Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = CslF6 gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2019 KiB  
Article
QTL Analysis of β-Glucan Content and Other Grain Traits in a Recombinant Population of Spring Barley
by Alberto Gianinetti, Roberta Ghizzoni, Francesca Desiderio, Caterina Morcia, Valeria Terzi and Marina Baronchelli
Int. J. Mol. Sci. 2024, 25(12), 6296; https://doi.org/10.3390/ijms25126296 - 7 Jun 2024
Cited by 1 | Viewed by 1390
Abstract
Barley with high grain β-glucan content is valuable for functional foods. The identification of loci for high β-glucan content is, thus, of great importance for barley breeding. Segregation mapping for the content in β-glucan and other barley grain components (starch, protein, lipid, ash, [...] Read more.
Barley with high grain β-glucan content is valuable for functional foods. The identification of loci for high β-glucan content is, thus, of great importance for barley breeding. Segregation mapping for the content in β-glucan and other barley grain components (starch, protein, lipid, ash, phosphorous, calcium, sodium) was performed using the progeny of the cross between Glacier AC38, a mutant with high amylose, and CDC Fibar, a high β-glucan waxy cultivar. The offspring of this cross showed transgressive segregation for β-glucan content. Linkage analysis based on single-nucleotide polymorphism (SNP) molecular markers was used for the genotyping of the parents and recombinant inbred lines (RILs). Two Quantitative Trait Loci (QTL) for β-glucan content and several QTL for other grain components were found. The former ones, located on chromosomes 1H and 7H, explained 27.9% and 27.4% of the phenotypic variance, respectively. Glacier AC38 provided the allele for high β-glucan content at the QTL on chromosome 1H, whereas CDC Fibar contributed the allele at the QTL on chromosome 7H. Their recombination resulted in a novel haplotype with higher β-glucan content, up to 18.4%. Candidate genes are proposed for these two QTL: HvCslF9, involved in β-glucan biosynthesis, for the QTL on chromosome 1H; Horvu_PLANET_7H01G069300, a gene encoding an ATP-Binding Cassette (ABC) transporter, for the QTL on chromosome 7H. Full article
(This article belongs to the Special Issue Molecular Genetics and Plant Breeding 4.0)
Show Figures

Figure 1

15 pages, 6987 KiB  
Article
Effects of Dark Treatment on Lignin and Cellulose Synthesis in Celery
by Shunhua Zhu, Xiulai Zhong, Xinqi Zhang, Aisheng Xiong, Qing Luo, Kun Wang, Mengyao Li and Guofei Tan
Agronomy 2024, 14(5), 896; https://doi.org/10.3390/agronomy14050896 - 25 Apr 2024
Viewed by 1366
Abstract
To clarify the impact of continuous dark stress on lignin and cellulose synthesis in celery, shade-tolerant celery varieties were screened. Yellow celery variety ‘Qianhuang No.1’ and green celery variety ‘Qianlv No.1’ were separately grown in vegetable greenhouses. Dark treatments were applied using PVC [...] Read more.
To clarify the impact of continuous dark stress on lignin and cellulose synthesis in celery, shade-tolerant celery varieties were screened. Yellow celery variety ‘Qianhuang No.1’ and green celery variety ‘Qianlv No.1’ were separately grown in vegetable greenhouses. Dark treatments were applied using PVC shading sleeves for 4, 8, 12, and 16 d after celery had grown 10–13 true leaf blades. This study aimed to investigate the impact of varying periods of dark treatment on the morphological characteristics, lignin accumulation, and cellulose accumulation in celery. The results showed that dark treatment led to celery yellowing, a reduced stem thickness, and an increased plant height. Analysis of lignin and cellulose contents, as well as the expression of related genes, showed that dark treatment caused down-regulation of AgLAC, AgC3′H, AgCCR, AgPOD and AgCAD genes, leading to changes in lignin accumulation. Dark treatment inhibited the expression of the AgCesA6 gene, thus affecting cellulose synthesis. Under dark conditions, the expression of AgF5H and AgHCT genes had little effect on lignin content in celery, and the expression of the AgCslD3 gene had little effect on cellulose content. Analysis of morphological characteristics, lignin accumulation and cellulose accumulation after different lengths of dark treatment demonstrated that ‘Qianlv No.1’ is a shade-tolerant variety in contrast to ‘Qianhuang No.1’. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

14 pages, 5816 KiB  
Article
Exploring Aegilops caudata: A Comprehensive Study of the CslF6 Gene and β-Glucan
by Ilaria Marcotuli, Davide Caranfa, Pasqualina Colasuonno, Stefania Lucia Giove and Agata Gadaleta
Genes 2024, 15(2), 168; https://doi.org/10.3390/genes15020168 - 27 Jan 2024
Viewed by 1824
Abstract
In the quest for sustainable and nutritious food sources, exploration of ancient grains and wild relatives of cultivated cereals has gained attention. Aegilops caudata, a wild wheatgrass species, stands out as a promising genetic resource due to its potential for crop enhancement [...] Read more.
In the quest for sustainable and nutritious food sources, exploration of ancient grains and wild relatives of cultivated cereals has gained attention. Aegilops caudata, a wild wheatgrass species, stands out as a promising genetic resource due to its potential for crop enhancement and intriguing nutritional properties. This manuscript investigates the CslF6 gene sequence and protein structure of Aegilops caudata, employing comparative analysis with other grass species to identify potential differences impacting β-glucan content. The study involves comprehensive isolation and characterization of the CslF6 gene in Ae. caudata, utilizing genomic sequence analysis, protein structure prediction, and comparative genomics. Comparisons with sequences from diverse monocots reveal evolutionary relationships, highlighting high identities with wheat genomes. Specific amino acid motifs in the CslF6 enzyme sequence, particularly those proximal to key catalytic motifs, exhibit variations among monocot species. These differences likely contribute to alterations in β-glucan composition, notably impacting the DP3:DP4 ratio, which is crucial for understanding and modulating the final β-glucan content. The study positions Ae. caudata uniquely within the evolutionary landscape of CslF6 among monocots, suggesting potential genetic divergence or unique functional adaptations within this species. Overall, this investigation enriches our understanding of β-glucan biosynthesis, shedding light on the role of specific amino acid residues in modulating enzymatic activity and polysaccharide composition. Full article
(This article belongs to the Special Issue Wheat Genetic Improvement - Carlotta Award 2022)
Show Figures

Figure 1

25 pages, 9403 KiB  
Article
Mixed-Linkage Glucan Is the Main Carbohydrate Source and Starch Is an Alternative Source during Brachypodium Grain Germination
by Mathilde Francin-Allami, Axelle Bouder, Audrey Geairon, Camille Alvarado, Lucie Le-Bot, Sylviane Daniel, Mingqin Shao, Debbie Laudencia-Chingcuanco, John P. Vogel, Fabienne Guillon, Estelle Bonnin, Luc Saulnier and Richard Sibout
Int. J. Mol. Sci. 2023, 24(7), 6821; https://doi.org/10.3390/ijms24076821 - 6 Apr 2023
Cited by 7 | Viewed by 2561
Abstract
Seeds of the model grass Brachypodium distachyon are unusual because they contain very little starch and high levels of mixed-linkage glucan (MLG) accumulated in thick cell walls. It was suggested that MLG might supplement starch as a storage carbohydrate and may be mobilised [...] Read more.
Seeds of the model grass Brachypodium distachyon are unusual because they contain very little starch and high levels of mixed-linkage glucan (MLG) accumulated in thick cell walls. It was suggested that MLG might supplement starch as a storage carbohydrate and may be mobilised during germination. In this work, we observed massive degradation of MLG during germination in both endosperm and nucellar epidermis. The enzymes responsible for the MLG degradation were identified in germinated grains and characterized using heterologous expression. By using mutants targeting MLG biosynthesis genes, we showed that the expression level of genes coding for MLG and starch-degrading enzymes was modified in the germinated grains of knocked-out cslf6 mutants depleted in MLG but with higher starch content. Our results suggest a substrate-dependent regulation of the storage sugars during germination. These overall results demonstrated the function of MLG as the main carbohydrate source during germination of Brachypodium grain. More astonishingly, cslf6 Brachypodium mutants are able to adapt their metabolism to the lack of MLG by modifying the energy source for germination and the expression of genes dedicated for its use. Full article
(This article belongs to the Collection The Plant Cell Walls and Their Impact on Plant Physiology)
Show Figures

Figure 1

20 pages, 3882 KiB  
Article
Limosilactobacillus fermentum 3872 That Produces Class III Bacteriocin Forms Co-Aggregates with the Antibiotic-Resistant Staphylococcus aureus Strains and Induces Their Lethal Damage
by Vyacheslav M. Abramov, Igor V. Kosarev, Andrey V. Machulin, Tatiana V. Priputnevich, Evgenia I. Deryusheva, Ekaterina L. Nemashkalova, Irina O. Chikileva, Tatiana N. Abashina, Alexander N. Panin, Vyacheslav G. Melnikov, Nataliya E. Suzina, Ilia N. Nikonov, Marina V. Selina, Valentin S. Khlebnikov, Vadim K. Sakulin, Vladimir A. Samoilenko, Alexey B. Gordeev, Gennady T. Sukhikh, Vladimir N. Uversky and Andrey V. Karlyshev
Antibiotics 2023, 12(3), 471; https://doi.org/10.3390/antibiotics12030471 - 26 Feb 2023
Cited by 7 | Viewed by 3756
Abstract
LF3872 was isolated from the milk of a healthy lactating and breastfeeding woman. Earlier, the genome of LF3872 was sequenced, and a gene encoding unique bacteriocin was discovered. We have shown here that the LF3872 strain produces a novel thermolabile class III bacteriolysin [...] Read more.
LF3872 was isolated from the milk of a healthy lactating and breastfeeding woman. Earlier, the genome of LF3872 was sequenced, and a gene encoding unique bacteriocin was discovered. We have shown here that the LF3872 strain produces a novel thermolabile class III bacteriolysin (BLF3872), exhibiting antimicrobial activity against antibiotic-resistant Staphylococcus aureus strains. Sequence analysis revealed the two-domain structural (lysozyme-like domain and peptidase M23 domain) organization of BLF3872. At least 25% residues of this protein are expected to be intrinsically disordered. Furthermore, BLF3872 is predicted to have a very high liquid-liquid phase separation. According to the electron microscopy data, the bacterial cells of LF3872 strain form co-aggregates with the S. aureus 8325-4 bacterial cells. LF3872 produced bacteriolysin BLF3872 that lyses the cells of the S. aureus 8325-4 mastitis-inducing strain. The sensitivity of the antibiotic-resistant S. aureus collection strains and freshly isolated antibiotic-resistant strains was tested using samples from women with lactation mastitis; the human nasopharynx and oral cavity; the oropharynx of pigs; and the cows with a diagnosis of clinical mastitis sensitive to the lytic action of the LF3872 strain producing BLF3872. The co-cultivation of LF3872 strain with various antibiotic-resistant S. aureus strains for 24 h reduced the level of living cells of these pathogens by six log. The LF3872 strain was found to be able to co-aggregate with all studied S. aureus strains. The cell-free culture supernatant of LF3872 (CSLF3872) induced S. aureus cell damage and ATP leakage. The effectiveness of the bacteriolytic action of LF3872 strain did not depend on the origin of the S. aureus strains. The results reported here are important for the creation of new effective drugs against antibiotic-resistant strains of S. aureus circulating in humans and animals. Full article
Show Figures

Figure 1

24 pages, 974 KiB  
Article
Limosilactobacillus fermentum Strain 3872: Antibacterial and Immunoregulatory Properties and Synergy with Prebiotics against Socially Significant Antibiotic-Resistant Infections of Animals and Humans
by Vyacheslav M. Abramov, Igor V. Kosarev, Andrey V. Machulin, Tatiana V. Priputnevich, Irina O. Chikileva, Evgenia I. Deryusheva, Tatiana N. Abashina, Almira D. Donetskova, Alexander N. Panin, Vyacheslav G. Melnikov, Nataliya E. Suzina, Ilia N. Nikonov, Marina V. Selina, Valentin S. Khlebnikov, Vadim K. Sakulin, Raisa N. Vasilenko, Vladimir A. Samoilenko, Vladimir N. Uversky and Andrey V. Karlyshev
Antibiotics 2022, 11(10), 1437; https://doi.org/10.3390/antibiotics11101437 - 19 Oct 2022
Cited by 8 | Viewed by 3699
Abstract
Limosilactobacillus fermentum strain 3872 (LF3872) was originally isolated from the breast milk of a healthy woman during lactation and the breastfeeding of a child. The high-quality genome sequencing of LF3872 was performed, and a gene encoding a unique bacteriocin was discovered. It was [...] Read more.
Limosilactobacillus fermentum strain 3872 (LF3872) was originally isolated from the breast milk of a healthy woman during lactation and the breastfeeding of a child. The high-quality genome sequencing of LF3872 was performed, and a gene encoding a unique bacteriocin was discovered. It was established that the bacteriocin produced by LF3872 (BLF3872) belongs to the family of cell-wall-degrading proteins that cause cell lysis. The antibacterial properties of LF3872 were studied using test cultures of antibiotic-resistant Gram-positive and Gram-negative pathogens. Gram-positive pathogens (Staphylococcus aureus strain 8325-4 and S. aureus strain IIE CI-SA 1246) were highly sensitive to the bacteriolytic action of LF3872. Gram-negative pathogens (Escherichia coli, Salmonella strains, and Campylobacter jejuni strains) were more resistant to the bacteriolytic action of LF3872 compared to Gram-positive pathogens. LF3872 is a strong co-aggregator of Gram-negative pathogens. The cell-free culture supernatant of LF3872 (CSLF3872) induced cell damage in the Gram-positive and Gram-negative test cultures and ATP leakage. In the in vitro experiments, it was found that LF3872 and Actigen prebiotic (Alltech Inc., Nicholasville, KY, USA) exhibited synergistic anti-adhesive activity against Gram-negative pathogens. LF3872 has immunoregulatory properties: it inhibited the lipopolysaccharide-induced production of proinflammatory cytokines IL-8, IL-1β, and TNF-α in a monolayer of Caco-2 cells; inhibited the production of IL-12 and stimulated the production of IL-10 in immature human dendritic cells; and stimulated the production of TGF-β, IFN-γ, and IgA in the immunocompetent cells of intestinal Peyer’s patches (PPs) in mice. These results indicate the possibility of creating a synbiotic based on LF3872 and a prebiotic derived from Saccharomyces cerevisiae cell wall components. Such innovative drugs and biologically active additives are necessary for the implementation of a strategy to reduce the spread of antibiotic-resistant strains of socially significant animal and human infections. Full article
Show Figures

Figure 1

16 pages, 2572 KiB  
Article
Genome-Wide Association Study for Udder Conformation Traits in Chinese Holstein Cattle
by Mudasir Nazar, Ismail Mohamed Abdalla, Zhi Chen, Numan Ullah, Yan Liang, Shuangfeng Chu, Tianle Xu, Yongjiang Mao, Zhangping Yang and Xubin Lu
Animals 2022, 12(19), 2542; https://doi.org/10.3390/ani12192542 - 22 Sep 2022
Cited by 26 | Viewed by 3941
Abstract
Udder conformation traits are one of the most economic traits in dairy cows, greatly affecting animal health, milk production, and producer profitability in the dairy industry. Genetic analysis of udder structure and scores have been developed in Holstein cattle. In our research, we [...] Read more.
Udder conformation traits are one of the most economic traits in dairy cows, greatly affecting animal health, milk production, and producer profitability in the dairy industry. Genetic analysis of udder structure and scores have been developed in Holstein cattle. In our research, we conducted a genome-wide association study for five udder traits, including anterior udder attachment (AUA), central suspensory ligament (CSL), posterior udder attachment height (PUAH), posterior udder attachment width (PUAW), and udder depth (UD), in which the fixed and random model circulating probability unification (FarmCPU) model was applied for the association analysis. The heritability and the standard errors of these five udder traits ranged from 0.04 ± 0.00 to 0.49 ± 0.03. Phenotype data were measured from 1000 Holstein cows, and the GeneSeek Genomic Profiler (GGP) Bovine 100 K SNP chip was used to analyze genotypic data in Holstein cattle. For GWAS analysis, 984 individual cows and 84,407 single-nucleotide polymorphisms (SNPs) remained after quality control; a total of 18 SNPs were found at the GW significant threshold (p < 5.90 × 10−7). Many candidate genes were identified within 200kb upstream or downstream of the significant SNPs, which include MGST1, MGST2, MTUS1, PRKN, STXBP6, GRID2, E2F8, CDH11, FOXP1, SLF1, TMEM117, SBF2, GC, ADGRB3, and GCLC. Pathway analysis revealed that 58 Gene Ontology (GO) terms and 18 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched with adjusted p values, and these GO terms and the KEGG pathway analysis were associated with biological information, metabolism, hormonal growth, and development processes. These results could give valuable biological information for the genetic architecture of udder conformation traits in dairy Holstein cattle. Full article
(This article belongs to the Special Issue Decoding the Genetics of Bovine Mastitis)
Show Figures

Figure 1

20 pages, 3355 KiB  
Article
The Cell-Wall β-d-Glucan in Leaves of Oat (Avena sativa L.) Affected by Fungal Pathogen Blumeria graminis f. sp. avenae
by Veronika Gregusová, Šarlota Kaňuková, Martina Hudcovicová, Katarína Bojnanská, Katarína Ondreičková, Beáta Piršelová, Patrik Mészáros, Libuša Lengyelová, Ľudmila Galuščáková, Veronika Kubová, Ildikó Matušíková, Daniel Mihálik, Ján Kraic and Michaela Havrlentová
Polymers 2022, 14(16), 3416; https://doi.org/10.3390/polym14163416 - 21 Aug 2022
Cited by 3 | Viewed by 2365
Abstract
In addition to the structural and storage functions of the (1,3; 1,4)-β-d-glucans (β-d-glucan), the possible protective role of this polymer under biotic stresses is still debated. The aim of this study was to contribute to this hypothesis by analyzing [...] Read more.
In addition to the structural and storage functions of the (1,3; 1,4)-β-d-glucans (β-d-glucan), the possible protective role of this polymer under biotic stresses is still debated. The aim of this study was to contribute to this hypothesis by analyzing the β-d-glucans content, expression of related cellulose synthase-like (Csl) Cs1F6, CslF9, CslF3 genes, content of chlorophylls, and β-1,3-glucanase content in oat (Avena sativa L.) leaves infected with the commonly occurring oat fungal pathogen, Blumeria graminis f. sp. avenae (B. graminis). Its presence influenced all measured parameters. The content of β-d-glucans in infected leaves decreased in all used varieties, compared to the non-infected plants, but not significantly. Oats reacted differently, with Aragon and Vaclav responding with overexpression, and Bay Yan 2, Ivory, and Racoon responding with the underexpression of these genes. Pathogens changed the relative ratios regarding the expression of CslF6, CslF9, and CslF3 genes from neutral to negative correlations. However, changes in the expression of these genes did not statistically significantly affect the content of β-d-glucans. A very slight indication of positive correlation, but statistically insignificant, was observed between the contents of β-d-glucans and chlorophylls. Some isoforms of β-1,3-glucanases accumulated to a several-times higher level in the infected leaves of all varieties. New isoforms of β-1,3-glucanases were also detected in infected leaves after fungal infection. Full article
(This article belongs to the Special Issue Polysaccharides: From Basic Research to Advanced Applications)
Show Figures

Figure 1

9 pages, 2112 KiB  
Communication
QTL Mapping of Mesocotyl Elongation and Confirmation of a QTL in Dongxiang Common Wild Rice in China
by Qian Huang, Chunyan Ju, Yibing Cheng, Di Cui, Bing Han, Zhengwu Zhao, Xiaoding Ma and Longzhi Han
Agronomy 2022, 12(8), 1800; https://doi.org/10.3390/agronomy12081800 - 29 Jul 2022
Cited by 6 | Viewed by 2128
Abstract
Direct-seeded rice (DSR) cultivation is an effective and important way to resolve agricultural labor scarcity, water scarcity and high production cost issues. Mesocotyl elongation (ME) is the main driver of the rapid emergence of rice seedlings from the soil and is an important [...] Read more.
Direct-seeded rice (DSR) cultivation is an effective and important way to resolve agricultural labor scarcity, water scarcity and high production cost issues. Mesocotyl elongation (ME) is the main driver of the rapid emergence of rice seedlings from the soil and is an important indicator of the suitability of rice varieties for direct seeding. Hence, discovering ME-related genes is particularly important for breeding rice varieties suitable for direct seeding. In this study, a chromosome segment substitution line (CSSL) population generated from a cross between Dongxiang common wild rice and Nipponbare (Nip) was used to map quantitative trait loci (QTLs) for ME. Two QTLs for mesocotyl length were identified on chromosomes 3 and 6 with logarithm of odds (LOD) scores ranging from 5.47 to 6.04 and explaining 15.95–16.79% of the phenotypic variance. Among these QTLs, qML6 accounted for the highest phenotypic variance (16.79%). Then, to confirm the strongest QTL, we generated an F2 segregating population via the CSL127 line harboring the qML6 locus and the recurrent parent Nip. The QTL qML6-1 associated with ME was mapped to a location between markers DX-C6-2 and DX-C6-4, which is consistent with the location of the previously mapped QTL qML6. qML6-1 had an LOD score of 8.45 and explained 30.56% of the phenotypic variance. The QTLs detected in this study provide promising targets for further genetic characterization and for use in marker-assisted selection to develop varieties with improved ME for the cultivation of DSR. Full article
(This article belongs to the Special Issue Discovery and Utilization of Germplasm Resources in Rice)
Show Figures

Figure 1

Back to TopTop