Limosilactobacillus fermentum 3872 That Produces Class III Bacteriocin Forms Co-Aggregates with the Antibiotic-Resistant Staphylococcus aureus Strains and Induces Their Lethal Damage
Abstract
:1. Introduction
2. Results and Discussion
2.1. A Novel Class III Bacteriocin BLF3872
2.2. Scanning Electron Microscopy
2.3. Antibacterial Activity of LF3872 against Collection ATCC Methicillin-Resistant S. aureus (MRSA) Strains
2.4. Antibacterial Activity of LF3872 against S. aureus Clinical Isolates from the Milk of Women with Mastitis
2.5. Antibacterial Activity of LF3872 against S. aureus Strains Isolated from the Nasopharynx and Oral Cavity of Humans
2.6. Antibacterial Activity of LF3872 against S. aureus Strains Isolated from the Oropharynx of Pigs
2.7. Antibacterial Activity of LF3872 against S. aureus Clinical Isolates from the Milk of Cows with Mastitis
2.8. Cells of LF3872 Co-Aggregate with Antibiotic-Resistant S. aureus Strains Isolated from Humans and Animals
2.9. CSLF3872 Induces Cell Damage and ATP Leakage in Antibiotic-Resistant S. aureus Strains
2.10. Lactic Acid Production by LF3872 Strain in the Process of Its Cultivation in the MRS Broth
2.11. Hydrogen Peroxide Production by LF3872 Strain in the Process of Its Cultivation in the MRS Broth
3. Materials and Methods
3.1. Used Microorganisms and Their Growth Conditions
3.2. Sequence Alignment and Bioinformatic Analysis
3.3. Scanning Electron Microscopy
3.4. Determination of Antibacterial Activity of LF3872 against the Studied Groups of S. aureus Strains
3.5. Co-Aggregation Assay for the Determination of Interactions between LF3872 and S. aureus Strains
3.6. Preparation of Cell-Free Culture Supernatant (CSLF3872)
3.7. Assessment of Cytoplasmic Membrane Permeability by Measurement of Extracellular ATP in S. aureus Strains of the Studied Groups
3.8. Lactic Acid Determination
3.9. Hydrogen Peroxide Determination
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mainous, A.G.; Hueston, W.J.; Everett, C.J.; Diaz, V.A. Nasal Carriage of Staphylococcus aureus and Methicillin-Resistant S. aureus in the United States, 2001–2002. Ann. Fam. Med. 2006, 4, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Rasigade, J.-P.; Vandenesch, F. Staphylococcus aureus: A pathogen with still unresolved issues. Infect. Genet. Evol. 2014, 21, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Mandell, G.L.; Bennett, J.E.; Dolin, R. Staphylococcus aureus (including Staphylococcal toxic shock). In Bennett’s-Principles and Practice of Infectious Diseases; Mandell, G.L., Bennett, J.E., Dolin, R., Eds.; Churchill Livingstone: Philadelphia, PA, USA, 2000. [Google Scholar]
- Hermans, K.; Devriese, L.A.; Haesebrouck, F. Staphylococcus in Gyles CL. In Pathogenesis of Bacterial Infections in Animals; Prescott, J.F., Songer, J.G., Thoen, C.O., Eds.; Wiley-Blackwell: Oxford, UK, 2010; pp. 75–89. [Google Scholar]
- Holten, K.B.; Onusko, E.M. Appropriate prescribing of oral beta-lactam antibiotics. Am. Fam. Physician 2000, 62, 611–620. [Google Scholar]
- Bush, K.; Bradford, P.A. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb. Perspect. Med. 2016, 6, a025247. [Google Scholar] [CrossRef] [PubMed]
- Berry, A.V.; Kuti, J.L. Pharmacodynamic Thresholds for Beta-Lactam Antibiotics: A Story of Mouse Versus Man. Front. Pharmacol. 2022, 13, 833189. [Google Scholar] [CrossRef]
- Silago, V. Beta-lactam antibiotics and extended spectrum beta-lactamases. GSC Adv. Res. Rev. 2021, 9, 015–024. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; O’Driscoll, N.H.; Lamb, A.J. Morphological and ultrastructural changes in bacterial cells as an indicator of antibacterial mechanism of action. Cell. Mol. Life. Sci. 2016, 73, 4471–4492. [Google Scholar] [CrossRef]
- Boswihi, S.S.; Udo, E.E. Methicillin-resistant Staphylococcus aureus: An update on the epidemiology, treatment options and infection control. Curr. Med. Res. Pract. 2018, 8, 18–24. [Google Scholar] [CrossRef]
- Lowy, F.D. Antimicrobial resistance: The example of Staphylococcus aureus. J. Clin. Investig. 2003, 111, 1265–1273. [Google Scholar] [CrossRef]
- Malachowa, N.; DeLeo, F.R. Mobile genetic elements of Staphylococcus aureus. Cell Mol. Life Sci. 2010, 67, 3057–3071. [Google Scholar] [CrossRef] [Green Version]
- Witte, W.; Strommenger, B.; Stanek, C.; Cuny, C. Methicillin-resistant Staphylococcus aureus ST398 in Humans and Animals, Central Europe. Emerg. Infect. Dis. 2007, 13, 255–258. [Google Scholar] [CrossRef]
- Tacconelli, E.; De Angelis, G.; Cataldo, M.A.; Pozzi, E.; Cauda, R. Does antibiotic exposure increase the risk of methicillin-resistant Staphylococcus aureus (MRSA) isolation? A systematic review and meta-analysis. J. Antimicrob. Chemother. 2008, 61, 26–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, T.; Nishiyama, A.; Takano, T.; Yabe, S.; Higuchi, W.; Razvina, O.; Shi, D. Community-acquired methicillin-resistant Staphylococcus aureus: Community transmission, pathogenesis, and drug resistance. J. Infect. Chemother. 2010, 16, 225–254. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Liu, D.; Ma, Y.; Gao, W. Comparison of community- and healthcare-associated methicillin-resistant Staphylococcus aureus isolates at a Chinese tertiary hospital, 2012–2017. Sci. Rep. 2018, 8, 17916. [Google Scholar] [CrossRef] [Green Version]
- Udo, E.E. Community-Acquired Methicillin-Resistant Staphylococcus aureus: The New Face of an Old Foe? Med. Princ. Pract. 2013, 22 (Suppl. 1), 20–29. [Google Scholar] [CrossRef] [PubMed]
- Kwapisz, E.; Garbacz, K.; Kosecka-Strojek, M.; Schubert, J.; Bania, J.; Międzobrodzki, J. Presence of egc-positive major clones ST 45, 30 and 22 among methicillin-resistant and methicillin-susceptible oral Staphylococcus aureus strains. Sci. Rep. 2020, 10, 18889. [Google Scholar] [CrossRef] [PubMed]
- Grundmann, H.; Hori, S.; Winter, B.; Tami, A.; Austin, D.J. Risk Factors for the Transmission of Methicillin-Resistant Staphylococcus aureus in an Adult Intensive Care Unit: Fitting a Model to the Data. J. Infect. Dis. 2002, 185, 481–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naimi, T.S.; LeDell, K.H.; Como-Sabetti, K.; Borchardt, S.M.; Boxrud, D.J.; Etienne, J.; Johnson, S.K.; Vandenesch, F.; Fridkin, S.; O’Boyle, C.; et al. Comparison of Community- and Health Care–Associated Methicillin-Resistant Staphylococcus aureus Infection. JAMA 2003, 290, 2976–2984. [Google Scholar] [CrossRef] [Green Version]
- Tenover, F.C.; McDougal, L.K.; Goering, R.V.; Killgore, G.; Projan, S.J.; Patel, J.B.; Dunman, P.M. Characterization of a Strain of Community-Associated Methicillin-Resistant Staphylococcus aureus Widely Disseminated in the United States. J. Clin. Microbiol. 2006, 44, 108–118. [Google Scholar] [CrossRef] [Green Version]
- Enright, M.C.; Robinson, D.A.; Randle, G.; Feil, E.J.; Grundmann, H.; Spratt, B.G. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc. Natl. Acad. Sci. USA 2002, 99, 7687–7692. [Google Scholar] [CrossRef] [Green Version]
- Graffunder, E.M.; Venezia, R.A. Risk factors associated with nosocomial methicillin-resistant Staphylococcus aureus (MRSA) infection including previous use of antimicrobials. J. Antimicrob. Chemother. 2002, 49, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Okuma, K.; Iwakawa, K.; Turnidge, J.D.; Grubb, W.B.; Bell, J.M.; O’Brien, F.G.; Coombs, G.W.; Pearman, J.W.; Tenover, F.C.; Kapi, M.; et al. Dissemination of New Methicillin-Resistant Staphylococcus aureus Clones in the Community. J. Clin. Microbiol. 2002, 40, 4289–4294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, D.A.; Enright, M.C. Evolutionary Models of the Emergence ofMethicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2003, 47, 3926–3934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandenesch, F.; Naimi, T.; Enright, M.C.; Lina, G.; Nimmo, G.R.; Heffernan, H.; Liassine, N.; Bes, M.; Greenland, T.; Reverdy, M.-E.; et al. Community-Acquired Methicillin-Resistant Staphylococcus aureus Carrying Panton-Valentine Leukocidin Genes: Worldwide Emergence. Emerg. Infect. Dis. 2003, 9, 978–984. [Google Scholar] [CrossRef]
- Ito, T.; Ma, X.X.; Takeuchi, F.; Okuma, K.; Yuzawa, H.; Hiramatsu, K. Novel Type V Staphylococcal Cassette Chromosome mec Driven by a Novel Cassette Chromosome Recombinase, ccrC. Antimicrob. Agents Chemother. 2004, 48, 2637–2651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijaya, L.; Hsu, L.-Y.; Kurup, A. Community-associated methicillin-resistant Staphylococcus aureus: Overview and local situation. Ann. Acad. Med. Singap. 2006, 35, 479–486. [Google Scholar] [PubMed]
- WHO. Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 27 November 2022).
- Garvey, M. Bacteriophages and the One Health Approach to Combat Multidrug Resistance: Is This the Way? Antibiotics 2020, 9, 414. [Google Scholar] [CrossRef]
- Zalewska-Piątek, B.; Piątek, R. Bacteriophages as Potential Tools for Use in Antimicrobial Therapy and Vaccine Development. Pharmaceuticals 2021, 14, 331. [Google Scholar] [CrossRef]
- Broncano-Lavado, A.; Santamaría-Corral, G.; Esteban, J.; García-Quintanilla, M. Advances in Bacteriophage Therapy against Relevant MultiDrug-Resistant Pathogens. Antibiotics 2021, 10, 672. [Google Scholar] [CrossRef] [PubMed]
- Busarcevic, M.; Kojic, M.; Dalgalarrondo, M.; Chobert, J.-M.; Haertlé, T.; Topisirovic, L. Purification of bacteriocin LS1 produced by human oral isolate Lactobacillus salivarius BGHO1. Oral Microbiol. Immunol. 2008, 23, 254–258. [Google Scholar] [CrossRef]
- Chen, L.-J.; Tsai, H.-T.; Chen, W.-J.; Hsieh, C.-Y.; Wang, P.-C.; Chen, C.-S.; Wang, L.; Yang, C.-C. In vitro antagonistic growth effects of Lactobacillus fermentum and Lactobacillus salivarius and their fermentative broth on periodontal pathogens. Braz. J. Microbiol. 2012, 43, 1376–1384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arroyo, R.; Martín, V.; Maldonado, A.; Jiménez, E.; Fernández, L.; Rodríguez, J.M. Treatment of Infectious Mastitis during Lactation: Antibiotics versus Oral Administration of Lactobacilli Isolated from Breast Milk. Clin. Infect. Dis. 2010, 50, 1551–1558. [Google Scholar] [CrossRef] [Green Version]
- Fernández, L.; Arroyo, R.; Espinosa, I.; Marín, M.; Jiménez, E.; Rodríguez, J. Probiotics for human lactational mastitis. Benef. Microbes 2014, 5, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, N.A.; Kermanshahi, R.K.; Yakhchali, B.; Sattari, T.N. Antagonistic activity of probiotic lactobacilli against Staphylococcus aureus isolated from bovine mastitis. African J. Microbiol. Res. 2010, 4, 2169–2173. [Google Scholar] [CrossRef]
- Abramov, V.M.; Kosarev, I.V.; Machulin, A.V.; Priputnevich, T.V.; Chikileva, I.O.; Deryusheva, E.I.; Abashina, T.N.; Donetskova, A.D.; Panin, A.N.; Melnikov, V.G.; et al. Limosilactobacillus fermentum Strain 3872: Antibacterial and Immunoregulatory Properties and Synergy with Prebiotics against Socially Significant Antibiotic-Resistant Infections of Animals and Humans. Antibiotics 2022, 11, 1437. [Google Scholar] [CrossRef] [PubMed]
- Bramley, A.J.; Patel, A.H.; O’Reilly, M.; Foster, R.; Foster, T.J. Roles of alpha-toxin and beta-toxin in virulence of Staphylococcus aureus for the mouse mammary gland. Infect. Immun. 1989, 57, 2489–2494. [Google Scholar] [CrossRef] [Green Version]
- Lehri, B.; Seddon, A.M.; Karlyshev, A.V. Potential probiotic-associated traits revealed from completed high quality genome sequence of Lactobacillus fermentum 3872. Stand. Genom. Sci. 2017, 12, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güllüce, M.; Karadayı, M.; Barış, Ö. Bacteriocins: Promising Natural Antimicrobials. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Formatex Research Center: Badajoz, Spain, 2013; pp. 1016–1027. [Google Scholar]
- Deegan, L.H.; Cotter, P.D.; Hill, C.; Ross, P. Bacteriocins: Biological tools for bio-preservation and shelf-life extension. Int. Dairy J. 2006, 16, 1058–1071. [Google Scholar] [CrossRef]
- Cotter, P.D.; Ross, R.; Hill, C. Bacteriocins—A viable alternative to antibiotics? Nat. Rev. Microbiol. 2013, 11, 95–105. [Google Scholar] [CrossRef]
- Rawlings, N.D.; Barrett, A.J.; Bateman, A. MEROPS: The peptidase database. Nucleic Acids Res. 2010, 38, D227–D233. [Google Scholar] [CrossRef]
- Kaur, S.; Kaur, S. Bacteriocins as Potential Anticancer Agents. Front. Pharmacol. 2015, 6, 272. [Google Scholar] [CrossRef] [Green Version]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Xiang, Y.; Morais, M.C.; Cohen, D.N.; Bowman, V.D.; Anderson, D.L.; Rossmann, M.G. Crystal and cryoEM structural studies of a cell wall degrading enzyme in the bacteriophage φ29 tail. Proc. Natl. Acad. Sci. USA 2008, 105, 9552–9557. [Google Scholar] [CrossRef] [Green Version]
- Dayhoff, G.W.; Uversky, V.N. Rapid prediction and analysis of protein intrinsic disorder. Protein Sci. 2022, 31, e4496. [Google Scholar] [CrossRef]
- Horvath, A.; Miskei, M.; Ambrus, V.; Vendruscolo, M.; Fuxreiter, M. Sequence-based prediction of protein binding mode landscapes. PLOS Comput. Biol. 2020, 16, e1007864. [Google Scholar] [CrossRef] [PubMed]
- Fonin, A.V.; Antifeeva, I.A.; Kuznetsova, I.M.; Turoverov, K.K.; Zaslavsky, B.Y.; Kulkarni, P.; Uversky, V.N. Biological soft matter: Intrinsically disordered proteins in liquid–liquid phase separation and biomolecular condensates. Essays Biochem. 2022, 66, 831–847. [Google Scholar] [CrossRef]
- Antifeeva, I.A.; Fonin, A.V.; Fefilova, A.S.; Stepanenko, O.V.; Povarova, O.I.; Silonov, S.A.; Kuznetsova, I.M.; Uversky, V.N.; Turoverov, K.K. Liquid–liquid phase separation as an organizing principle of intracellular space: Overview of the evolution of the cell compartmentalization concept. Cell. Mol. Life Sci. 2022, 79, 251. [Google Scholar] [CrossRef] [PubMed]
- Bliven, S.E.; Lafita, A.; Rose, P.W.; Capitani, G.; Prlić, A.; Bourne, P.E. Analyzing the symmetrical arrangement of structural repeats in proteins with CE-Symm. PLOS Comput. Biol. 2019, 15, e1006842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turoverov, K.K.; Kuznetsova, I.M.; Fonin, A.; Darling, A.L.; Zaslavsky, B.; Uversky, V.N. Stochasticity of Biological Soft Matter: Emerging Concepts in Intrinsically Disordered Proteins and Biological Phase Separation. Trends Biochem. Sci. 2019, 44, 716–728. [Google Scholar] [CrossRef] [PubMed]
- Darling, A.L.; Liu, Y.; Oldfield, C.J.; Uversky, V.N. Intrinsically Disordered Proteome of Human Membrane-Less Organelles. Proteomics 2018, 18, e1700193. [Google Scholar] [CrossRef]
- Uversky, V.N. Intrinsically disordered proteins in overcrowded milieu: Membrane-less organelles, phase separation, and intrinsic disorder. Curr. Opin. Struct. Biol. 2017, 44, 18–30. [Google Scholar] [CrossRef]
- Uversky, V.N. Protein intrinsic disorder-based liquid–liquid phase transitions in biological systems: Complex coacervates and membrane-less organelles. Adv. Colloid Interface Sci. 2017, 239, 97–114. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N.; Kuznetsova, I.M.; Turoverov, K.K.; Zaslavsky, B. Intrinsically disordered proteins as crucial constituents of cellular aqueous two phase systems and coacervates. FEBS Lett. 2015, 589, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Chu, X.; Sun, T.; Li, Q.; Xu, Y.; Zhang, Z.; Lai, L.; Pei, J. Prediction of liquid–liquid phase separating proteins using machine learning. BMC Bioinform. 2022, 23, 72. [Google Scholar] [CrossRef] [PubMed]
- Horvath, A.; Vendruscolo, M.; Fuxreiter, M. Sequence-based Prediction of the Cellular Toxicity Associated with Amyloid Aggregation within Protein Condensates. Biochemistry 2022, 61, 2461–2469. [Google Scholar] [CrossRef]
- Vendruscolo, M.; Fuxreiter, M. Sequence Determinants of the Aggregation of Proteins Within Condensates Generated by Liquid-liquid Phase Separation. J. Mol. Biol. 2022, 434, 167201. [Google Scholar] [CrossRef] [PubMed]
- Höltje, J.-V. Growth of the Stress-Bearing and Shape-Maintaining Murein Sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 1998, 62, 181–203. [Google Scholar] [CrossRef] [Green Version]
- Lehri, B.; Seddon, A.M.; Karlyshev, A.V. Lactobacillus fermentum 3872 as a potential tool for combatting Campylobacter jejuni infections. Virulence 2017, 8, 1753–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraboschi, P.; Ciceri, S.; Grisenti, P. Applications of Lysozyme, an Innate Immune Defense Factor, as an Alternative Antibiotic. Antibiotics 2021, 10, 1534. [Google Scholar] [CrossRef]
- Callewaert, L.; Michiels, C.W. Lysozymes in the animal kingdom. J. Biosci. 2010, 35, 127–160. [Google Scholar] [CrossRef]
- Fischetti, V.A. Development of Phage Lysins as Novel Therapeutics: A Historical Perspective. Viruses 2018, 10, 310. [Google Scholar] [CrossRef] [Green Version]
- Sutton, J.A.F.; Carnell, O.T.; Lafage, L.; Gray, J.; Biboy, J.; Gibson, J.F.; Pollitt, E.J.G.; Tazoll, S.C.; Turnbull, W.; Hajdamowicz, N.H.; et al. Staphylococcus aureus cell wall structure and dynamics during host-pathogen interaction. PLOS Pathog. 2021, 17, e1009468. [Google Scholar] [CrossRef]
- Delgado, S.; García, P.; Fernández, L.; Jiménez, E.; Rodríguez-Baños, M.; del Campo, R.; Rodríguez, J.M. Characterization ofStaphylococcus aureus strains involved in human and bovine mastitis. FEMS Immunol. Med Microbiol. 2011, 62, 225–235. [Google Scholar] [CrossRef] [Green Version]
- Reddy, P.; Qi, C.; Zembower, T.; Noskin, G.A.; Bolon, M. Postpartum Mastitis and Community-acquired Methicillin-resistant Staphylococcus aureus. Emerg. Infect. Dis. 2007, 13, 298–301. [Google Scholar] [CrossRef] [PubMed]
- Sears, P.M.; McCarthy, K.K. Management and treatment of staphylococcal mastitis. Vet. Clin. North Am. Food Anim. Pract. 2003, 19, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Yao, Z. Maternal-Infant Correlation of Multidrug-Resistant Staphylococcus aureus Carriage: A Prospective Cohort Study. Front. Pediatr. 2018, 6, 384. [Google Scholar] [CrossRef] [PubMed]
- Garbacz, K.; Kwapisz, E.; Wierzbowska, M. Denture stomatitis associated with small-colony variants of Staphylococcus aureus: A case report. BMC Oral Health 2019, 19, 219. [Google Scholar] [CrossRef] [Green Version]
- Gorwitz, R.J. A Review of Community-Associated Methicillin-Resistant Staphylococcus aureus Skin and Soft Tissue Infections. Pediatr. Infect. Dis. J. 2008, 27, 1–7. [Google Scholar] [CrossRef]
- Patel, J.B.; Kilbride, H.; Paulson, L. Neonatal Presentation of an Air-Filled Neck Mass that Enlarges with Valsalva: A Case Report. Am. J. Perinatol. Rep. 2015, 5, e207–e211. [Google Scholar] [CrossRef] [Green Version]
- Voss, A.; Loeffen, F.; Bakker, J.; Klaassen, C.; Wulf, M. Methicillin-resistant Staphylococcus aureus in Pig Farming. Emerg. Infect. Dis. 2005, 11, 1965–1966. [Google Scholar] [CrossRef]
- Lewis, H.C.; Mølbak, K.; Reese, C.; Aarestrup, F.; Selchau, M.; Sørum, M.; Skov, R.L. Pigs as Source of Methicillin-Resistant Staphylococcus aureus CC398 Infections in Humans, Denmark. Emerg. Infect. Dis. 2008, 14, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Denis, O.; Suetens, C.; Hallin, M.; Catry, B.; Ramboer, I.; Dispas, M.; Willems, G.; Gordts, B.; Butaye, P.; Struelens, M.J. Methicillin-Resistant Staphylococcus aureus ST398 in Swine Farm Personnel, Belgium. Emerg. Infect. Dis. 2009, 15, 1098–1101. [Google Scholar] [CrossRef]
- Huber, H.; Koller, S.; Giezendanner, N.; Stephan, R.; Zweifel, C. Prevalence and characteristics of meticillin-resistant Staphylococcus aureus in humans in contact with farm animals, in livestock, and in food of animal origin, Switzerland, 2009. Euro Surveill. 2010, 15, 19542. Available online: http://www.ncbi.nlm.nih.gov/pubmed/20430001 (accessed on 23 February 2023). [CrossRef]
- Mulders, M.N.; Haenen, A.P.J.; Geenen, P.L.; Vesseur, P.C.; Poldervaart, E.S.; Bosch, T.; Huijsdens, X.W.; Hengeveld, P.D.; Dam-Deisz, W.D.C.; Graat, E.A.M.; et al. Prevalence of livestock-associated MRSA in broiler flocks and risk factors for slaughterhouse personnel in The Netherlands. Epidemiol. Infect. 2010, 138, 743–755. [Google Scholar] [CrossRef]
- Bisdorff, B.; Scholhölter, J.L.; Claußen, K.; Pulz, M.; Nowak, D.; Radon, K. MRSA-ST398 in livestock farmers and neighbouring residents in a rural area in Germany. Epidemiol. Infect. 2012, 140, 1800–1808. [Google Scholar] [CrossRef] [Green Version]
- Broens, E.M.; Graat, E.A.; van de Giessen, A.W.; Broekhuizen-Stins, M.J.; de Jong, M.C. Quantification of transmission of livestock-associated methicillin resistant Staphylococcus aureus in pigs. Vet. Microbiol. 2012, 155, 381–388. [Google Scholar] [CrossRef]
- Broens, E.M.; Espinosa-Gongora, C.; Graat, E.A.; Vendrig, N.; Van Der Wolf, P.J.; Guardabassi, L.; Butaye, P.; Nielsen, J.P.; De Jong, M.C.; Van De Giessen, A.W. Longitudinal study on transmission of MRSA CC398 within pig herds. BMC Vet. Res. 2012, 8, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Duijkeren, E.; Ikawaty, R.; Broekhuizen-Stins, M.; Jansen, M.; Spalburg, E.; de Neeling, A.; Allaart, J.; van Nes, A.; Wagenaar, J.; Fluit, A. Transmission of methicillin-resistant Staphylococcus aureus strains between different kinds of pig farms. Vet. Microbiol. 2008, 126, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Gongora, C.; Larsen, J.; Moodley, A.; Nielsen, J.P.; Skov, R.L.; Andreasen, M.; Guardabassi, L. Farm-specific lineages of methicillin-resistant Staphylococcus aureus clonal complex 398 in Danish pig farms. Epidemiol. Infect. 2012, 140, 1794–1799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weese, J.S.; Zwambag, A.; Rosendal, T.; Reid-Smith, R.; Friendship, R. Longitudinal Investigation of Methicillin-Resistant Staphylococcus aureus in Piglets. Zoonoses Public Health 2011, 58, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Verhegghe, M.; Pletinckx, L.J.; Crombé, F.; Van Weyenberg, S.; Haesebrouck, F.; Butaye, P.; Heyndrickx, M.; Rasschaert, G. Cohort study for the presence of livestock-associated MRSA in piglets: Effect of sow status at farrowing and determination of the piglet colonization age. Vet. Microbiol. 2013, 162, 679–686. [Google Scholar] [CrossRef]
- Moodley, A.; Latronico, F.; Guardabassi, L. Experimental colonization of pigs with methicillin-resistant Staphylococcus aureus (MRSA): Insights into the colonization and transmission of livestock-associated MRSA. Epidemiol. Infect. 2011, 139, 1594–1600. [Google Scholar] [CrossRef] [Green Version]
- One Health. Available online: https://www.who.int/health-topics/one-health#tab=tab_1 (accessed on 27 December 2022).
- Kos, B.; Šušković, J.; Vuković, S.; Šimpraga, M.; Frece, J.; Matošić, S. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J. Appl. Microbiol. 2003, 94, 981–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collado, M.C.; Surono, I.; Meriluoto, J.; Salminen, S. Indigenous Dadih Lactic Acid Bacteria: Cell-Surface Properties and Interactions with Pathogens. J. Food Sci. 2007, 72, M89–M93. [Google Scholar] [CrossRef]
- Hojjati, M.; Behabahani, B.A.; Falah, F. Aggregation, adherence, anti-adhesion and antagonistic activity properties relating to surface charge of probiotic Lactobacillus brevis gp104 against Staphylococcus aureus. Microb. Pathog. 2020, 147, 104420. [Google Scholar] [CrossRef]
- Fonseca, H.C.; de Sousa Melo, D.; Ramos, C.L.; Dias, D.R.; Schwan, R.F. Probiotic Properties of Lactobacilli and Their Ability to Inhibit the Adhesion of Enteropathogenic Bacteria to Caco-2 and HT-29 Cells. Probiotics Antimicrob. Proteins 2021, 13, 102–112. [Google Scholar] [CrossRef]
- Boris, S.; Suárez, J.E.; Vázquez, F.; Barbés, C. Adherence of Human Vaginal Lactobacilli to Vaginal Epithelial Cells and Interaction with Uropathogens. Infect. Immun. 1998, 66, 1985–1989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osset, J.; Bartolomé, R.M.; García, E.; Andreu, A. Assessment of the Capacity of Lactobacillus to Inhibit the Growth of Uropathogens and Block Their Adhesion to Vaginal Epithelial Cells. J. Infect. Dis. 2001, 183, 485–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastromarino, P.; Brigidi, P.; Macchia, S.; Maggi, L.; Pirovano, F.; Trinchieri, V.; Conte, U.; Matteuzzi, D. Characterization and selection of vaginal Lactobacillus strains for the preparation of vaginal tablets. J. Appl. Microbiol. 2002, 93, 884–893. [Google Scholar] [CrossRef]
- Younes, J.A.; Van Der Mei, H.C.; van den Heuvel, E.; Busscher, H.J.; Reid, G. Adhesion Forces and Coaggregation between Vaginal Staphylococci and Lactobacilli. PLoS ONE 2012, 7, e36917. [Google Scholar] [CrossRef] [Green Version]
- Todorov, S.D.; Furtado, D.N.; Saad, S.M.I.; de Melo Franco, B.D.G. Bacteriocin production and resistance to drugs are advantageous features for Lactobacillus acidophilus La-14, a potential probiotic strain. New Microbiol. 2011, 34, 357–370. [Google Scholar]
- Verdenelli, M.; Coman, M.; Cecchini, C.; Silvi, S.; Orpianesi, C.; Cresci, A. Evaluation of antipathogenic activity and adherence properties of human Lactobacillus strains for vaginal formulations. J. Appl. Microbiol. 2014, 116, 1297–1307. [Google Scholar] [CrossRef]
- Rickard, A.H.; Gilbert, P.; High, N.J.; Kolenbrander, P.E.; Handley, P.S. Bacterial coaggregation: An integral process in the development of multi-species biofilms. Trends Microbiol. 2003, 11, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Reid, G.; McGroarty, J.A.; Gil Domingue, P.A.; Chow, A.W.; Bruce, A.W.; Eisen, A.; Costerton, J.W. Coaggregation of urogenital bacteria in vitro and in vivo. Curr. Microbiol. 1990, 20, 47–52. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, X.; Zhang, X.; Wu, H.; Zou, Y.; Li, P.; Sun, C.; Xu, W.; Liu, F.; Wang, D. Class III bacteriocin Helveticin-M causes sublethal damage on target cells through impairment of cell wall and membrane. J. Ind. Microbiol. Biotechnol. 2018, 45, 213–227. [Google Scholar] [CrossRef]
- Martiín, R.; Suárez, J.E. Biosynthesis and Degradation of H2O2 by Vaginal Lactobacilli. Appl. Environ. Microbiol. 2010, 76, 400–405. [Google Scholar] [CrossRef] [Green Version]
- Tachedjian, G.; Aldunate, M.; Bradshaw, C.S.; Cone, R.A. The role of lactic acid production by probiotic Lactobacillus species in vaginal health. Res. Microbiol. 2017, 168, 782–792. [Google Scholar] [CrossRef]
- Wong, C.-B.; Khoo, B.-Y.; Sasidharan, S.; Piyawattanametha, W.; Kim, S.; Khemthongcharoen, N.; Ang, M.-Y.; Chuah, L.-O.; Liong, M.-T. Inhibition of Staphylococcus aureus by crude and fractionated extract from lactic acid bacteria. Benef. Microbes 2015, 6, 129–139. [Google Scholar] [CrossRef]
- Otero, M.C.; Nader-Macias, M.E.F. Inhibition of Staphylococcusaureus by H2O2-producing Lactobacillus gasseri isolated from the vaginal tract of cattle. Anim. Reprod. Sci. 2006, 96, 35–46. [Google Scholar] [CrossRef]
- Karlyshev, A.V.; Raju, K.; Abramov, V.M. Draft Genome Sequence of Lactobacillus fermentum Strain 3872. Genome Announc. 2013, 1, 01006-13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehri, B.; Seddon, A.M.; Karlyshev, A.V. Lactobacillus fermentum 3872 genome sequencing reveals plasmid and chromosomal genes potentially involved in a probiotic activity. FEMS Microbiol. Lett. 2015, 362, fnv068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkins, M.R.; Gasteiger, E.; Bairoch, A.; Sanchez, J.C.; Williams, K.L.; Appel, R.D.; Hochstrasser, D.F. Protein Identification and Analysis Tools in the ExPASy Server. In 2-D Proteome Analysis Protocols. Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 1999; Volume 112, pp. 531–552. [Google Scholar] [CrossRef]
- Hardenberg, M.; Horvath, A.; Ambrus, V.; Fuxreiter, M.; Vendruscolo, M. Widespread occurrence of the droplet state of proteins in the human proteome. Proc. Natl. Acad. Sci. USA 2020, 117, 33254–33262. [Google Scholar] [CrossRef] [PubMed]
- Hatos, A.; Tosatto, S.C.E.; Vendruscolo, M.; Fuxreiter, M. FuzDrop on AlphaFold: Visualizing the sequence-dependent propensity of liquid–liquid phase separation and aggregation of proteins. Nucleic Acids Res. 2022, 50, W337–W344. [Google Scholar] [CrossRef] [PubMed]
- Dubey, U.; Mistry, V. Growth Characteristics of Bifidobacteria in Infant Formulas. J. Dairy Sci. 1996, 79, 1146–1155. [Google Scholar] [CrossRef] [PubMed]
Strain | 0 h | 24 h | ||||
---|---|---|---|---|---|---|
C 1 | JC 2 | HJC 3 | C 1 | JC 2 | HJC 3 | |
S. aureus ATCC BAA-1683 | 3 × 108 | 3 × 108 | 2 × 108 | 7 × 108 | <102 | 6 × 108 |
S. aureus ATCC BAA-2313 | 2 × 108 | 2 × 108 | 2 × 108 | 6 × 108 | <102 | 6 × 108 |
S. aureus ATCC 33592 | 1 × 108 | 2 × 108 | 2 × 108 | 5 × 108 | <102 | 5 × 108 |
S. aureus ATCC BAA-2094 | 4 × 108 | 4 × 108 | 4 × 108 | 8 × 108 | <102 | 8 × 108 |
Strain | 0 h | 24 h | ||||
---|---|---|---|---|---|---|
C 1 | JC 2 | HJC 3 | C 1 | JC 2 | HJC 3 | |
S. aureus IIE CI-SA Hu 1246 | 2 × 108 | 2 × 108 | 3 × 108 | 6 × 108 | <102 | 7 × 108 |
S. aureus IIE CI-SA Hu 1247 | 3 × 108 | 3 × 108 | 3 × 108 | 7 × 108 | <102 | 7 × 108 |
S. aureus IIE CI-SA Hu 1248 | 8 × 108 | 9 × 108 | 8 × 108 | 3 × 108 | <102 | 3 × 108 |
S. aureus IIE CI-SA Hu 1249 | 9 × 108 | 8 × 108 | 9 × 108 | 4 × 108 | <102 | 4 × 108 |
Strain | 0 h | 24 h | ||||
---|---|---|---|---|---|---|
C 1 | JC 2 | HJC 3 | C 1 | JC 2 | HJC 3 | |
S. aureus IIE CI-SA Hu 1261 | 3 × 108 | 3 × 108 | 3 × 108 | 7 × 108 | <102 | 7 × 108 |
S. aureus IIE CI-SA Hu 1262 | 8 × 107 | 9 × 107 | 8 × 107 | 4 × 108 | <102 | 4 × 108 |
S. aureus IIE CI-SA Hu 1263 | 4 × 108 | 4 × 108 | 4 × 108 | 8 × 108 | <102 | 8 × 108 |
S. aureus IIE CI-SA Hu 1264 | 2 × 108 | 3 × 108 | 2 × 108 | 7 × 108 | <102 | 7 × 108 |
Strain | 0 h | 24 h | ||||
---|---|---|---|---|---|---|
C 1 | JC 2 | HJC 3 | C 1 | JC 2 | HJC 3 | |
S. aureus IIE CI-SA Pi 1345 | 8 × 107 | 8× 107 | 8 × 107 | 4 × 108 | <102 | 4 × 108 |
S. aureus IIE CI-SA Pi 1347 | 2 × 108 | 3 × 108 | 2 × 108 | 7 × 108 | <102 | 7 × 108 |
S. aureus IIE CI-SA Pi 1356 | 9 × 107 | 9 × 107 | 8 × 107 | 4 × 108 | <102 | 4 × 108 |
S. aureus IIE CI-SA Pi 1357 | 1 × 108 | 2 × 108 | 1 × 108 | 6 × 108 | <102 | 6 × 108 |
Strain | 0 h | 24 h | ||||
---|---|---|---|---|---|---|
C 1 | JC 2 | HJC 3 | C 1 | JC 2 | HJC 3 | |
S. aureus IIE CI-SA Co 1280 | 8 × 107 | 9 × 107 | 8 × 107 | 9 × 108 | <102 | 9 × 108 |
S. aureus IIE CI-SA Co 1281 | 2 × 108 | 3 × 108 | 2 × 108 | 8 × 108 | <102 | 8 × 108 |
S. aureus IIE CI-SA Co 1282 | 1 × 108 | 2 × 108 | 1 × 108 | 7 × 108 | <102 | 7 × 108 |
S. aureus IIE CI-SA Co 1283 | 3 × 108 | 3 × 108 | 3 × 108 | 8 × 108 | <102 | 8 × 108 |
Strain | 20 °C, pH 7.0 1 | 20 °C, pH 5.0 2 |
---|---|---|
S. aureus ATCC BAA-1683 | 51.7 ± 4.6 | 87.4 ± 5.5 * |
S. aureus ATCC BAA-2313 | 52.5 ± 5.7 | 89.3 ± 7.6 * |
S. aureus ATCC 33592 | 46.8 ± 5.2 | 83.4 ± 6.3 * |
S. aureus ATCC BAA-2094 | 45.9 ± 6.5 | 86.5± 5.8 * |
S. aureus IIE CI-SA Hu 1250 | 54.3 ± 5.4 | 88.7 ± 6.6 * |
S. aureus IIE CI-SA Hu 1247 | 49.4 ± 5.0 | 81.5 ± 5.3 * |
S. aureus IIE CI-SA Hu 1248 | 48.6 ± 4.5 | 82.3 ± 5.9 * |
S. aureus IIE CI-SA Hu 1249 | 51.7 ± 5.2 | 85.9 ± 6.4 * |
S. aureus IIE CI-SA Hu 1261 | 49.7 ± 6.1 | 84.5 ± 5.3 * |
S. aureus IIE CI-SA Hu 1262 | 53.6 ± 4.8 | 86.2 ± 5.7 * |
S. aureus IIE CI-SA Hu 1263 | 54.5 ± 4.9 | 81.8 ± 5.4 * |
S. aureus IIE CI-SA Hu 1264 | 48.3 ± 4.5 | 80.6 ± 5.8 * |
S. aureus IIE CI-SA Pi 1345 | 52.9 ± 3.8 | 87.4 ± 5.9 * |
S. aureus IIE CI-SA Pi 1347 | 54.5 ± 4.7 | 86.5 ± 5.5 * |
S. aureus IIE CI-SA Pi 1348 | 49.6 ± 4.5 | 83.8 ± 5.7 * |
S. aureus IIE CI-SA Pi 1356 | 53.7 ± 4.9 | 85.4 ± 5.4 * |
S. aureus IIE CI-SA Co 1280 | 51.4 ± 4.6 | 86.3 ± 5.8 * |
S. aureus IIE CI-SA Co 1281 | 48.7 ± 5.0 | 83.7 ± 4.9 * |
S. aureus IIE CI-SA Co 1282 | 54.2 ± 5.3 | 87.5 ± 6.5 * |
S. aureus IIE CI-SA Co 1283 | 53.8 ± 4.7 | 84.7 ± 6.2 * |
Strain | Boiled CSLF3872 1 | CSLF3872 2 |
---|---|---|
S. aureus ATCC BAA-1683 | 5.8 ± 1.6 | 342.4 ± 15.8 *** |
S. aureus ATCC BAA-2313 | 5.5 ± 1.4 | 358.2 ± 14.6 *** |
S. aureus ATCC 33592 | 4.9 ± 1.7 | 320.8 ± 14.6 *** |
S. aureus ATCC BAA-2094 | 5.6 ± 1.8 | 325.9 ± 12.3 *** |
S. aureus IIE CI-SA Hu 1250 | 4.7 ± 1.5 | 336.5 ± 15.4 *** |
S. aureus IIE CI-SA Hu 1247 | 6.3 ± 2.1 | 325.6 ± 12.8 *** |
S. aureus IIE CI-SA Hu 1248 | 7.5 ± 1.4 | 365.5 ± 18.2 *** |
S. aureus IIE CI-SA Hu 1249 | 8.6 ± 2.2 | 370.6 ± 16.5 *** |
S. aureus IIE CI-SA Hu 1261 | 6.3 ± 2.1 | 334.7 ± 14.6 *** |
S. aureus IIE CI-SA Hu 1262 | 7.6 ± 1.8 | 325.3 ± 15.4 *** |
S. aureus IIE CI-SA Hu 1263 | 5.0 ± 1.7 | 340.4 ± 13.5 *** |
S. aureus IIE CI-SA Hu 1264 | 7.4 ± 1.8 | 356.5 ± 21.0 *** |
S. aureus IIE CI-SA Pi 1345 | 6.3 ± 1.5 | 327.3 ± 18.5 *** |
S. aureus IIE CI-SA Pi 1347 | 8.5 ± 2.3 | 335.1 ± 16.7 *** |
S. aureus IIE CI-SA Pi 1348 | 6.4 ± 1.5 | 354.7 ± 19.6 *** |
S. aureus IIE CI-SA Pi 1356 | 7.9 ± 2.4 | 347.3 ± 16.4 *** |
S. aureus IIE CI-SA Co 1280 | 5.8 ± 1.3 | 355.6 ± 18.6 *** |
S. aureus IIE CI-SA Co 1281 | 7.2 ± 2.5 | 364.3 ± 20.5 *** |
S. aureus IIE CI-SA Co 1282 | 6.9 ± 1.7 | 347.7 ± 18.3 *** |
S. aureus IIE CI-SA Co 1283 | 7.5 ± 1.8 | 365.4 ± 21.8 *** |
Cultivation Time, h | 5 | 10 | 15 | 20 |
Lactic Acid Production, µg/mL | 97 ± 4 | 164 ± 6 | 207 ± 5 | 210 ± 8 |
Cultivation Time, h | 5 | 10 | 15 | 20 |
H2O2 Concentration, mM/L in CS of LF3872 | 0.83 ± 0.2 | 0.84 ± 0.3 | 0.92 ± 0.5 | 0.85 ± 0.4 |
Microorganism | Strain | Antibiotic Resistance of S. aureus | Growth Conditions |
---|---|---|---|
L. fermentum | IIE 1 3872 | MRS a 37 °C anaerobically 48 h | |
S. aureus | 8325-4 2 | GEN | TGVC b 37 °C aerobically 24 h |
S. aureus | ATCC 3 BAA-1683 | MET | The same |
S. aureus | ATCC BAA-2313 | MET | The same |
S. aureus | ATCC 33592 | MET, GEN | The same |
S. aureus | ATCC BAA-2094 | MET, OXC, BENPEN | The same |
S. aureus | IIE CI-SA Hu 1250 4 | TET, ERY, NAL, CEFA | The same |
S. aureus | IIE CI-SA Hu 1247 5 | AMP, OXA, PEN, TET | The same |
S. aureus | IIE CI-SA Hu 1248 6 | TET, NAL, CIP, ERY | The same |
S. aureus | IIE CI-SA Hu 1249 7 | GEN, CIP, VAN, METR | The same |
S. aureus | IIE CI-SA Hu 1261 8 | PEN, OXA, VAN, CEFA | The same |
S. aureus | IIE CI-SA Hu 1262 9 | PEN, VAN, METR, CIP | The same |
S. aureus | IIE CI-SA Hu 1263 10 | PEN, VAN, METR, ERY | The same |
S. aureus | IIE CI-SA Hu 1264 11 | PEN, VAN, TET, MET | The same |
S. aureus | IIE CI-SA Pi 1345 12 | MET, OXA, PEN, BENPEN, CEFO | The same |
S. aureus | IIE CI-SA Pi 1347 13 | MET, PEN, CEFA, CEFO | The same |
S. aureus | IIE CI-SA Pi 1348 14 | MET, PEN, OXA, CEFA, CEFO | The same |
S. aureus | IIE CI-SA Pi 1356 15 | MET, PEN, OXA, ERY, CEFA, CEFO | The same |
S. aureus | IIE CI-SA Co 1280 16 | NAL, GEN, ERY, CEFA | The same |
S. aureus | IIE CI-SA Co 1281 17 | CIP, PEN, CEFA, METR | The same |
S. aureus | IIE CI-SA Co 1282 18 | CIP, PEN, VAN, METR | The same |
S. aureus | IIE CI-SA Co 1283 19 | CIP, PEN, CEFO, METR | The same |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abramov, V.M.; Kosarev, I.V.; Machulin, A.V.; Priputnevich, T.V.; Deryusheva, E.I.; Nemashkalova, E.L.; Chikileva, I.O.; Abashina, T.N.; Panin, A.N.; Melnikov, V.G.; et al. Limosilactobacillus fermentum 3872 That Produces Class III Bacteriocin Forms Co-Aggregates with the Antibiotic-Resistant Staphylococcus aureus Strains and Induces Their Lethal Damage. Antibiotics 2023, 12, 471. https://doi.org/10.3390/antibiotics12030471
Abramov VM, Kosarev IV, Machulin AV, Priputnevich TV, Deryusheva EI, Nemashkalova EL, Chikileva IO, Abashina TN, Panin AN, Melnikov VG, et al. Limosilactobacillus fermentum 3872 That Produces Class III Bacteriocin Forms Co-Aggregates with the Antibiotic-Resistant Staphylococcus aureus Strains and Induces Their Lethal Damage. Antibiotics. 2023; 12(3):471. https://doi.org/10.3390/antibiotics12030471
Chicago/Turabian StyleAbramov, Vyacheslav M., Igor V. Kosarev, Andrey V. Machulin, Tatiana V. Priputnevich, Evgenia I. Deryusheva, Ekaterina L. Nemashkalova, Irina O. Chikileva, Tatiana N. Abashina, Alexander N. Panin, Vyacheslav G. Melnikov, and et al. 2023. "Limosilactobacillus fermentum 3872 That Produces Class III Bacteriocin Forms Co-Aggregates with the Antibiotic-Resistant Staphylococcus aureus Strains and Induces Their Lethal Damage" Antibiotics 12, no. 3: 471. https://doi.org/10.3390/antibiotics12030471
APA StyleAbramov, V. M., Kosarev, I. V., Machulin, A. V., Priputnevich, T. V., Deryusheva, E. I., Nemashkalova, E. L., Chikileva, I. O., Abashina, T. N., Panin, A. N., Melnikov, V. G., Suzina, N. E., Nikonov, I. N., Selina, M. V., Khlebnikov, V. S., Sakulin, V. K., Samoilenko, V. A., Gordeev, A. B., Sukhikh, G. T., Uversky, V. N., & Karlyshev, A. V. (2023). Limosilactobacillus fermentum 3872 That Produces Class III Bacteriocin Forms Co-Aggregates with the Antibiotic-Resistant Staphylococcus aureus Strains and Induces Their Lethal Damage. Antibiotics, 12(3), 471. https://doi.org/10.3390/antibiotics12030471