Multilevel Middle Point Clamped (MMPC) Converter for DC Wind Power Applications
Abstract
:1. Introduction
2. Proposed MMPC Converter
2.1. Topology and Operational Modes
- Mode I: Figure 4a—Switches S1, S2, S3, and S4 turn ON, while S5, S6, S7, and S8 turn OFF. The energy will be stored in the inductor (Lb). Therefore, the input voltage () will appear across the inductor as
- Mode II: Figure 4b—S1, S2, and S7 turn ON while the rest of the switches turn OFF. The energy will be delivered to the load, i.e., MVDC grid, through the capacitor (C1), and diode (Db). In this mode, the inductor voltage and current are expressed as
- Mode III: Figure 4c—S1, S2, S7, and S8 will turn ON while the rest of the switches turn OFF. The energy will be delivered to the load through capacitors (C1, C2), and the diode (Db). In this mode, the inductor voltage and current are expressed as
- Mode IV: Figure 4d—S2, S7, and S8 turn ON while the rest of the switches turn OFF. The energy will be delivered to the load through the capacitor (C2), and diodes (D1, Db). In this mode, the voltage across the inductor is the same as Mode II, i.e., (3)–(4), except the switching scheme is different. Hence,
2.2. Mathematical Models
3. Simulation Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wind Power Capacity Worldwide Reaches 597 GW, 50,1 GW Added in 2018. Available online: https://wwindea.org/wind-power-capacity-worldwide-reaches-600-gw-539-gw-added-in-2018 (accessed on 4 April 2024).
- Global Wind Report 2023—Global Wind Energy Council. Available online: https://gwec.net/globalwindreport2023 (accessed on 4 April 2024).
- Musial, W.; Spitsen, P.; Duffy, P.; Beiter, P.; Shields, M.; Mulas Hernando, D.; Hammond, R.; Marquis, M.; King, J.; Sathish, S. Offshore Wind Market Report: 2023 Edition (No. NREL/TP-5000-87232); National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2023. [Google Scholar] [CrossRef]
- Wiser, R.; Bolinger, M.; Hoen, B.; Millstein, D.; Rand, J.; Barbose, G.; Darghouth, N.; Gorman, W.; Jeong, S.; O’Shaughnessy, E.; et al. Land-Based Wind Market Report: 2023 Edition; Lawrence Berkeley National Laboratory (LBNL): Berkeley, CA, USA, 2023. [Google Scholar] [CrossRef]
- Rahman, S.; Khan, I.; Alkhammash, H.I.; Nadeem, M.F. A Comparison Review on Transmission Mode for Onshore Integration of Offshore Wind Farms: HVDC or HVAC. Electronics 2021, 10, 1489. [Google Scholar] [CrossRef]
- Ryndzionek, R.; Sienkiewicz, Ł. Evolution of the HVDC Link Connecting Offshore Wind Farms to Onshore Power Systems. Energies 2020, 13, 1914. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, B.; Liu, T. Tech-Economic Assessment of Power Transmission Options for Large-Scale Offshore Wind Farms in China. Processes 2022, 10, 979. [Google Scholar] [CrossRef]
- Jahan, M.S.; Hamim, S.J.; Bhuiyan, M.T.I.; Abeadin, M.J.; Chowdhury, M.N. Comparative cost analysis of VSC-HVDC and HVAC as transmission system for a 50 MW offshore wind farm in Hatiya Island. In Proceedings of the International Conference on Sustainable Technologies for Industry, Dhaka, Bangladesh, 19–20 December 2020. [Google Scholar] [CrossRef]
- Larsson, J. Transmission Systems for Grid Connection of Offshore Wind Farms: HVAC vs HVDC Breaking Point. Master’s Dissertation, Uppsala University, Uppsala, Sweden, 2021. Available online: https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444333 (accessed on 20 April 2024).
- Ayobe, A.S.; Gupta, S. Comparative investigation on HVDC and HVAC for bulk power delivery. Mater. Today Proc. 2022, 48, 958–964. [Google Scholar] [CrossRef]
- Saadeh, O.; Abu Sba, B.; Dalala, Z. Power System Analysis of Moving from HVAC to HVDC in the Presence of Renewable Energy Resources. J. Electr. Comput. Eng. 2023, 1, 8527308. [Google Scholar] [CrossRef]
- Kalair, A.; Abas, N.; Khan, N. Comparative study of HVAC and HVDC transmission systems. Renew. Sustain. Energy Rev. 2016, 59, 1653–1675. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Ma, K. Wind energy systems. Proc. IEEE 2017, 105, 2116–2131. [Google Scholar] [CrossRef]
- Hannan, M.A.; Al-Shetwi, A.Q.; Mollik, M.S.; Ker, P.J.; Mannan, M.; Mansor, M.; Al-Masri, H.M.K.; Mahlia, T.M.I. Wind Energy Conversions, Controls, and Applications: A Review for Sustainable Technologies and Directions. Sustainability 2023, 15, 3986. [Google Scholar] [CrossRef]
- Patel, H.; Bhawal, S.; Harikrishnan, P.; Hatua, K.; Bhattacharya, S. Three Stage Power Electronic Transformer based MVAC Collection System and its Control System Design for Offshore Wind Power Generation Mills. IEEE Trans. Energy Convers. 2024, 1–13. [Google Scholar] [CrossRef]
- Coffey, S.; Timmers, V.; Li, R.; Wu, G.; Egea-Àlvarez, A. Review of MVDC Applications, Technologies, and Future Prospects. Energies 2021, 14, 8294. [Google Scholar] [CrossRef]
- Roy, J.; Liu, H.; Ndiaye, I.; Datta, R. DC Collection and Transmission for Offshore Wind Farms. In Proceedings of the IEEE Energy Conversion Congress and Exposition, Nashville, TN, USA, 29 October 2023–2 November 2023; pp. 337–343. [Google Scholar] [CrossRef]
- Musasa, K.; Nwulu, N.I.; Gitau, M.N.; Bansal, R.C. Review on DC collection grids for offshore wind farms with high-voltage DC transmission system. IET Power Electron. 2017, 10, 2104–2115. [Google Scholar] [CrossRef]
- Yang, R.; Shi, G.; Cai, X.; Zhang, X. Voltage source control of offshore all-DC wind farm. IET Renew. Power Gener. 2019, 13, 2986–2993. [Google Scholar] [CrossRef]
- An, F.; Zhao, B.; Cui, B.; Bai, R. Multi-functional DC collector for future ALL-DC offshore wind power system: Concept, scheme, and implement. IEEE Trans. Ind. Electron. 2021, 69, 8134–8145. [Google Scholar] [CrossRef]
- Timmers, V.; Àlvarez, A.E.; Gkountaras, A. A systematic review of DC wind farm collector cost-effectiveness. In Proceedings of the International Conference on AC and DC Power Transmission, Online, 7–8 December 2021; pp. 114–119. [Google Scholar] [CrossRef]
- Yaramasu, V.; Wu, B.; Sen, P.C.; Kouro, S.; Narimani, M. High-power wind energy conversion systems: State-of-the-art and emerging technologies. Proc. IEEE 2015, 103, 740–788. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Liu, Q.; Tian, X.; Yuan, Z. Comparative Analysis of Aggregation Topologies for All-DC Offshore Wind Farms. In Proceedings of the International Conference on Power and Energy Systems Engineering, Nagoya, Japan, 8–10 September 2023; pp. 147–153. [Google Scholar] [CrossRef]
- Sun, B.; Chen, Z.; Gao, C.; Haddad, A.; Liang, J.; Liu, X. A power decoupling control for wind power converter based on series-connected MMC and open-winding PMSG. IEEE Trans. Ind. Electron. 2022, 69, 8091–8101. [Google Scholar] [CrossRef]
- Li, H.; Xie, X.; McDonald, A.; Chai, Z.; Yang, T.; Wu, Y.; Yang, W. Cost and reliability optimization of modular multilevel converter with hybrid submodule for offshore DC wind turbine. Int. J. Electr. Power Energy Syst. 2020, 120, 105994. [Google Scholar] [CrossRef]
- Diana, M.; Lundmark, S.T.; Thiringer, T. High Voltage Direct Driven Wind Turbine Generator. In Proceedings of the IEEE Energy Conversion Congress and Exposition, Detroit, MI, USA, 11–15 October 2020; pp. 1787–1793. [Google Scholar] [CrossRef]
- Hu, P.; Yin, R.; He, Z.; Wang, C. A modular multiple DC transformer based DC transmission system for PMSG based offshore wind farm integration. IEEE Access 2019, 8, 15736–15746. [Google Scholar] [CrossRef]
- Beik, O.; Al-Adsani, A.S. A wind turbine generator design and optimization for DC collector grids. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 10, 484–493. [Google Scholar] [CrossRef]
- Guo, R.; Schofield, N.; Zhao, N. A combination of hybrid generator and battery system for frequency support. In Proceedings of the International Conference on Power Electronics, Machines and Drives, Newcastle, UK, 21–23 June 2022; pp. 703–707. [Google Scholar] [CrossRef]
- Xu, Z.; Jin, Y.; Zhang, Z.; Huang, Y. Eight Typical Schemes of Offshore Wind Power Transmission and Their Key Technical Problems. Energies 2023, 16, 658. [Google Scholar] [CrossRef]
- Deng, J.; Cheng, F.; Yao, L.; Xu, J.; Mao, B.; Li, X.; Chen, R. A review of system topologies, key operation and control technologies for offshore wind power transmission based on HVDC. IET Gener. Transm. Distrib. 2023, 17, 3345–3363. [Google Scholar] [CrossRef]
- Kervyn, M.; Mukherjee, D.; Nambiar, A.; Smailes, M.; Banerjee, A.; McKeever, P. Future offshore wind farm electrical networks: A comparative framework. In Proceedings of the International Conference on AC and DC Power Transmission, Glasgow, UK, 1–3 March 2023; pp. 297–301. [Google Scholar] [CrossRef]
- Elliott, D.; Bell, K.R.; Finney, S.J.; Adapa, R.; Brozio, C.; Yu, J.; Hussain, K. A comparison of AC and HVDC options for the connection of offshore wind generation in Great Britain. IEEE Trans. Power Deliv. 2015, 31, 798–809. [Google Scholar] [CrossRef]
- Shi, G.; Cai, X.; Sun, C.; Chang, Y.; Yang, R. All-DC offshore wind farm with parallel connection: An overview. In Proceedings of the IET International Conference on AC and DC Power Transmission, Beijing, China, 28–29 May 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Li, Z.; Song, Q.; An, F.; Zhao, B.; Yu, Z.; Zeng, R. Review on DC transmission systems for integrating large-scale offshore wind farms. Energy Convers. Econ. 2021, 2, 1–14. [Google Scholar] [CrossRef]
- Kong, Q.; Song, G.; Li, Z.; Wang, X. Design of a Series–Parallel All-DC Power Generation System Based on a New DC Wind Turbine. Electronics 2023, 12, 2967. [Google Scholar] [CrossRef]
- Han, H.; Li, Z.; Wang, H.; Feng, Q.; Guo, R.; Yang, Z.; Liu, X. Design of a Parallel All-DC Wind Power System With Turbine-Side Boost Based on a New DC Conversion. IEEE Access 2024, 12, 3054–3069. [Google Scholar] [CrossRef]
- Yang, B.; Liu, B.; Zhou, H.; Wang, J.; Yao, W.; Wu, S.; Ren, Y. A survey of technologies of large offshore wind farm integra-tion: Summary, advances, and perspectives. Prot. Control Mod. Power Syst. 2022, 7, 1–3. [Google Scholar] [CrossRef]
- Timmers, V.; Egea-Àlvarez, A.; Gkountaras, A.; Li, R.; Xu, L. All-DC offshore wind farms: When are they more cost-effective than AC designs? IET Renew. Power Gener. 2023, 17, 2458–2470. [Google Scholar] [CrossRef]
- Lakshmanan, P.; Sun, R.; Liang, J. Electrical collection systems for offshore wind farms: A review. CSEE J. Power Energy Syst. 2021, 7, 1078–1092. [Google Scholar] [CrossRef]
- Follo, A.; Saborío-Romano, O.; Tedeschi, E.; Cutululis, N.A. Design and control of all-DC offshore wind power plant with MMC-based DC/DC high-power converters. J. Phys. Conf. Ser. 2023, 2626, 012016. [Google Scholar] [CrossRef]
- Li, Z.; Hu, X.; Wang, L.; Yang, C.; Zhou, H.; Zhang, R. Improved dual-mode control strategy of NPC based MMC under wide-load range for HVDC system of offshore wind farms. In Proceedings of the Annual Meeting of CSEE Study Committee of HVDC and Power Electronics, Nanjing, China, 22–25 October 2023; pp. 207–215. [Google Scholar] [CrossRef]
- Wang, M.; Hu, Y.; Zhao, W.; Wang, Y.; Chen, G. Application of modular multilevel converter in medium voltage high power permanent magnet synchronous generator wind energy conversion systems. IET Renew. Power Gener. 2016, 10, 824–833. [Google Scholar] [CrossRef]
- Li, B.; Liu, J.; Wang, Z.; Zhang, S.; Xu, D. Modular high-power DC–DC converter for MVDC renewable energy collection systems. IEEE Trans. Ind. Electron. 2020, 68, 5875–5886. [Google Scholar] [CrossRef]
- Hu, P.; Yin, R.; Wei, B.; Luo, Y.; Blaabjerg, F. Modular isolated LLC DC/DC conversion system for offshore wind farm col-lection and integration. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 6713–6725. [Google Scholar] [CrossRef]
- Li, L.; Li, B.; Wang, Z.; Yang, M.; Xu, D. Monopolar symmetrical DC–DC converter for all DC offshore wind farms. IEEE Trans. Power Electron. 2021, 37, 4275–4287. [Google Scholar] [CrossRef]
- Ye, Y.; Zhang, X.; Gao, C.; Wang, X.; Wang, Y.; Yang, X. Analysis and Comparison of Isolated High-Gain High-Voltage DC/DC Converters for Offshore Wind Farm Collection and Integration. IEEE Trans. Power Electron. 2023, 39, 8757–8769. [Google Scholar] [CrossRef]
- Catalán, P.; Wang, Y.; Arza, J.; Chen, Z. A comprehensive overview of power converter applied in high-power wind tur-bine: Key challenges and potential solutions. IEEE Trans. Power Electron. 2023, 38, 6169–6195. [Google Scholar] [CrossRef]
- Guan, M. A series-connected offshore wind farm based on modular dual-active-bridge (DAB) isolated DC–DC converter. IEEE Trans. Energy Convers. 2019, 34, 1422–1431. [Google Scholar] [CrossRef]
- Islam, M.R.; Guo, Y.; Zhu, J. A review of offshore wind turbine nacelle: Technical challenges, and research and developmental trends. Renew. Sustain. Energy Rev. 2014, 33, 161–176. [Google Scholar] [CrossRef]
- Beik, O.; Al-Adsani, A.S. DC Wind Generation Systems: Design, Analysis, and Multiphase Turbine Technology, 2020; Springer Nature: Cham, Switzerland, 2020. [Google Scholar]
- Alepuz, S.; Busquets-Monge, S.; Nicolás-Apruzzese, J.; Filbà-Martínez, À.; Bordonau, J.; Yuan, X.; Kouro, S. A Survey on Capacitor Voltage Control in Neutral-Point-Clamped Multilevel Converters. Electronics 2022, 11, 527. [Google Scholar] [CrossRef]
- Homaeinezhad, M.; Beik, O.; Karni, A. Multiphase Multilevel NPC Converter for MVDC Electric Ship Applications. In Proceedings of the IEEE Electric Ship Technologies Symposium (ESTS), Alexandria, VA, USA, 1–4 August 2023; pp. 121–128. [Google Scholar] [CrossRef]
- Akgemci, A. Hybrid Excited Synchronous Generator Design and Comparison of Direct Drive Wind Turbines. Master’s Dissertation, Middle East Technical University, Ankara, Turkey, 2019. Available online: https://avesis.metu.edu.tr/yonetilen-tez/f85f9af8-494d-4b56-aaab-6151632e65d0/hybrid-excited-synchronous-generator-design-and-comparison-of-direct-drive-wind-turbines (accessed on 20 April 2024).
- Beik, O.; Al-Adsani, A.S. Wind turbine multiphase operational trajectory in an all-DC wind generation system. IET Renew. Power Gener. 2020, 14, 2916–2923. [Google Scholar] [CrossRef]
- Beik, O.; Schofield, N. An offshore wind generation scheme with a high-voltage hybrid generator, HVDC interconnections, and 457 transmission. IEEE Trans. Power Deliv. 2015, 31, 867–877. [Google Scholar] [CrossRef]
- Cao, R.; Yuan, X.; Jin, Y.; Zhang, Z. MW-class stator wound field flux-switching motor for semidirect drive wind power generation system. IEEE Trans. Ind. Electron. 2018, 66, 795–805. [Google Scholar] [CrossRef]
- Dube, L.; Garner, G.C.; Garner, K.S.; Kamper, M.J. Simple and Robust MPPT Current Control of a Wound Rotor Synchronous Wind Generator. Energies 2023, 16, 3290. [Google Scholar] [CrossRef]
- Karni, A.; Beik, O.; Homaeinezhad, M. A Modified Middle Point Clamped (MMPC) DC-DC Converter for All-DC Wind Generation Systems. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition, Long Beach, CA, USA, 25–29 February 2024; pp. 325–332. [Google Scholar] [CrossRef]
- Parashar, S.; Kumar, A.; Bhattacharya, S. High power medium voltage converters enabled by high voltage SiC power devices. In Proceedings of the International Power Electronics Conference (IPEC-Niigata 2018-ECCE Asia), Niigata, Japan, 20–24 May 2018; pp. 3993–4000. [Google Scholar] [CrossRef]
- Anurag, A.; Acharya, S.; Bhattacharya, S.; Weatherford, T.R.; Parker, A.A. A Gen-3 10-kV SiC MOSFET-based medium-voltage three-phase dual active bridge converter enabling a mobile utility support equipment solid state transformer. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 10, 1519–1536. [Google Scholar] [CrossRef]
- Anurag, A.; Acharya, S.; Kolli, N.; Bhattacharya, S. Gate drivers for medium-voltage SiC devices. IEEE J. Emerg. Sel. Top. Ind. Electron. 2020, 2, 1–12. [Google Scholar] [CrossRef]
- Mocevic, S.; Yu, J.; Fan, B.; Sun, K.; Xu, Y.; Stewart, J.; Rong, Y.; Song, H.; Mitrovic, V.; Yan, N.; et al. Design of a 10 kV SiC MOSFET-based high-density, high-efficiency, modular medium-voltage power converter. IEnergy 2022, 1, 100–113. [Google Scholar] [CrossRef]
- Li, J.; Liang, Y.; Mei, Y.; Tang, X.; Lu, G.Q. Packaging design of 15 kV SiC power devices with high-voltage encapsulation. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 47–53. [Google Scholar] [CrossRef]
- Dekka, A.; Narimani, M. Capacitor voltage balancing and current control of a five-level nested neutral-point-clamped converter. IEEE Trans. Power Electron. 2018, 33, 10169–10177. [Google Scholar] [CrossRef]
- Awal, M.A.; Bipu, M.R.H.; Montes, O.A.; Feng, H.; Husain, I.; Yu, W.; Lukic, S. Capacitor voltage balancing for neutral point clamped dual active bridge converters. IEEE Trans. Power Electron. 2020, 35, 11267–11276. [Google Scholar] [CrossRef]
Company Name | Module | Voltage (kV) | Current (A) | Package |
---|---|---|---|---|
MITSUBUSHI ELECTRIC | CMH1200DC-34S | 1.7 | 1200 | Dual IGBT |
MITSUBUSHI ELECTRIC | CMH600DA-66X | 3.3 | 600 | Half-Bridge IGBT |
MITSUBUSHI ELECTRIC | CM200HG-130H | 6.5 | 200 | Single IGBT |
POWEREX | QID6508001 | 6.5 | 85 | Half-Bridge IGBT |
POWEREX | CM600HA-28H | 1.4 | 600 | Single IGBT |
WOLFSPEED | CAB500M17HM3 | 1.7 | 500 | Half-Bridge SiC |
Nominal power | 3.6 MW |
Rated speed | 600 RPM |
Phase RMS voltage | 10.45 kV |
Number of phases | 9-phase |
Number of poles | 10 |
Efficiency | 95% |
Per-phase resistance | 0.306 Ω |
Per-phase inductance | 75 mH |
Inductor Voltage States | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | Duty Cycle |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | ||
1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | ||
1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | ||
Switching Strategy | |||||||||
Duty Cycle | Switching Group | Complementary | Mode | ||||||
S1, S2, S3, S4 | S5, S6, S7, S8 | I | |||||||
S1, S2, S6, S7 | S3, S4, S5, S8 | II | |||||||
S1, S2, S7, S8 | S3, S4, S5, S6 | III | |||||||
S2, S7, S8 | S1, S3, S4, S5, S6 | IV |
Parameters | Variables | Values | ||
---|---|---|---|---|
Nominal Power | 3.6 MW | |||
Rectified Input Voltage | Vrdc | Cases | Voltage | Simulation Time (s) |
1 | 18.5 kV | 0–2, 8–10 | ||
2 | 12.5 kV | 2–4, 6–8 | ||
3 | 6.5 kV | 4–6 | ||
Output MVDC Voltage | VMVDC | 37 kV | ||
Output MVDC Current | IMVDC | 97.3 A | ||
Input Capacitors | C1, C2 | 10 μF, 10 μF | ||
Inductor | Lb | 3.3 mH | ||
Output Capacitor | Cb | 2200 μF |
Input Voltage Vrdc (kV) | Duty Cycle d1 | Output Voltage VMVDC (kV) | Output Current IMVDC (A) |
---|---|---|---|
18.5 | 0.25 | 37 | 97.3 |
12.5 | 0.33 | ||
9.5 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karni, A.; Beik, O.; Gholamian, M.; Homaeinezhad, M.; Manzoor, M.O. Multilevel Middle Point Clamped (MMPC) Converter for DC Wind Power Applications. Sustainability 2024, 16, 7563. https://doi.org/10.3390/su16177563
Karni A, Beik O, Gholamian M, Homaeinezhad M, Manzoor MO. Multilevel Middle Point Clamped (MMPC) Converter for DC Wind Power Applications. Sustainability. 2024; 16(17):7563. https://doi.org/10.3390/su16177563
Chicago/Turabian StyleKarni, Awais, Omid Beik, Mahzad Gholamian, Mahdi Homaeinezhad, and Muhammad Owais Manzoor. 2024. "Multilevel Middle Point Clamped (MMPC) Converter for DC Wind Power Applications" Sustainability 16, no. 17: 7563. https://doi.org/10.3390/su16177563
APA StyleKarni, A., Beik, O., Gholamian, M., Homaeinezhad, M., & Manzoor, M. O. (2024). Multilevel Middle Point Clamped (MMPC) Converter for DC Wind Power Applications. Sustainability, 16(17), 7563. https://doi.org/10.3390/su16177563