Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Cucumaria djakonovi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6102 KiB  
Article
Mechanisms of Action of Sea Cucumber Triterpene Glycosides Cucumarioside A0-1 and Djakonovioside A Against Human Triple-Negative Breast Cancer
by Ekaterina S. Menchinskaya, Ekaterina A. Chingizova, Evgeny A. Pislyagin, Ekaterina A. Yurchenko, Anna A. Klimovich, Elena. A. Zelepuga, Dmitry L. Aminin, Sergey A. Avilov and Alexandra S. Silchenko
Mar. Drugs 2024, 22(10), 474; https://doi.org/10.3390/md22100474 - 17 Oct 2024
Cited by 4 | Viewed by 1991
Abstract
Breast cancer is the most prevalent form of cancer in women worldwide. Triple-negative breast cancer is the most unfavorable for patients, but it is also the most sensitive to chemotherapy. Triterpene glycosides from sea cucumbers possess a high therapeutic potential as anticancer agents. [...] Read more.
Breast cancer is the most prevalent form of cancer in women worldwide. Triple-negative breast cancer is the most unfavorable for patients, but it is also the most sensitive to chemotherapy. Triterpene glycosides from sea cucumbers possess a high therapeutic potential as anticancer agents. This study aimed to identify the pathways triggered and regulated in MDA-MB-231 cells (triple-negative breast cancer cell line) by the glycosides cucumarioside A0-1 (Cuc A0-1) and djakonovioside A (Dj A), isolated from the sea cucumber Cucumaria djakonovi. Using flow cytometry, fluorescence microscopy, immunoblotting, and ELISA, the effects of micromolar concentrations of the compounds on cell cycle arrest, induction of apoptosis, the level of reactive oxygen species (ROS), mitochondrial membrane potential (Δψm), and expression of anti- and pro-apoptotic proteins were investigated. The glycosides caused cell cycle arrest, stimulated an increase in ROS production, and decreased Δψm in MDA-MB-231 cells. The depolarization of the mitochondrial membrane caused by cucumarioside A0-1 and djakonovioside A led to an increase in the levels of APAF-1 and cytochrome C. This, in turn, resulted in the activation of caspase-9 and caspase-3 and an increase in the level of their cleaved forms. Glycosides also affected the expression of Bax and Bcl-2 proteins, which are associated with mitochondria-mediated apoptosis in MDA-MB-231 cells. These results indicate that cucumarioside A0-1 and djakonovioside A activate the intrinsic apoptotic pathway in triple-negative breast cancer cells. Additionally, it was found that treatment with Cuc A0-1 resulted in in vivo inhibition of tumor growth and metastasis of murine solid Ehrlich adenocarcinoma. Full article
(This article belongs to the Collection Marine Compounds and Cancer)
Show Figures

Graphical abstract

28 pages, 2175 KiB  
Article
Sulfated Triterpene Glycosides from the Far Eastern Sea Cucumber Cucumaria djakonovi: Djakonoviosides C1, D1, E1, and F1; Cytotoxicity against Human Breast Cancer Cell Lines; Quantitative Structure–Activity Relationships
by Alexandra S. Silchenko, Anatoly I. Kalinovsky, Sergey A. Avilov, Roman S. Popov, Ekaterina A. Chingizova, Ekaterina S. Menchinskaya, Elena A. Zelepuga, Elena G. Panina, Vadim G. Stepanov, Vladimir I. Kalinin and Pavel S. Dmitrenok
Mar. Drugs 2023, 21(12), 602; https://doi.org/10.3390/md21120602 - 22 Nov 2023
Cited by 7 | Viewed by 2367
Abstract
Four new mono- and trisulfated triterpene penta- and tetraosides, djakonoviosides C1 (1), D1 (2), E1 (3), and F1 (4) were isolated from the Far Eastern sea cucumber Cucumaria djakonovi (Cucumariidae, Dendrochirotida), [...] Read more.
Four new mono- and trisulfated triterpene penta- and tetraosides, djakonoviosides C1 (1), D1 (2), E1 (3), and F1 (4) were isolated from the Far Eastern sea cucumber Cucumaria djakonovi (Cucumariidae, Dendrochirotida), along with six known glycosides found earlier in other Cucumaria species. The structures of unreported compounds were established on the basis of extensive analysis of 1D and 2D NMR spectra as well as by HR-ESI-MS data. The set of compounds contains six different types of carbohydrate chains including two new ones. Thus, djakonovioside C1 (1) is characterized by xylose as the second residue, that was a branchpoint in the pentasaccharide chain. Meanwhile, only quinovose and rarely glucose have been found earlier in pentasaccharide chains branched at C-2 of the second sugar unit. Djakonovioside E1 (3) is characterized by a tetrasaccharide trisulfated chain, with glucose as the second residue. So, in the series of isolated glycosides, three types of sugars in the second position were presented: the most common, quinovose—in six compounds; glucose—in three substances; and the rare xylose—in one glycoside. The set of aglycones was composed of holostane- and non-holostane-type polycyclic systems; the latter comprised normal and reduced side chains. Noticeably, isokoreoside A (9), isolated from C. djakonovi, was a single glycoside having a 9(11)-double bond, indicating two oxidosqualenecyclases are operating in the process of the biosynthesis of aglycones. Some of the glycosides from C. djakonovi, which were characterized by pentasaccharide branched chains containing one to three sulfate groups, are chemotaxonomic features of the representatives of the genus Cucumaria. The assortment of sugar parts of Cucumaria’s glycosides was broadened with previously undescribed penta- and tetrasaccharide moieties. The metabolic network of sugar parts and aglycones is constructed based on biogenetic relationships. The cytotoxic action of compounds 110, isolated from C. djakonovi, against human breast cancer cell lines was investigated along with the hemolytic activity. Erythrocytes were, as usual, more sensitive to the membranolytic action of the glycosides than cancer cells. The triple-negative breast cancer MDA-MB-231 cell line was more vulnerable to the action of glycosides in comparison with the other tested cancer cells, while the MCF-7 cell line was less susceptible to cytotoxic action. Djakonovioside E1 (3) demonstrated selective action against ER-positive MCF-7 and triple-negative MDA-MB-231 cell lines, while the toxic effect in relation to normal mammary epithelial cells (MCF-10A) was absent. Cucumarioside A2-5 (6) inhibited the formation and growth of colonies of cancer cells to 44% and tumor cell migration to 85% of the control. Quantitative structure–activity relationships (QSAR) were calculated on the basis of the correlational analysis of the physicochemical properties and structural features of the glycosidic molecules and their membranolytic activity. QSAR revealed the extremely complex nature of such relationships, but these calculations correlated well with the observed SAR. Full article
(This article belongs to the Special Issue Challenges on Structural Determination of Marine Natural Products)
Show Figures

Graphical abstract

24 pages, 2432 KiB  
Article
Djakonoviosides A, A1, A2, B1–B4 — Triterpene Monosulfated Tetra- and Pentaosides from the Sea Cucumber Cucumaria djakonovi: The First Finding of a Hemiketal Fragment in the Aglycones; Activity against Human Breast Cancer Cell Lines
by Alexandra S. Silchenko, Anatoly I. Kalinovsky, Sergey A. Avilov, Roman S. Popov, Pavel S. Dmitrenok, Ekaterina A. Chingizova, Ekaterina S. Menchinskaya, Elena G. Panina, Vadim G. Stepanov, Vladimir I. Kalinin and Valentin A. Stonik
Int. J. Mol. Sci. 2023, 24(13), 11128; https://doi.org/10.3390/ijms241311128 - 5 Jul 2023
Cited by 8 | Viewed by 1813
Abstract
Seven new monosulfated triterpene glycosides, djakonoviosides A (1), A1 (2), A2 (3), and B1–B4 (47), along with three known glycosides found earlier in the other Cucumaria species, namely [...] Read more.
Seven new monosulfated triterpene glycosides, djakonoviosides A (1), A1 (2), A2 (3), and B1–B4 (47), along with three known glycosides found earlier in the other Cucumaria species, namely okhotoside A1-1, cucumarioside A0-1, and frondoside D, have been isolated from the far eastern sea cucumber Cucumaria djakonovi (Cucumariidae, Dendrochirotida). The structures were established on the basis of extensive analysis of 1D and 2D NMR spectra and confirmed by HR-ESI-MS data. The compounds of groups A and B differ from each other in their carbohydrate chains, namely monosulfated tetrasaccharide chains are inherent to group A and pentasaccharide chains with one sulfate group, branched by C-2 Qui2, are characteristic of group B. The aglycones of djakonoviosides A2 (3), B2 (5), and B4 (7) are characterized by a unique structural feature, a 23,16-hemiketal fragment found first in the sea cucumbers’ glycosides. The biosynthetic pathway of its formation is discussed. The set of aglycones of C. djakonovi glycosides was species specific because of the presence of new aglycones. At the same time, the finding in C. djakonovi of the known glycosides isolated earlier from the other species of Cucumaria, as well as the set of carbohydrate chains characteristic of the glycosides of all investigated representatives of the genus Cucumaria, demonstrated the significance of these glycosides as chemotaxonomic markers. The membranolytic actions of compounds 17 and known glycosides okhotoside A1-1, cucumarioside A0-1, and frondoside D, isolated from C. djakonovi against human cell lines, including erythrocytes and breast cancer cells (MCF-7, T-47D, and triple negative MDA-MB-231), as well as leukemia HL-60 and the embryonic kidney HEK-293 cell line, have been studied. Okhotoside A1-1 was the most active compound from the series because of the presence of a tetrasaccharide linear chain and holostane aglycone with a 7(8)-double bond and 16β-O-acetoxy group, cucumarioside A0-1, having the same aglycone, was slightly less active because of the presence of branching xylose residue at C-2 Qui2. Generally, the activity of the djakonoviosides of group A was higher than that of the djakonoviosides of group B containing the same aglycones, indicating the significance of a linear chain containing four monosaccharide residues for the demonstration of membranolytic action by the glycosides. All the compounds containing hemiketal fragments, djakonovioside A2 (3), B2 (5), and B4 (7), were almost inactive. The most aggressive triple-negative MDA-MB-231 breast cancer cell line was the most sensitive to the glycosides action when compared with the other cancer cells. Okhotoside A1-1 and cucumarioside A0-1 demonstrated promising effects against MDA-MB-231 cells, significantly inhibiting the migration, as well as the formation and growth, of colonies. Full article
(This article belongs to the Special Issue The Structures and Biologic Activity of Marine Natural Products)
Show Figures

Figure 1

12 pages, 1905 KiB  
Article
Structure and Anti-Inflammatory Activity of a New Unusual Fucosylated Chondroitin Sulfate from Cucumaria djakonovi
by Nadezhda E. Ustyuzhanina, Maria I. Bilan, Elena G. Panina, Nadezhda P. Sanamyan, Andrey S. Dmitrenok, Eugenia A. Tsvetkova, Natalia A. Ushakova, Alexander S. Shashkov, Nikolay E. Nifantiev and Anatolii I. Usov
Mar. Drugs 2018, 16(10), 389; https://doi.org/10.3390/md16100389 - 17 Oct 2018
Cited by 54 | Viewed by 5528
Abstract
Fucosylated chondroitin sulfate CD was isolated from the sea cucumber Cucumaria djakonovi collected from the Avachinsky Gulf of the eastern coast of Kamchatka. Structural characterization of CD was performed using a series of non-destructive NMR spectroscopic procedures. The polysaccharide was shown to contain [...] Read more.
Fucosylated chondroitin sulfate CD was isolated from the sea cucumber Cucumaria djakonovi collected from the Avachinsky Gulf of the eastern coast of Kamchatka. Structural characterization of CD was performed using a series of non-destructive NMR spectroscopic procedures. The polysaccharide was shown to contain a chondroitin core [→3)-β-d-GalNAc-(1→4)-β-d-GlcA-(1→]n where about 60% of GlcA residues were 3-O-fucosylated, while another part of GlcA units did not contain any substituents. The presence of unsubstituted both at O-2 and O-3 glucuronic acid residues in a structure of holothurian chondroitin sulfate is unusual and has not been reported previously. Three different fucosyl branches Fucp2S4S, Fucp3S4S and Fucp4S were found in the ratio of 2:1:1. The GalNAc units were mono- or disulfated at positions 4 and 6. Anti-inflammatory activity of CD was assessed on a model of acute peritoneal inflammation in rats. About 45% inhibition was found for CD, while a structurally related linear chondroitin sulfate SS from cartilage of the fish Salmo salar demonstrated only 31% inhibition, indicating that the presence of sulfated fucosyl branches is essential for anti-inflammatory effect of chondroitin sulfates of marine origin. Full article
Show Figures

Figure 1

Back to TopTop