Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = Cu-Ta alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 9477 KiB  
Article
Effect of 3 wt% Cu on the Microstructure and Hardness of a Ti-10Ta-1.6Zr Alloy
by Nobom G. Hashe, Lee Fowler, Susanne Norgren, Lesley A. Cornish, Lesley H. Chown, William E. Goosen, Johan E. Westraadt, Nomsombuluko D. E. Hadebe and Caroline Öhman-Mägi
Materials 2025, 18(13), 3163; https://doi.org/10.3390/ma18133163 - 3 Jul 2025
Viewed by 306
Abstract
Alloys of Ti-10Ta-1.6Zr (wt%) with and without 3 wt% Cu made by arc-melting, heat-treated in two stages and quenched to have α + β microstructures were studied. These alloys were studied for potential replacement of Ti-6Al-4V alloys because Ta and Zr are more [...] Read more.
Alloys of Ti-10Ta-1.6Zr (wt%) with and without 3 wt% Cu made by arc-melting, heat-treated in two stages and quenched to have α + β microstructures were studied. These alloys were studied for potential replacement of Ti-6Al-4V alloys because Ta and Zr are more biocompatible than Al and V, and copper was added for potential antimicrobial properties. The heat-treated samples were investigated by SEM-EDX, transmission Kikuchi diffraction (TKD) and XRD. When studied at a higher magnification, the heat-treated alloys revealed a bi-lamellar microstructure, consisting of broad α lamellae and β transformed to fine α′ lamellae with various orientations. The fraction β transformed to fine α′ lamellae was higher in the alloy with Cu than that without Cu. Furthermore, copper was found to lower the solubility of tantalum in the β. The hardest alloy was the heat-treated alloy containing Cu, albeit with a wide standard deviation, probably due to the high fraction of martensitically transformed β. Full article
Show Figures

Figure 1

21 pages, 7797 KiB  
Article
On the Optimization of T6 Heat Treatment Parameters of a Secondary Al-Si-Cu-Mg Foundry Aluminum Alloy: A Microstructural and Mechanical Characterization
by Mattia Merlin, Lorenzo Antonioli, Federico Bin, Cindy Morales and Chiara Soffritti
Metals 2025, 15(7), 742; https://doi.org/10.3390/met15070742 - 30 Jun 2025
Viewed by 376
Abstract
Foundry aluminum-silicon (Al-Si) alloys, especially those containing Cu and/or Mg, are widely used in casting processes for fabricating lightweight parts. This study focuses on the optimization of the solution heat treatment parameters within the T6 heat treatment of an innovative AlSi7Cu0.5Mg0.3 secondary alloy, [...] Read more.
Foundry aluminum-silicon (Al-Si) alloys, especially those containing Cu and/or Mg, are widely used in casting processes for fabricating lightweight parts. This study focuses on the optimization of the solution heat treatment parameters within the T6 heat treatment of an innovative AlSi7Cu0.5Mg0.3 secondary alloy, aiming at achieving energy savings and reducing the environmental impact related to the production of foundry components for the automotive industry. Different combinations of solution times and temperatures lower than those typically adopted in industrial practice were evaluated, and their effects on tensile properties were investigated on samples machined from as-cast and T6-treated castings produced by pouring the alloy into a steel permanent mold. Thermal analysis (TA) and differential thermal analysis (DTA) were performed to monitor the solidification sequence of microstructural phases as well as their dissolution on heating according to the proposed solution heat treatments. Microstructural analysis by light microscopy (LM) and scanning electron microscopy (SEM), together with Brinell hardness testing, was also carried out to assess the effects of heat treatment parameters. The results suggested that a shorter solution heat treatment set at a temperature lower than that currently adopted for the heat treatment of the studied alloy can still ensure the required mechanical properties while improving productivity and reducing energy consumption. Full article
Show Figures

Figure 1

14 pages, 4098 KiB  
Article
Thermal Stability and Irradiation Resistance of (CrFeTiTa)70W30 and VFeTiTaW High Entropy Alloys
by André Pereira, Ricardo Martins, Bernardo Monteiro, José B. Correia, Andrei Galatanu, Norberto Catarino, Petra J. Belec and Marta Dias
Materials 2025, 18(5), 1030; https://doi.org/10.3390/ma18051030 - 26 Feb 2025
Viewed by 585
Abstract
Nuclear fusion is a promising energy source. The International Thermonuclear Experimental Reactor aims to study the feasibility of tokamak-type reactors and test technologies and materials for commercial use. One major challenge is developing materials for the reactor’s divertor, which supports high thermal flux. [...] Read more.
Nuclear fusion is a promising energy source. The International Thermonuclear Experimental Reactor aims to study the feasibility of tokamak-type reactors and test technologies and materials for commercial use. One major challenge is developing materials for the reactor’s divertor, which supports high thermal flux. Tungsten was chosen as the plasma-facing material, while a CuCrZr alloy will be used in the cooling pipes. However, the gradient between the working temperatures of these materials requires the use of a thermal barrier interlayer between them. To this end, refractory high-entropy (CrFeTiTa)70W30 and VFeTiTaW alloys were prepared by mechanical alloying and sintering, and their thermal and irradiation resistance was evaluated. Both alloys showed phase growth after annealing at 1100 °C for 8 days, being more pronounced for higher temperatures (1300 °C and 1500 °C). The VFeTiTaW alloy presented greater phase growth, suggesting lower microstructural stability, however, no new phases were formed. Both (as-sintered) alloys were irradiated with Ar+ (150 keV) with a fluence of 2.4 × 1020 at/m2, as well as He+ (10 keV) and D+ (5 keV) both with a fluence of 5 × 1021 at/m2. The morphology of the surface of both samples was analyzed before and after irradiation showing no severe morphologic changes, indicating high irradiation resistance. Additionally, the VFeTiTaW alloy presented a lower deuterium retention (8.58%) when compared to (CrFeTiTa)70W30 alloy (14.41%). Full article
(This article belongs to the Special Issue High-Entropy Alloys: Synthesis, Characterization, and Applications)
Show Figures

Figure 1

14 pages, 3853 KiB  
Article
A Near-Ultraviolet Photodetector Based on the TaC: Cu/4 H Silicon Carbide Heterostructure
by Salah Abdo, Khalil As’ham, Ambali Alade Odebowale, Sanjida Akter, Amer Abdulghani, Ibrahim A. M. Al Ani, Haroldo Hattori and Andrey E. Miroshnichenko
Appl. Sci. 2025, 15(2), 970; https://doi.org/10.3390/app15020970 - 20 Jan 2025
Cited by 1 | Viewed by 1073
Abstract
Photodetectors (PDs) based on 4H silicon carbide (SiC) have garnered significant interest due to their exceptional optoelectronic properties. However, their photoresponse is typically restricted to the ultraviolet (UV) region, with limited light absorption beyond 380 nm, which constrains their utility in visible light [...] Read more.
Photodetectors (PDs) based on 4H silicon carbide (SiC) have garnered significant interest due to their exceptional optoelectronic properties. However, their photoresponse is typically restricted to the ultraviolet (UV) region, with limited light absorption beyond 380 nm, which constrains their utility in visible light detection applications. To overcome this limitation, an efficient photodetector was developed using an alloy with TaC (80%) and Cu (20%) on a 4H n-type SiC substrate, enabling effective light detection at 405 nm. The device exhibited high performance with a high photoresponsivity of 1.66 AW1 and a specific detectivity of 2.69×108 Jones at 405 nm. The superior performance of the device is ascribed to the enhanced electrical conductivity and optical absorption of the TaC: Cu layer on the 4H SiC substrate, particularly in the near-ultraviolet region. This photodetector combines ease of fabrication with significant performance improvements, expanding the potential applications of 4H SiC in high-temperature optoelectronics. It also introduces a promising pathway for enhancing 4H SiC-based photodetection capabilities across broader spectral ranges. Full article
Show Figures

Figure 1

14 pages, 3743 KiB  
Article
Synthesis of Nanocrystal-Embedded Bulk Metallic Glass Composites by a Combination of Mechanical Alloying and Vacuum Hot Pressing
by Pee-Yew Lee, Pei-Jung Chang, Chin-Yi Chen and Chung-Kwei Lin
Materials 2025, 18(2), 360; https://doi.org/10.3390/ma18020360 - 14 Jan 2025
Cited by 1 | Viewed by 761
Abstract
Bulk metallic glasses (i.e., BMGs) have attracted a lot of research and development interest due to their unique properties. Embedding BMG composites with nanocrystals can further extend their applications. In this study, Ta-nanocrystal-embedded metallic glass powder was prepared via the mechanical alloying of [...] Read more.
Bulk metallic glasses (i.e., BMGs) have attracted a lot of research and development interest due to their unique properties. Embedding BMG composites with nanocrystals can further extend their applications. In this study, Ta-nanocrystal-embedded metallic glass powder was prepared via the mechanical alloying of (Cu60Zr30Ti10)91Ta9 composition for 5 h using starting elemental powders. The structural evolution during the mechanical alloying process was examined using X-ray diffraction, scanning electron microscopy, synchrotron extended X-ray absorption fine structure, transmission electron microscopy, and differential scanning calorimetry. The 5 h as-milled powder was then consolidated into a bulk sample using vacuum hot pressing with an applied pressure of 0.72, 0.96, and 1.20 GPa. The effects of the applied pressure during vacuum hot pressing on the structure of the obtained BMG were investigated. The experimental results show that Ta-nanocrystal-embedded metallic glass composite powder was prepared successfully after 5 h of mechanical alloying. The 5 h as-milled composite powder exhibited a large supercooled region of 43 K between the glass transition temperature of 743 K and the crystallization temperature of 786 K. Using vacuum hot pressing at 753 K for 30 mins with an applied pressure, dense nanocrystal-embedded BMG composites were synthesized. The relative density and the crystallization temperature of the BMG composites increased with increasing applied pressure. The nanocrystal-embedded BMG composites prepared at 753 K for 30 mins with an applied pressure of 1.20 GPa exhibited a relative density of 98.3% and a crystallization temperature of 786 K. These nanocrystals were Ta, Cu51Zr14, and other possible Cu–Zr–Ti alloys (e.g., Cu10Zr7) that were randomly dispersed within the glassy matrix. Full article
Show Figures

Graphical abstract

14 pages, 5509 KiB  
Article
Ti-Ta-Cu Biocompatible Alloy System Development via Selective Laser Melting for Prosthetic Applications
by Igor Polozov, Victoria Sokolova, Anna Gracheva, Anton Zolotarev, Victoria Nefyodova and Anatoly Popovich
Metals 2024, 14(10), 1177; https://doi.org/10.3390/met14101177 - 16 Oct 2024
Cited by 4 | Viewed by 1566
Abstract
This study investigated the development of Ti-Ta-Cu alloys via selective laser melting (SLM) for potential prosthetic applications. Ti-Ta-Cu alloys with 10, 15, and 20 wt.% Ta were fabricated using in situ alloying of elemental powders. We examined the effects of Ta content and [...] Read more.
This study investigated the development of Ti-Ta-Cu alloys via selective laser melting (SLM) for potential prosthetic applications. Ti-Ta-Cu alloys with 10, 15, and 20 wt.% Ta were fabricated using in situ alloying of elemental powders. We examined the effects of Ta content and SLM processing parameters on microstructure, phase composition, mechanical properties, and corrosion resistance. X-ray diffraction analysis revealed an increase in β-phase content with increasing Ta concentration. Microstructural analysis showed a dendritic structure in Ta-rich areas, with remelting strategies improving chemical homogeneity and Ta dissolution. The Ti-20Ta-5Cu alloy exhibited the best balance of strength and ductility, with an ultimate tensile strength of 1011 MPa and elongation of 5.7%. All compositions demonstrated lower elastic moduli (103–109 GPa) compared to traditional titanium alloys. Microhardness values were highest for Ti-15Ta-5Cu, ranging from 359 to 410 HV0.5 depending on SLM parameters. Corrosion testing in Hank’s solution showed improved pitting resistance for Ti-15Ta-5Cu and Ti-20Ta-5Cu compared to Ti-10Ta-5Cu. The study demonstrates the feasibility of producing Ti-Ta-Cu alloys with tailored properties via SLM, offering potential for customized prosthetic applications with improved biomechanical compatibility and functionality. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

14 pages, 4452 KiB  
Article
High-Throughput Multi-Principal Element Alloy Exploration Using a Novel Composition Gradient Sintering Technique
by Brady L. Bresnahan and David L. Poerschke
Metals 2024, 14(5), 558; https://doi.org/10.3390/met14050558 - 9 May 2024
Cited by 1 | Viewed by 1997
Abstract
This work demonstrates the capabilities and advantages of a novel sintering technique to fabricate bulk composition gradient materials. Pressure distribution calculations were used to compare several tooling geometries for use with current-activated, pressure-assisted densification or spark plasma sintering to densify a gradient along [...] Read more.
This work demonstrates the capabilities and advantages of a novel sintering technique to fabricate bulk composition gradient materials. Pressure distribution calculations were used to compare several tooling geometries for use with current-activated, pressure-assisted densification or spark plasma sintering to densify a gradient along the long dimension of the specimen. The selected rectangular tooling design retains a low aspect ratio to ensure a uniform pressure distribution during consolidation by using a side loading configuration to form the gradient along the longest dimension. Composition gradients of NixCu1−x, MoxNb1−x, and MoNbTaWHfx (x from 0 to 1) were fabricated with the tooling. The microstructure, composition, and crystal structure were characterized along the gradient in the as-sintered condition and after annealing to partially homogenize the layers. The successful fabrication of a composition gradient in a difficult-to-process material like the refractory multi-principal element alloy system MoNbTaWHfx shows the utility of this approach for high-throughput screening of large material composition spaces. Full article
Show Figures

Graphical abstract

14 pages, 12762 KiB  
Article
Simulation, Structural, Thermal and Mechanical Properties of the FeTiTaVW High Entropy Alloy
by Ricardo Martins, António Pereira Gonçalves, José Brito Correia, Andrei Galatanu, Eduardo Alves, Elena Tejado, José Ygnacio Pastor and Marta Dias
Metals 2024, 14(4), 436; https://doi.org/10.3390/met14040436 - 8 Apr 2024
Cited by 4 | Viewed by 2474
Abstract
Developing new materials to be applied in extreme environments is an opportunity and a challenge for the future. High entropy alloys are new materials that seem promising approaches to work in nuclear fusion reactors. In this work, FeTaTiVW high entropy alloys were developed [...] Read more.
Developing new materials to be applied in extreme environments is an opportunity and a challenge for the future. High entropy alloys are new materials that seem promising approaches to work in nuclear fusion reactors. In this work, FeTaTiVW high entropy alloys were developed and characterized with Molecular Dynamic and Hybrid Molecular Dynamic Monte Carlo simulations. The simulation results show that phase separation originates a lower potential energy per atom and a high level of segregation compared to those of a uniform solid solution. Moreover, the experimental diffractogram of the milled powder shows the formation of a body-centred cubic-type structure and the presence of TiO2. In addition, the microstructure of the consolidated material evidenced three phases: W-rich, Ti-rich, and a phase with all the elements. This phase separation observed in the microstructure agrees with the Hybrid Molecular Dynamic Monte Carlo simulation. Moreover, the consolidated material’s thermal conductivity and specific heat are almost constant from 25 °C to 1000 °C, and linear expansion increases with increasing temperature. On the other hand, specific heat and thermal expansion values are in between CuCrZr and W values (materials chosen for the reactor walls). The FeTaTiVW high entropy alloy evidences a ductile behaviour at 1000 °C. Therefore, the promising thermal properties of this system can be attributed to the multiple phases and systems with different compositions of the same elements, which is exciting for future developments. Full article
(This article belongs to the Special Issue Advanced Performance of High/Medium Entropy Alloys)
Show Figures

Figure 1

14 pages, 9733 KiB  
Review
Effects of Interlayer on the Microstructure and Mechanical Properties of Resistance Spot Welded Titanium/Steel Joints: A Short Review
by Yibo Liu and Chaoqun Zhang
Metals 2024, 14(4), 429; https://doi.org/10.3390/met14040429 - 6 Apr 2024
Cited by 4 | Viewed by 2146
Abstract
In this paper, the influence of interlayer on titanium/steel dissimilar metal resistance spot welding is reviewed from the aspects of macroscopic characteristics, microstructure and interface bonding properties of the joint. Previous studies have demonstrated that TiC, FeTi and Fe2Ti intermetallic compounds [...] Read more.
In this paper, the influence of interlayer on titanium/steel dissimilar metal resistance spot welding is reviewed from the aspects of macroscopic characteristics, microstructure and interface bonding properties of the joint. Previous studies have demonstrated that TiC, FeTi and Fe2Ti intermetallic compounds with high brittleness are formed in the joint during titanium/steel welding, which reduces the strength of the welded joint. Researchers proposed different interlayer materials, including Cu, Ni, Nb, Ta, 60%Ni-Cu alloy and BAg45CuZn. Firstly, adding an interlayer can weaken the diffusion of Fe and Ti. Secondly, the interlayer elements can combine with Fe or Ti to form solid solutions or intermetallic compounds with lower brittleness than Fe–Ti compounds. Finally, Cu, Ni, Ag, etc. with excellent ductility can effectively decrease the generation of internal stress, which reduces the formation of defects to improve the strength of the joint. Full article
Show Figures

Figure 1

15 pages, 2754 KiB  
Article
First-Principles Calculations of the Mechanical Properties of Doped Cu3P Alloys
by Xiao Ma, Fang Cheng, Weiqing Huang, Lian He, Zixin Ye, Shimeng Yu, Ling Hu, Dingkun Yu and Hangyan Shen
Materials 2024, 17(7), 1677; https://doi.org/10.3390/ma17071677 - 5 Apr 2024
Cited by 4 | Viewed by 1573
Abstract
In the quest to enhance the mechanical properties of CuP alloys, particularly focusing on the Cu3P phase, this study introduces a comprehensive investigation into the effects of various alloying elements on the alloy’s performance. In this paper, the first principle of [...] Read more.
In the quest to enhance the mechanical properties of CuP alloys, particularly focusing on the Cu3P phase, this study introduces a comprehensive investigation into the effects of various alloying elements on the alloy’s performance. In this paper, the first principle of density universal function theory and the projection-enhanced wave method under VASP 5.4.4 software are used to recalculate the lattice constants, evaluate the lattice stability, and explore the mechanical properties of selected doped elements such as In, Si, V, Al, Bi, Nb, Sc, Ta, Ti, Y and Zr, including shear, stiffness, compression, and plasticity. The investigation reveals that strategic doping with In and Si significantly enhances shear resistance and stiffness, while V addition notably augments compressive resistance. Furthermore, incorporating Al, Bi, Nb, Sc, Ta, Ti, V, Y, and Zr has substantially improved plasticity, indicating a broad spectrum of mechanical enhancement through precise alloying. Crucially, the validation of our computational models is demonstrated through hardness experiments on Si and Sn-doped specimens, corroborating the theoretical predictions. Additionally, a meticulous analysis of the states’ density further confirms our computational approach’s accuracy and reliability. This study highlights the potential of targeted alloying to tailor the mechanical properties of Cu3P alloys and establishes a robust theoretical framework for predicting the effects of doping in metallic alloys. The findings presented herein offer valuable insights and a novel perspective on material design and optimization, marking a significant stride toward developing advanced materials with customized mechanical properties. Full article
Show Figures

Figure 1

33 pages, 27098 KiB  
Article
A Comparative Study on the Wear Mechanisms of Uncoated and TiAlTaN-Coated Tools Used in Machining AMPCO® Alloy
by Francisca R. Nogueira, André F. V. Pedroso, Francisco J. G. Silva, Raul D. S. G. Campilho, Rita C. M. Sales-Contini, Naiara P. V. Sebbe and Rafaela C. B. Casais
Coatings 2024, 14(1), 4; https://doi.org/10.3390/coatings14010004 - 19 Dec 2023
Cited by 8 | Viewed by 1704
Abstract
A consistent evolution in materials developed for the industry and chip-start cutting processes has been acknowledged over the years. Cutting tool improvement through applying advanced coatings has proven very effective, enabling tool life (TL) extension while ensuring better surface quality. TiAlTaN coating enhances [...] Read more.
A consistent evolution in materials developed for the industry and chip-start cutting processes has been acknowledged over the years. Cutting tool improvement through applying advanced coatings has proven very effective, enabling tool life (TL) extension while ensuring better surface quality. TiAlTaN coating enhances TL and surface quality in machining processes. However, only minimal research has been dedicated to comprehending the interaction between workpieces composed of Cu-Be and diamond tools. AMPCO®, a Cu-Be alloy, plays a crucial role in moulding inserts, offering high wear resistance and contributing to extended mould longevity and improved productivity. The main objective of this work is to assess, identify, and quantify tool wear (TW) mechanisms evaluation while machining AMPCO® with WC-Co uncoated tools and TiAlTaN-coated tools by physical vapour deposition (PVD). Evaluating tool performance while varying cutting length (Lcut) and feed rate (f) at three distinct levels and analysing the surface roughness (SR) produced in the machined surface were the primary purposes of this work. The results obtained with coated tools were distinct from those obtained with uncoated tools. While uncoated tools suffered from substrate abrasion and adhesion, the coated tools suffered mainly from delamination, followed by chipping. Furthermore, f and Lcut significantly influence the quality of the machined surface. TiAlTaN-coated tools performed significantly worse than uncoated tools, proving that the coating needs significant improvements to be considered as an alternative in milling Cu-Be alloys. Full article
Show Figures

Figure 1

16 pages, 11515 KiB  
Article
Study of Wear of an Alloyed Layer with Chromium Carbide Particles after Plasma Melting
by Antonina I. Karlina, Yuliya I. Karlina, Viktor V. Kondratiev, Roman V. Kononenko and Alexander D. Breki
Crystals 2023, 13(12), 1696; https://doi.org/10.3390/cryst13121696 - 18 Dec 2023
Cited by 11 | Viewed by 2048
Abstract
Depending on operating conditions, metals and alloys are exposed to various factors: wear, friction, corrosion, and others. Plasma surface alloying of machine and tool parts is now an effective surface treatment process of commercial and strategic importance. The plasma surface alloying process involves [...] Read more.
Depending on operating conditions, metals and alloys are exposed to various factors: wear, friction, corrosion, and others. Plasma surface alloying of machine and tool parts is now an effective surface treatment process of commercial and strategic importance. The plasma surface alloying process involves adding the required elements (carbon, chromium, titanium, silicon, nickel, etc.) to the surface layer of the metal during the melting process. A thin layer of the compound is pre-applied to the substrate, then melted and intensively mixed under the influence of a plasma arc, and during the solidification process, a new surface layer with optimal mechanical properties is formed. Copper-based alloys—Cu-X, where X is Fe, Cr, V, Nb, Mo, Ta, and W—belong to an immiscible binary system with high mechanical strength, electrical conductivity, and magnetism (for Fe-Cu) and also high thermal characteristics. At the same time, copper-based alloys have low hardness. In this article, wear tests were carried out on coatings obtained by plasma alloying of CuSn10 and CrxCy under various friction conditions. The following were chosen as a modifying element: chromium carbide to increase hardness and iron to increase surface tension. It is noted that an increase in the chromium carbide content to 20% leads to the formation of a martensitic structure. As a result, the microhardness of the layer increased to 700 HV. The addition of CuSn10 + 20% CrxCy and an additional 5% iron to the composition of the coating improves the formation of the surface layer. Friction tests on fixed abrasive particles were carried out at various loads of 5, 10, and 50 N. According to the test results, the alloy layer of the Fe-Cr-C-Cu-Sn system has the greatest wear resistance under abrasive conditions and dry sliding friction conditions. Full article
(This article belongs to the Special Issue Advances in Surface Modification of Metals and Alloys)
Show Figures

Figure 1

10 pages, 2367 KiB  
Article
Magnetic Properties of the Fe2B Alloy Doped with Transition Metal Elements
by Diana Benea and Viorel Pop
Magnetochemistry 2023, 9(4), 109; https://doi.org/10.3390/magnetochemistry9040109 - 20 Apr 2023
Cited by 5 | Viewed by 2250
Abstract
The intrinsic magnetic properties (magnetic moments, magneto-crystalline anisotropy, Curie temperatures) of the (Fe1−xMx)2B alloys have been calculated using the spin-polarized relativistic Korringa–Kohn–Rostoker (SPR-KKR) band structure method. The transition metal elements M (M = Co, Ni, Mo, Ta, [...] Read more.
The intrinsic magnetic properties (magnetic moments, magneto-crystalline anisotropy, Curie temperatures) of the (Fe1−xMx)2B alloys have been calculated using the spin-polarized relativistic Korringa–Kohn–Rostoker (SPR-KKR) band structure method. The transition metal elements M (M = Co, Ni, Mo, Ta, W and Re) considered in the present study are reported to form stable M2B or FeMB alloys with a tetragonal Cu2Al structure type. The experimental studies show that the Fe2B alloy has a large magnetization (173 Am2/kg), a large Curie temperature (1017 K) and a relatively large anisotropy constant K1 (−0.80 MJ/m3), but the alloy is inappropriate for permanent magnet applications due to in-plane easy magnetization axis (EMD). The present investigations show the magnetocrystalline anisotropy behaviour by doping with selected d-elements aiming to find an appropriate dopant which is able to switch the EMD from planar to axial and to enhance the magnetocrystalline anisotropy energy (MAE) value without a major decrease of magnetization and Curie temperature. Full article
(This article belongs to the Special Issue Soft and Hard Magnetic Materials: Latest Advances and Prospects)
Show Figures

Figure 1

17 pages, 4633 KiB  
Article
Magnetic Hyperthermia and Antibacterial Response of CuCo2O4 Nanoparticles Synthesized through Laser Ablation of Bulk Alloy
by Imran Ali, Yasir Jamil, Saeed Ahmed Khan, Yunxiang Pan, Aqeel Ahmed Shah, Ali Dad Chandio, Sadaf Jamal Gilani, May Nasser Bin Jumah, Yusra Fazal, Jun Chen and Zhonghua Shen
Magnetochemistry 2023, 9(3), 68; https://doi.org/10.3390/magnetochemistry9030068 - 27 Feb 2023
Cited by 6 | Viewed by 3030
Abstract
The wide variety of uses for nanoparticles (NPs) is due to their unique combination of features in a single assembly. The arc melted copper-cobalt ingot sample were qualitatively studied using laser induced breakdown spectroscopy (LIBS). Later, using the fabricated alloy as a target [...] Read more.
The wide variety of uses for nanoparticles (NPs) is due to their unique combination of features in a single assembly. The arc melted copper-cobalt ingot sample were qualitatively studied using laser induced breakdown spectroscopy (LIBS). Later, using the fabricated alloy as a target material for Nd:YAG laser ablation, CuCo2O4 NPs were synthesized. The magnetic properties of the synthesized NPs were studied using a vibrating sample magnetometer (VSM). To determine the composition and morphology of the synthesized NPs, X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and dynamic light scattering (DLS) techniques were used. The TEM and DLS showed that particles were spherical in shape with an average size of 32 nm and 28 nm, respectively. The antibacterial activity of the synthesized NPs was studied against S. aureus and E. coli strains as positive and negative controls using a standard approach. CuCo2O4 nanoparticles exhibited non-mutagenic potential against S. typhimurium TA-98 and TA-100 strains. Furthermore, the magnetic hyperthermia study of CuCo2O4 nanofluid was examined using a lab-made apparatus. The specific absorption rates (SAR) of 4.57 and 5.17 W/g were determined for the magnetic field strength of 230 μT and 247 μT, respectively. The study shows antibacterial activity and magnetic hyperthermia potential of the synthesized nanoparticles. Full article
(This article belongs to the Special Issue Advances in Magnetic Nanomaterials and Nanostructures)
Show Figures

Figure 1

11 pages, 5418 KiB  
Article
Microstructures and Mechanical Properties of V-Modified Ti-Zr-Cu-Ni Filler Metals
by Lu Feng, Quanming Liu, Weimin Long, Guoxiang Jia, Haiying Yang and Yangyang Tang
Materials 2023, 16(1), 199; https://doi.org/10.3390/ma16010199 - 26 Dec 2022
Cited by 1 | Viewed by 2027
Abstract
TA2 titanium alloy was brazed with Ti-Zr-Cu-Ni-V filler metals developed in a laboratory. The melting properties, the microstructures, phase compositions of filler metals and wettability, erosion properties, tensile properties of the brazed joint were studied in detail. The results show that with the [...] Read more.
TA2 titanium alloy was brazed with Ti-Zr-Cu-Ni-V filler metals developed in a laboratory. The melting properties, the microstructures, phase compositions of filler metals and wettability, erosion properties, tensile properties of the brazed joint were studied in detail. The results show that with the increase of V content, the solidus–liquidus temperature of Ti-Zr-Cu-Ni-V filler metals increased, but the temperature difference basically remained unchanged, trace V element had a limited influence on the melting temperature range of Ti-Zr-Cu-Ni filler metals. The microstructure of Ti-Zr-Cu-Ni-1.5V filler metal was composed of Ti, Zr matrix, (Zr, Cu) solid solution and crystal phase. With the addition of V content, these phases containing V such as Ni3VZr2, NiV3, Ni2V in the molten filler metals increased. V was more inclined to combine with Ni to slow down the diffusion of Ni to titanium matrix. The wettability of filler metal with trace (≤0.5 wt.%) V to TA2 titanium alloy became worse, the wettability improved significantly with continuous increase of V content. The thickness of embrittlement layer and intergranular infiltration region decreased significantly by adding V. With the increase of V content, V could regulate the brazing interface reaction, more strengthened phases generated, which resulted the significant increase of the strength (302.72 MPa) and plasticity index (16.3%) of the brazed joint with Ti-Zr-Cu-Ni-1.5V filler metal. Full article
(This article belongs to the Special Issue Advanced Metal Matrix Functional Composites and Applications)
Show Figures

Figure 1

Back to TopTop