Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Cyatheaceae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5079 KiB  
Article
Paleovegetation Community and Paleoclimate Succession in Middle Jurassic Coal Seams in Eastern Coalfields in Dzungaria Basin, China
by Xingli Wang, Shuo Feng, Wenfeng Wang, Qin Zhang, Jijun Tian, Changcheng Han and Meng Wang
Plants 2025, 14(5), 695; https://doi.org/10.3390/plants14050695 - 24 Feb 2025
Viewed by 554
Abstract
The Dzungaria Basin is located north of Xinjiang and is one of the largest inland basins in China. The eastern coalfields in the Dzungaria Basin contain a large amount of coal resources, and the thickness of the coal seams is significant. Therefore, the [...] Read more.
The Dzungaria Basin is located north of Xinjiang and is one of the largest inland basins in China. The eastern coalfields in the Dzungaria Basin contain a large amount of coal resources, and the thickness of the coal seams is significant. Therefore, the aim of this study was to classify the paleovegetation types and develop paleoclimate succession models of the extra-thick coal seams. We conducted the sampling, separation, and extraction of spores and pollen and carried out microscopic observations in the Wucaiwan mining area of the eastern coalfields in the Dzungaria Basin. The vertical vegetation succession in the thick seam (Aalenian Stage) in the study area was divided into three zones using the CONISS clustering method. The results show that the types of spore and pollen fossils belong to twenty families and forty-five genera, including twenty-three fern, twenty gymnosperm, and two bryophyte genera. The types of paleovegetation in the study area were mainly Lycopodiaceae and Selaginellaceae herb plants, Cyatheaceae, Osmundaceae, and Polypodiaceae shrub plants, and Cycadaceae and Pinaceae coniferous broad-leaved trees. The paleoclimate changed from warm–humid to humid–semi-humid and, finally, to the semi-humid–semi-dry type, all within a tropical–subtropical climate zone. The study area was divided into four paleovegetation communities: the nearshore wetland paleovegetation community, lowland cycad and Filicinae plant community, slope broad-leaved and coniferous plant mixed community, and highland coniferous tree community. This indicates that there was a climate warming event during the Middle Jurassic, which led to a large-scale lake transgression and regression in the basin. This resulted in the transfer of the coal-accumulating center from the west and southwest to the central part of the eastern coalfields in the Dzungaria Basin. Full article
(This article belongs to the Special Issue Evolution of Land Plants)
Show Figures

Figure 1

15 pages, 2848 KiB  
Article
Inferring the Potential Geographic Distribution and Reasons for the Endangered Status of the Tree Fern, Sphaeropteris lepifera, in Lingnan, China Using a Small Sample Size
by Xueying Wei, AJ Harris, Yuwen Cui, Yangwu Dai, Hanjia Hu, Xiaoling Yu, Rihong Jiang and Faguo Wang
Horticulturae 2021, 7(11), 496; https://doi.org/10.3390/horticulturae7110496 - 15 Nov 2021
Cited by 5 | Viewed by 5138
Abstract
In this study, we investigated suitable habitats for the endangered tree fern, Sphaeropteris lepifera (J. Sm. ex Hook.) R.M. Tryon, based on fieldwork, ecological niche modeling, and regression approaches. We combined these data with the characterization of spore germination and gametophytic development in [...] Read more.
In this study, we investigated suitable habitats for the endangered tree fern, Sphaeropteris lepifera (J. Sm. ex Hook.) R.M. Tryon, based on fieldwork, ecological niche modeling, and regression approaches. We combined these data with the characterization of spore germination and gametophytic development in the laboratory to assess the reasons why S. lepifera is endangered and to propose a conservation strategy that focuses on suitable sites for reintroduction and accounts for the ecology and biphasic life cycle of the species. Our methods represent an integration of process- and correlation-based approaches to understanding the distributional patterns of this species, and this combined approach, while uncommonly applied, is a more robust strategy than either approach used in isolation. Our ecological niche models indicated that cold temperature extremes, temperature stability over long- and short-terms, and the seasonality of precipitation were among the most important abiotic environmental factors affecting the distribution of S. lepifera among the variables that we measured. Moreover, distribution of this fern species is also strongly influenced by the timing of development of male and female gametes. Additionally, we observed that slope aspect, specifically south-facing slopes, facilitates more incoming sunlight for mature trees, and simultaneously, provides greater, much-needed shade for fiddleheads on account of the canopy being denser. We believe that our study can provide important guidance on the restoration of S. lepifera in the wild. Specifically, potential restoration areas can be screened for the specific environmental factors that we infer to have a critical impact on the survival of the species. Full article
Show Figures

Figure 1

21 pages, 4637 KiB  
Article
Paleovegetational Reconstruction and Implications on Formation of Oil Shale and Coal in the Lower Cretaceous Laoheishan Basin (NE China): Evidence from Palynology and Terpenoid Biomarkers
by Yu Song, Kai Zhu, Yinbo Xu, Qingtao Meng, Zhaojun Liu, Pingchang Sun and Xiang Ye
Energies 2021, 14(15), 4704; https://doi.org/10.3390/en14154704 - 3 Aug 2021
Cited by 5 | Viewed by 2852
Abstract
In some cases, the oil shale deposited in shallow lakes may be genetically associated with the coal-bearing successions. Although paleovegetation is an important controlling factor for the formation of oil shale- and coal-bearing successions, few studies have focused on their joint characterization. In [...] Read more.
In some cases, the oil shale deposited in shallow lakes may be genetically associated with the coal-bearing successions. Although paleovegetation is an important controlling factor for the formation of oil shale- and coal-bearing successions, few studies have focused on their joint characterization. In this study, a total of twenty-one oil shale and coal samples were collected from the upper member of the Lower Cretaceous Muling Formation (K1ml2) in the Laoheishan Basin, and investigated for their bulk geochemical, maceral, palynological, and terpenoid biomarker characteristics, in order to reconstruct the paleovegetation and reveal its influence on the formation of oil shale and coal. The K1ml2 is subdivided into lower, middle, and upper units. The studied oil shale samples from the lower and upper units display a high ash yield (Ad), low total organic carbon (TOC) and sulfur (S) contents, and limited hydrocarbon generation potential. The studied coal samples from the middle unit are characterized by low Ad, and high TOC and low S values, and show significant hydrocarbon generation potential. The paleovegetation during the formation of the lower unit was dominated by mire vegetation, such as shrubs (e.g., Lygodiaceae, Schizaeaceae), tree ferns (e.g., Dicksoniaceae/Cyatheaceae), and coniferous trees (e.g., Podocarpaceae). In the middle unit interval, the paleovegetation was represented by highland vegetation (Pinaceae and Araucariaceae) and peat-forming coniferous plants (e.g., Podocarpaceae, Cupressaceae/Taxodiaceae). Various vegetation, such as herbs (e.g., Osmundaceae), shrubs (e.g., Schizaeaceae), and coniferous trees (e.g., Podocarpaceae) was prosperous during the upper unit interval. Coniferous trees could provide abundant hydrogen-rich materials (e.g., resins) to the mire/lake, which may elevate the hydrogen content in peat/lake sediments, and finally result in higher hydrocarbon generation potential in the coal than in the oil shale. Therefore, the influence of paleovegetation on the formation of oil shale and coal should be fully considered when studying oil shale- and coal-bearing successions. The results also provide guidance for further exploration studies on oil shale and coal in northeast China. Full article
(This article belongs to the Special Issue Research and Development Progress in Oil Shale)
Show Figures

Figure 1

10 pages, 2134 KiB  
Article
Tree Fern Cyathea lepifera May Survive by Its Phytotoxic Property
by Noriyuki Ida, Arihiro Iwasaki, Toshiaki Teruya, Kiyotake Suenaga and Hisashi Kato-Noguchi
Plants 2020, 9(1), 46; https://doi.org/10.3390/plants9010046 - 28 Dec 2019
Cited by 8 | Viewed by 4309
Abstract
Cyatheaceae (tree ferns) appeared during the Jurassic period and some of the species still remain. Those species may have some morphological and/or physiological characteristics for survival. A tree fern was observed to suppress the growth of other ligneous plants in a tropical forest. [...] Read more.
Cyatheaceae (tree ferns) appeared during the Jurassic period and some of the species still remain. Those species may have some morphological and/or physiological characteristics for survival. A tree fern was observed to suppress the growth of other ligneous plants in a tropical forest. It was assumed that the fern may release toxic substances into the forest floor, but those toxic substances have not yet been identified. Therefore, we investigated the phytotoxicity and phytotoxic substances of Cyathea lepifera (J. Sm. ex Hook.) Copel. An aqueous methanol extract of C. lepifera fronds inhibited the growth of roots and shoots of dicotyledonous garden cress (Lepidum sativum L.), lettuce (Lactuca sativa L.), and alfalfa (Medicago sativa L.), and monocotyledonous ryegrass (Lolium multiflorum Lam.), timothy (Phleum pratense L.), and barnyardgrass (Echinochloa crus-galli (L.) P. Beauv.). The results suggest that C. lepifera fronds may have phytotoxicity and contain some phytotoxic substances. The extract was purified through several chromatographic steps during which inhibitory activity was monitored, and p-coumaric acid and (-)-3-hydroxy-β-ionone were isolated. Those compounds showed phytotoxic activity and may contribute to the phytotoxic effects caused by the C. lepifera fronds. The fronds fall and accumulate on the forest floor through defoliation, and the compounds may be released into the forest soils through the decomposition process of the fronds. The phytotoxic activities of the compounds may be partly responsible for the fern’s survival. Full article
(This article belongs to the Special Issue Plant Allelopathy and Allelochemicals)
Show Figures

Figure 1

Back to TopTop