Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = Curtobacterium flaccumfaciens pv. flaccumfaciens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1721 KiB  
Article
Bioassay-Guided Isolation of cis-Clerodane Diterpenoids and Monoglycerides from the Leaves of Solidago gigantea and Their Antimicrobial Activities
by Márton Baglyas, Péter G. Ott, Zoltán Bozsó, Ildikó Schwarczinger, József Bakonyi, Dénes Dlauchy, András Darcsi, Szilárd Varga and Ágnes M. Móricz
Plants 2025, 14(14), 2152; https://doi.org/10.3390/plants14142152 - 11 Jul 2025
Viewed by 449
Abstract
A previously undescribed cis-clerodane diterpenoid, diangelate solidagoic acid J (1), along with two known cis-clerodane diterpenoids, solidagoic acid C (2) and solidagoic acid D (3), as well as two known unsaturated monoacylglycerols, 1-linoleoyl glycerol ( [...] Read more.
A previously undescribed cis-clerodane diterpenoid, diangelate solidagoic acid J (1), along with two known cis-clerodane diterpenoids, solidagoic acid C (2) and solidagoic acid D (3), as well as two known unsaturated monoacylglycerols, 1-linoleoyl glycerol (4) and 1-α-linolenoyl glycerol (5), were isolated and characterized from the n-hexane leaf extract of Solidago gigantea (giant goldenrod). Compounds 25 were identified first in this species, and compounds 4 and 5 are reported here for the first time in the Solidago genus. The bioassay-guided isolation procedure included thin-layer chromatography (TLC) coupled with a Bacillus subtilis antibacterial assay, preparative flash column chromatography, and TLC–mass spectrometry (MS). Their structures were elucidated via extensive spectroscopic and spectrometric techniques such as one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and high-resolution tandem mass spectrometry (HRMS/MS). The antimicrobial activities of the isolated compounds were evaluated by a microdilution assay. All compounds exhibited weak to moderate antibacterial activity against the Gram-positive plant pathogen Clavibacter michiganensis, with MIC values ranging from 17 to 133 µg/mL, with compound 5 being the most potent. Only compound 1 was active against Curtobacterium flaccumfaciens pv. flaccumfaciens, while compound 3 demonstrated a weak antibacterial effect against B. subtilis and Rhodococcus fascians. Additionally, the growth of B. subtilis and R. fascians was moderately inhibited by compounds 1 and 5, respectively. None of the tested compounds showed antibacterial activity against Gram-negative Pseudomonas syringae pv. tomato and Xanthomonas arboricola pv. pruni. No bactericidal activity was observed against the tested microorganisms. Compounds 2 and 3 displayed weak antifungal activity against the crop pathogens Bipolaris sorokiniana and Fusarium graminearum. Our results demonstrate the efficacy of bioassay-guided strategies in facilitating the discovery of novel bioactive compounds. Full article
(This article belongs to the Special Issue Advanced Research in Plant Analytical Chemistry)
Show Figures

Figure 1

12 pages, 3128 KiB  
Article
Fly High: Volatile Organic Compounds for the Early Detection of the Seed-Borne Pathogen Curtobacterium flaccumfaciens pv. flaccumfaciens
by Dario Gaudioso, Luca Calamai and Stefania Tegli
Agronomy 2025, 15(2), 497; https://doi.org/10.3390/agronomy15020497 - 19 Feb 2025
Cited by 1 | Viewed by 999
Abstract
The global demand for legumes has grown significantly since the 1960s, due to their high protein content and environmental benefits. However, this growth could also facilitate the spread of seed-borne pathogens like Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff). Cff is a Gram-positive bacterium [...] Read more.
The global demand for legumes has grown significantly since the 1960s, due to their high protein content and environmental benefits. However, this growth could also facilitate the spread of seed-borne pathogens like Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff). Cff is a Gram-positive bacterium causing bacterial wilt in common beans and poses substantial challenges in regard to its detection and management, due to its long latent period and xylemic nature. Traditional diagnostic methods have proven insufficient, highlighting the need for innovative approaches. This study explores the potential of volatile organic compounds (VOCs) produced by Cff to be used as diagnostic markers to prevent the spread of seed-borne pathogens. First, we analyzed the VOCs emitted by different Cff strains in vitro, identifying a unique blend of five major VOCs. Subsequently, we verified the presence of these VOCs in vivo in artificially infected Cannellino beans. Phenylmethanol and 2-methoxy-4-vinylphenol emerged as key diagnostic markers, differentiating Cff from other bacterial pathogens of beans, such as Pseudomonas savastanoi pv. phaseolicola and Xanthomonas phaseoli pv. phaseoli. Our findings suggest that VOC fingerprinting offers a non-invasive, effective method for the early detection of Cff, even in asymptomatic seeds. This innovative approach holds significant promise for improving seed-borne disease management and supporting the development of practical diagnostic tools for field applications. Further research should aim to enhance the sensitivity and specificity of VOC-based diagnostics, facilitating the rapid and accurate screening of plant materials at ports of entry. This would contribute to the sustainability and health of leguminous crop production. Full article
Show Figures

Figure 1

15 pages, 6620 KiB  
Article
Exploiting Bacterial Pigmentation for Non-Destructive Detection of Seed-Borne Pathogens by Using Photoacoustic Techniques
by Lucia Cavigli, Dario Gaudioso, Cecilia Faraloni, Giovanni Agati and Stefania Tegli
Sensors 2024, 24(23), 7616; https://doi.org/10.3390/s24237616 - 28 Nov 2024
Cited by 1 | Viewed by 781
Abstract
Seed-borne pathogens pose a significant threat to global food security. This study focuses on Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff), a quarantine plant pathogen causing bacterial wilt of common beans. Despite its global spread and economic impact, effective control measures are limited. [...] Read more.
Seed-borne pathogens pose a significant threat to global food security. This study focuses on Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff), a quarantine plant pathogen causing bacterial wilt of common beans. Despite its global spread and economic impact, effective control measures are limited. Existing diagnostic methods, such as PCR, are time-consuming, destructive, and challenging for large-scale screening. This study explores the potential of photoacoustic techniques as a non-destructive, rapid, and high-throughput alternative. These techniques leverage the photoacoustic effect to measure optical absorption, offering high sensitivity and accuracy. Cff colonies exhibit distinct pigmentation, suggesting their suitability for photoacoustic detection. We characterised the optical properties of Cff and developed an in vitro model to simulate conditions within Cff-infected bean seeds. The results demonstrate the efficiency of the photoacoustic technique in detecting Cff in a mimicked-bean seed and indicate the potential discrimination of different coloured Cff strains. This study paves the way for a novel, non-invasive approach to the early detection of Cff and other seed-borne pathogens, contributing to improve crop health and food security. Full article
(This article belongs to the Special Issue Photonics for Advanced Spectroscopy and Sensing)
Show Figures

Figure 1

18 pages, 4530 KiB  
Article
Phytopathogenic Curtobacterium flaccumfaciens Strains Circulating on Leguminous Plants, Alternative Hosts and Weeds in Russia
by Anna D. Tokmakova, Rashit I. Tarakanov, Anna A. Lukianova, Peter V. Evseev, Lyubov V. Dorofeeva, Alexander N. Ignatov, Fevzi S.-U. Dzhalilov, Sergei A. Subbotin and Konstantin A. Miroshnikov
Plants 2024, 13(5), 667; https://doi.org/10.3390/plants13050667 - 28 Feb 2024
Cited by 3 | Viewed by 2423
Abstract
Many bacterial plant pathogens have a broad host range important for their life cycle. Alternate hosts from plant families other than the main (primary) host support the survival and dissemination of the pathogen population even in absence of main host plants. Metabolic peculiarities [...] Read more.
Many bacterial plant pathogens have a broad host range important for their life cycle. Alternate hosts from plant families other than the main (primary) host support the survival and dissemination of the pathogen population even in absence of main host plants. Metabolic peculiarities of main and alternative host plants can affect genetic diversity within and between the pathogen populations isolated from those plants. Strains of Gram-positive bacterium Curtobacterium flaccumfaciens were identified as being causal agents of bacterial spot and wilt diseases on leguminous plants, and other crop and weed plants, collected in different regions of Russia. Their biochemical properties and susceptibility to copper compounds have been found to be relatively uniform. According to conventional PCR assays, all of the isolates studied were categorised as pathovar Curtobacterim flaccumfaciens pv. flaccumfaciens, a pathogen of legumes. However, the strains demonstrated a substantial diversity in terms of virulence on several tested host plants and different phylogenetic relationships were revealed by BOX-PCR and alanine synthase gene (alaS) sequencing. Full article
Show Figures

Figure 1

13 pages, 2114 KiB  
Article
Antimicrobial Diterpenes from Rough Goldenrod (Solidago rugosa Mill.)
by Márton Baglyas, Péter G. Ott, Ildikó Schwarczinger, Judit Kolozsváriné Nagy, András Darcsi, József Bakonyi and Ágnes M. Móricz
Molecules 2023, 28(9), 3790; https://doi.org/10.3390/molecules28093790 - 28 Apr 2023
Cited by 7 | Viewed by 2360
Abstract
Solidago rugosa is one of the goldenrod species native to North America but has sporadically naturalized as an alien plant in Europe. The investigation of the root and leaf ethanol extracts of the plant using a bioassay-guided process with an anti-Bacillus assay [...] Read more.
Solidago rugosa is one of the goldenrod species native to North America but has sporadically naturalized as an alien plant in Europe. The investigation of the root and leaf ethanol extracts of the plant using a bioassay-guided process with an anti-Bacillus assay resulted in the isolation of two antimicrobial components. Structure elucidation was performed based on high-resolution tandem mass spectrometric and one- and two-dimensional NMR spectroscopic analyses that revealed (–)-hardwickiic acid (Compound 1) and (–)-abietic acid (Compound 2). The isolates were evaluated for their antimicrobial properties against several plant pathogenic bacterial and fungal strains. Both compounds demonstrated an antibacterial effect, especially against Gram-positive bacterial strains (Bacillus spizizenii, Clavibacter michiganensis subsp. michiganensis, and Curtobacterium flaccumfaciens pv. flaccumfaciens) with half maximal inhibitory concentration (IC50) between 1 and 5.1 µg/mL (5–20 times higher than that of the positive control gentamicin). In the used concentrations, minimal bactericidal concentration (MBC) was reached only against the non-pathogen B. spizizenii. Besides their activity against Fusarium avenaceum, the highest antifungal activity was observed for Compound 1 against Bipolaris sorokiniana with an IC50 of 3.8 µg/mL. Full article
(This article belongs to the Special Issue Chromatographic Screening of Natural Products)
Show Figures

Figure 1

20 pages, 2227 KiB  
Article
Protective Properties of Copper-Loaded Chitosan Nanoparticles against Soybean Pathogens Pseudomonas savastanoi pv. glycinea and Curtobacterium flaccumfaciens pv. flaccumfaciens
by Rashit Tarakanov, Balzhima Shagdarova, Tatiana Lyalina, Yuliya Zhuikova, Alla Il’ina, Fevzi Dzhalilov and Valery Varlamov
Polymers 2023, 15(5), 1100; https://doi.org/10.3390/polym15051100 - 22 Feb 2023
Cited by 12 | Viewed by 3631
Abstract
Soybeans are a valuable food product, containing 40% protein and a large percentage of unsaturated fatty acids ranging from 17 to 23%. Pseudomonas savastanoi pv. glycinea (Psg) and Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff) are harmful bacterial pathogens of soybean. The bacterial resistance of [...] Read more.
Soybeans are a valuable food product, containing 40% protein and a large percentage of unsaturated fatty acids ranging from 17 to 23%. Pseudomonas savastanoi pv. glycinea (Psg) and Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff) are harmful bacterial pathogens of soybean. The bacterial resistance of soybean pathogens to existing pesticides and environmental concerns requires new approaches to control bacterial diseases. Chitosan is a biodegradable, biocompatible and low-toxicity biopolymer with antimicrobial activity that is promising for use in agriculture. In this work, a chitosan hydrolysate and its nanoparticles with copper were obtained and characterized. The antimicrobial activity of the samples against Psg and Cff was studied using the agar diffusion method, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The samples of chitosan and copper-loaded chitosan nanoparticles (Cu2+ChiNPs) significantly inhibited bacterial growth and were not phytotoxic at the concentrations of the MIC and MBC values. The protective properties of chitosan hydrolysate and copper-loaded chitosan nanoparticles against soybean bacterial diseases were tested on plants in an artificial infection. It was demonstrated that the Cu2+ChiNPs were the most effective against Psg and Cff. Treatment of pre-infected leaves and seeds demonstrated that the biological efficiencies of (Cu2+ChiNPs) were 71% and 51% for Psg and Cff, respectively. Copper-loaded chitosan nanoparticles are promising as an alternative treatment for bacterial blight and bacterial tan spot and wilt in soybean. Full article
(This article belongs to the Special Issue Natural-Based Biodegradable Polymeric Materials)
Show Figures

Graphical abstract

24 pages, 1672 KiB  
Article
Using of Essential Oils and Plant Extracts against Pseudomonas savastanoi pv. glycinea and Curtobacterium flaccumfaciens pv. flaccumfaciens on Soybean
by Rashit I. Tarakanov and Fevzi S.-U. Dzhalilov
Plants 2022, 11(21), 2989; https://doi.org/10.3390/plants11212989 - 5 Nov 2022
Cited by 11 | Viewed by 3733
Abstract
The bacteria Pseudomonas savastanoi pv. glycinea (Coerper, 1919; Gardan et al., 1992) (Psg) and Curtobacterium flaccumfaciens pv. flaccumfaciens (Hedges 1922) (Cff) are harmful pathogens of soybean (Glycine max). Presently, there are several strategies to control these bacteria, and the usage of [...] Read more.
The bacteria Pseudomonas savastanoi pv. glycinea (Coerper, 1919; Gardan et al., 1992) (Psg) and Curtobacterium flaccumfaciens pv. flaccumfaciens (Hedges 1922) (Cff) are harmful pathogens of soybean (Glycine max). Presently, there are several strategies to control these bacteria, and the usage of environmentally friendly approaches is encouraged. In this work, purified essential oils (EOs) from 19 plant species and total aqueous and ethanolic plant extracts (PEs) from 19 plant species were tested in vitro to observe their antimicrobial activity against Psg and Cff (by agar diffusion and broth microdilution method). Tested EOs and PEs produced significant bacterial growth inhibition with technologically acceptable MIC and MBC values. Non-phytotoxic concentrations for Chinese cinnamon and Oregano essential oils and leather bergenia ethanolic extract, which previously showed the lowest MBC values, were determined. Testing of these substances with artificial infection of soybean plants has shown that the essential oils of Chinese cinnamon and oregano have the maximum efficiency against Psg and Cff. Treatment of leaves and seeds previously infected with phytopathogens with these essential oils showed that the biological effectiveness of leaf treatments was 80.6–77.5% and 86.9–54.6%, respectively, for Psg and Cff. GC-MS and GC-FID analyzes showed that the major compounds were 5-Methyl-3-methylenedihydro-2(3H)-furanone (20.32%) in leather bergenia ethanolic extract, cinnamaldehyde (84.25%) in Chinese cinnamon essential oil and carvacrol (62.32%) in oregano essential oil. Full article
(This article belongs to the Special Issue Plant Extracts as Biological Protective Agents)
Show Figures

Figure 1

13 pages, 1367 KiB  
Article
A Powerful LAMP Weapon against the Threat of the Quarantine Plant Pathogen Curtobacterium flaccumfaciens pv. flaccumfaciens
by Stefania Tegli, Carola Biancalani, Aleksandr N. Ignatov and Ebrahim Osdaghi
Microorganisms 2020, 8(11), 1705; https://doi.org/10.3390/microorganisms8111705 - 31 Oct 2020
Cited by 13 | Viewed by 4133
Abstract
Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff) is a Gram-positive phytopathogenic bacterium attacking leguminous crops and causing systemic diseases such as the bacterial wilt of beans and bacterial spot of soybeans. Since the early 20th century, Cff is reported to be present in [...] Read more.
Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff) is a Gram-positive phytopathogenic bacterium attacking leguminous crops and causing systemic diseases such as the bacterial wilt of beans and bacterial spot of soybeans. Since the early 20th century, Cff is reported to be present in North America, where it still causes high economic losses. Currently, Cff is an emerging plant pathogen, rapidly spreading worldwide and occurring in many bean-producing countries. Infected seeds are the main dissemination pathway for Cff, both over short and long distances. Cff remains viable in the seeds for long times, even in field conditions. According to the most recent EU legislation, Cff is included among the quarantine pests not known to occur in the Union territory, and for which the phytosanitary inspection consists mainly of the visual examination of imported bean seeds. The seedborne nature of Cff combined with the globalization of trades urgently call for the implementation of a highly specific diagnostic test for Cff, to be routinely and easily used at the official ports of entry and into the fields. This paper reports the development of a LAMP (Loop-Mediated Isothermal Amplification) specific for Cff, that allows the detection of Cff in infected seeds, both by fluorescence and visual monitoring, after 30 min of reaction and with a detection limit at around 4 fg/μL of pure Cff genomic DNA. Full article
Show Figures

Figure 1

Back to TopTop