Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = CubeSat docking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 8257 KiB  
Article
Analysis and Experiments of an Electromagnetic Docking Mechanism for Repeated Docking and Separation of the CubeSats
by Xiaoze Yang, Chenyuan Li, Lili Zhang, Zeming Zhao, Caiting He, Tao Hu, Mingyang Li, Honghao Yue, Yong Zhao, Yuhao Zhang and Yitong Wei
Remote Sens. 2025, 17(8), 1446; https://doi.org/10.3390/rs17081446 - 17 Apr 2025
Cited by 1 | Viewed by 639
Abstract
With the background of on-orbit repetitive connection and separation of CubeSats, an electromagnetic docking mechanism for repeated docking and separation is proposed. A reusable electromagnetic docking scheme combining lead screw transmission with electromagnets is introduced. The electromagnetic force/torque model and the attitude model [...] Read more.
With the background of on-orbit repetitive connection and separation of CubeSats, an electromagnetic docking mechanism for repeated docking and separation is proposed. A reusable electromagnetic docking scheme combining lead screw transmission with electromagnets is introduced. The electromagnetic force/torque model and the attitude model of the CubeSat are derived based on the relationship between force and magnetic flux density in a magnetic field. The coil layout and the polarity of magnetic poles are optimized and analyzed, four different layout configurations are proposed, and their mechanical characteristics are analyzed. A multi-body dynamics simulation analysis of the entire mechanism is conducted to evaluate the attitude correction capability of the electromagnetic attraction separation unit. A three-degrees-of-freedom capture and separation test of the electromagnetic attraction separation unit is carried out in a microgravity-simulated environment to investigate the characteristics of capture and separation under different position and attitude deviation conditions of the energized solenoids. The designed electromagnetic docking mechanism has an adaptive attitude adjustment and docking range of a 30° cone. It can achieve low-impact, high-tolerance, and reusable docking and separation. Full article
(This article belongs to the Special Issue Advances in CubeSats for Earth Observation)
Show Figures

Figure 1

9 pages, 5376 KiB  
Proceeding Paper
Extensible Hook System for Rendezvous and Docking of a CubeSat Swarm
by Carlos Pérez-del-Pulgar, Antonio López Palomeque, Jesús Juli and Matteo Madi
Eng. Proc. 2025, 90(1), 33; https://doi.org/10.3390/engproc2025090033 - 13 Mar 2025
Cited by 1 | Viewed by 292
Abstract
Deployment of CubeSat swarms is proposed for various missions necessitating cooperative interactions among satellites. Commonly, the cube swarm requires formation flight and even rendezvous and docking, which are very challenging tasks since they require more energy and the use of advanced guidance, navigation, [...] Read more.
Deployment of CubeSat swarms is proposed for various missions necessitating cooperative interactions among satellites. Commonly, the cube swarm requires formation flight and even rendezvous and docking, which are very challenging tasks since they require more energy and the use of advanced guidance, navigation, and control techniques. In this paper, we propose the use of an extensible hook system and its corresponding GNC architecture to mitigate these drawbacks, i.e., it allows for saving fuel and reduces system complexity by including techniques that have been previously demonstrated on Earth. This system is based on a scissor boom structure, which could reach up to five meters for a 4U CubeSat dimension, including three degrees of freedom to place the end effector at any pose within the system workspace. We simulated the dynamic behavior of a CubeSat with the proposed system, demonstrating that the required power for a 16U CubeSat equipped with one extensible hook system is considered acceptable according to the current state-of-the-art actuators. Full article
Show Figures

Figure 1

10 pages, 359 KiB  
Article
An Iterative Guidance and Navigation Algorithm for Orbit Rendezvous of Cooperating CubeSats
by Simone Battistini, Giulio De Angelis, Mauro Pontani and Filippo Graziani
Appl. Sci. 2022, 12(18), 9250; https://doi.org/10.3390/app12189250 - 15 Sep 2022
Cited by 4 | Viewed by 2478
Abstract
Modern space missions often require satellites to perform guidance, navigation, and control tasks autonomously. Despite their limited resources, small satellites are also involved in this trend, as in-orbit rendezvous and docking maneuvers and formation flying have become common requirements in their operational scenarios. [...] Read more.
Modern space missions often require satellites to perform guidance, navigation, and control tasks autonomously. Despite their limited resources, small satellites are also involved in this trend, as in-orbit rendezvous and docking maneuvers and formation flying have become common requirements in their operational scenarios. A critical aspect of these tasks is that these algorithms are very much intertwined with each other, although they are often designed completely independently of one another. This paper describes the design and simulation of a guidance and relative navigation architecture for the rendezvous of two cooperating CubeSats. The integration of the two algorithms provides robustness to the solution, by simulating realistic levels of noise and uncertainty in the guidance law implementation. The proposed guidance law is derived based on the linearized equations of orbital motion, written in terms of spherical coordinates. The trajectory is iteratively corrected at a fixed time step, so that errors from the navigation and the initial orbital condition can be recovered. The navigation algorithm processes the bearing and range measurements from a camera and an intersatellite link through an unscented filter to provide the information required from the guidance law. A Monte Carlo campaign based on a 3-DOF simulation demonstrates the effectiveness of the proposed solution. Full article
(This article belongs to the Special Issue Small Satellites Missions and Applications)
Show Figures

Figure 1

18 pages, 2127 KiB  
Article
Real-Time Fuel Optimization and Guidance for Spacecraft Rendezvous and Docking
by Ahmed Mehamed Oumer and Dae-Kwan Kim
Aerospace 2022, 9(5), 276; https://doi.org/10.3390/aerospace9050276 - 20 May 2022
Cited by 9 | Viewed by 4018
Abstract
Autonomous rendezvous and docking (RVD) fuel optimization with field-of-view and obstacle avoidance constraints is a nonlinear and nonconvex optimization problem, making it computationally intensive for onboard computation on CubeSats. This paper proposes an RVD fuel optimization and guidance technique suitable for onboard computation [...] Read more.
Autonomous rendezvous and docking (RVD) fuel optimization with field-of-view and obstacle avoidance constraints is a nonlinear and nonconvex optimization problem, making it computationally intensive for onboard computation on CubeSats. This paper proposes an RVD fuel optimization and guidance technique suitable for onboard computation on CubeSats, considering the shape, size and computational limitations of CubeSats. The computation time is reduced by dividing the guidance problem into separate orbit and attitude guidance problems, formulating the orbit guidance problem as a convex optimization problem by considering the CubeSat shape, and then solving the orbit guidance problem with a convex optimization solver and the attitude guidance problem analytically by exploiting the attitude geometry. The performance of the proposed guidance method is demonstrated through simulations, and the results are compared with those of conventional methods that perform orbit guidance optimization with attitude quaternion feedback control. The proposed method shows better performance, in terms of fuel efficiency, than conventional methods. Full article
(This article belongs to the Topic Micro/Nano Satellite Technology, Systems and Components)
Show Figures

Figure 1

16 pages, 2339 KiB  
Article
Tracking Model Predictive Control for Docking Maneuvers of a CubeSat with a Big Spacecraft
by Fabrizio Stesina
Aerospace 2021, 8(8), 197; https://doi.org/10.3390/aerospace8080197 - 22 Jul 2021
Cited by 21 | Viewed by 3541
Abstract
The release and retrieval of a CubeSat from a big spacecraft is useful for the external inspection and monitoring of the big spacecraft. However, docking maneuvers during the retrieval are challenging since safety constraints and high performance must be achieved, considering the small [...] Read more.
The release and retrieval of a CubeSat from a big spacecraft is useful for the external inspection and monitoring of the big spacecraft. However, docking maneuvers during the retrieval are challenging since safety constraints and high performance must be achieved, considering the small dimensions and the actual small satellites technology. The trajectory control is crucial to have a soft, accurate, quick, and propellant saving docking. The present paper deals with the design of a tracking model predictive controller (TMPC) tuned to achieve the stringent docking requirements for the retrieval of a CubeSat within the cargo bay of a large cooperative vehicle. The performance of the TMPC is verified using a complex model that includes non-linearities, uncertainties of the CubeSat parameters, and environmental disturbances. Moreover, 300 Monte Carlo runs demonstrate the robustness of the TMPC solution. Full article
Show Figures

Figure 1

Back to TopTop