Landscape of Dystrophinopathies and Associated Phenotypes. Biomedicines. 2024; 12(12):2738. https://doi.org/10.3390/biomedicines12122738
Chicago/Turabian StyleNeuhoff, Katja, Ozge Aksel Kilicarslan, Corinna Preuße, Ann-Kathrin Zaum, Heike Kölbel, Hanns Lochmüller, Ulrike Schara-Schmidt, Kiran Polavarapu, Andreas Roos, and Andrea Gangfuß. 2024. "Expanding the Molecular Genetic Landscape of Dystrophinopathies and Associated Phenotypes" Biomedicines 12, no. 12: 2738. https://doi.org/10.3390/biomedicines12122738
APA StyleNeuhoff, K., Kilicarslan, O. A., Preuße, C., Zaum, A.-K., Kölbel, H., Lochmüller, H., Schara-Schmidt, U., Polavarapu, K., Roos, A., & Gangfuß, A. (2024). Expanding the Molecular Genetic Landscape of Dystrophinopathies and Associated Phenotypes. Biomedicines, 12(12), 2738. https://doi.org/10.3390/biomedicines12122738