Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Cre/LoxP gene editing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2887 KiB  
Article
Efficiency of NHEJ-CRISPR/Cas9 and Cre-LoxP Engineered Recombinant Turkey Herpesvirus Expressing Pasteurella multocida OmpH Protein for Fowl Cholera Prevention in Ducks
by Nisachon Apinda, Yongxiu Yao, Yaoyao Zhang, Anucha Muenthaisong, Kanokwan Sangkakam, Boondarika Nambooppha, Amarin Rittipornlertrak, Pongpisid Koonyosying, Venugopal Nair and Nattawooti Sthitmatee
Vaccines 2023, 11(9), 1498; https://doi.org/10.3390/vaccines11091498 - 18 Sep 2023
Cited by 3 | Viewed by 3416
Abstract
Fowl cholera is caused by the bacterium Pasteurella multocida, a highly transmissible avian ailment with significant global implications, leading to substantial economic repercussions. The control of fowl cholera outbreaks primarily relies on vaccination using traditional vaccines that are still in use today [...] Read more.
Fowl cholera is caused by the bacterium Pasteurella multocida, a highly transmissible avian ailment with significant global implications, leading to substantial economic repercussions. The control of fowl cholera outbreaks primarily relies on vaccination using traditional vaccines that are still in use today despite their many limitations. In this research, we describe the development of a genetically engineered herpesvirus of turkeys (HVT) that carries the OmpH gene from P. multocida integrated into UL 45/46 intergenic region using CRISPR/Cas9-NHEJ and Cre-Lox system editing. The integration and expression of the foreign cassettes were confirmed using polymerase chain reaction (PCR), indirect immunofluorescence assays, and Western blot assays. The novel recombinant virus (rHVT-OmpH) demonstrated stable integration of the OmpH gene even after 15 consecutive in vitro passages, along with similar in vitro growth kinetics as the parent HVT virus. The protective efficacy of the rHVT-OmpH vaccine was evaluated in vaccinated ducks by examining the levels of P. multocida OmpH-specific antibodies in serum samples using ELISA. Groups of ducks that received the rHVT-OmpH vaccine or the rOmpH protein with Montanide™ (SEPPIC, Paris, France) adjuvant exhibited high levels of antibodies, in contrast to the negative control groups that received the parental HVT or PBS. The recombinant rHVT-OmpH vaccine also provided complete protection against exposure to virulent P. multocida X-73 seven days post-vaccination. This outcome not only demonstrates that the HVT vector possesses many characteristics of an ideal recombinant viral vaccine vector for protecting non-chicken hosts, such as ducks, but also represents significant research progress in identifying a modern, effective vaccine candidate for combatting ancient infectious diseases. Full article
(This article belongs to the Special Issue Veterinary Research in Poultry and Livestock Infectious Disease)
Show Figures

Figure 1

12 pages, 2208 KiB  
Article
Production of L-Malic Acid by Metabolically Engineered Aspergillus nidulans Based on Efficient CRISPR–Cas9 and Cre-loxP Systems
by Ziqing Chen, Chi Zhang, Lingling Pei, Qi Qian and Ling Lu
J. Fungi 2023, 9(7), 719; https://doi.org/10.3390/jof9070719 - 30 Jun 2023
Cited by 12 | Viewed by 2958
Abstract
Aspergillus nidulans has been more extensively characterized than other Aspergillus species considering its morphology, physiology, metabolic pathways, and genetic regulation. As it has a rapid growth rate accompanied by simple nutritional requirements and a high tolerance to extreme cultural conditions, A. nidulans is [...] Read more.
Aspergillus nidulans has been more extensively characterized than other Aspergillus species considering its morphology, physiology, metabolic pathways, and genetic regulation. As it has a rapid growth rate accompanied by simple nutritional requirements and a high tolerance to extreme cultural conditions, A. nidulans is a promising microbial cell factory to biosynthesize various products in industry. However, it remains unclear for whether it is also a suitable host for synthesizing abundant L-malic acid. In this study, we developed a convenient and efficient double-gene-editing system in A. nidulans strain TN02A7 based on the CRISPR–Cas9 and Cre-loxP systems. Using this gene-editing system, we made a L-malic acid-producing strain, ZQ07, derived from TN02A7, by deleting or overexpressing five genes (encoding Pyc, pyruvate carboxylase; OahA, oxaloacetate acetylhydrolase; MdhC, malate dehydrogenase; DctA, C4-dicarboxylic acid transporter; and CexA, citric acid transporter). The L-malic acid yield in ZQ07 increased to approximately 9.6 times higher (up to 30.7 g/L titer) than that of the original unedited strain TN02A7, in which the production of L-malic acid was originally very low. The findings in this study not only demonstrate that A. nidulans could be used as a potential host for biosynthesizing organic acids, but also provide a highly efficient gene-editing strategy in filamentous fungi. Full article
(This article belongs to the Special Issue Metabolic Engineering of Aspergillus via CRISPR-Based Systems)
Show Figures

Figure 1

19 pages, 4767 KiB  
Article
Differentiation Capacity of Bone Marrow-Derived Rat Mesenchymal Stem Cells from DsRed and Cre Transgenic Cre/loxP Models
by Hsiang-Ching Tseng, Menq-Rong Wu, Chia-Hsun Lee and Jong-Kai Hsiao
Cells 2022, 11(17), 2769; https://doi.org/10.3390/cells11172769 - 5 Sep 2022
Cited by 4 | Viewed by 2693
Abstract
Cre/loxP recombination is a well-established technique increasingly used for modifying DNA both in vitro and in vivo. Nucleotide alterations can be edited in the genomes of mammalian cells, and genetic switches can be designed to target the expression or excision of a [...] Read more.
Cre/loxP recombination is a well-established technique increasingly used for modifying DNA both in vitro and in vivo. Nucleotide alterations can be edited in the genomes of mammalian cells, and genetic switches can be designed to target the expression or excision of a gene in any tissue at any time in animal models. In this study, we propose a system which worked via the Cre/loxP switch gene and DsRed/emGFP dual-color fluorescence imaging. Mesenchymal stem cells (MSCs) can be used to regenerate damaged tissue because of their differentiation capacity. Although previous studies have presented evidence of fusion of transplanted MSCs with recipient cells, the possibility of fusion in such cases remains debated. Moreover, the effects and biological implications of the fusion of MSCs at the tissue and organ level have not yet been elucidated. Thus, the method for determining this issue is significant and the models we proposed can illustrate the question. However, the transgenic rats exhibited growth slower than that of wild-type rats over several weeks. The effects on the stemness, proliferation, cell cycle, and differentiation ability of bone marrow–derived rat MSCs (BM-rMSCs) from the models were examined to ensure our design was appropriate for the in vivo application. We demonstrated that MSC surface markers were maintained in DsRed and Cre transgenic rMSCs (DsRed-rMSCs and Cre-rMSCs, respectively). A WST-8 assay revealed decreased proliferative activity in these DsRed-rMSCs and Cre-rMSCs; this result was validated through cell counting. Furthermore, cell cycle analysis indicated a decrease in the proportion of G1-phase cells and a concomitant increase in the proportion of S-phase cells. The levels of cell cycle–related proteins also decreased in the DsRed-rMSCs and Cre-rMSCs, implying decelerated phase transition. However, the BM-rMSCs collected from the transgenic rats did not exhibit altered adipogenesis, osteogenesis, or chondrogenesis. The specific markers of these types of differentiation were upregulated after induction. Therefore, BM-rMSCs from DsRed and Cre transgenic models can be used to investigate the behavior of MSCs and related mechanisms. Such application may further the development of stem cell therapy for tissue damage and other diseases. Full article
(This article belongs to the Special Issue Regeneration of Tissue with Mesenchymal Stem Cells)
Show Figures

Figure 1

16 pages, 3365 KiB  
Article
CRISPR/Cas9 Editing of Duck Enteritis Virus Genome for the Construction of a Recombinant Vaccine Vector Expressing ompH Gene of Pasteurella multocida in Two Novel Insertion Sites
by Nisachon Apinda, Yongxiu Yao, Yaoyao Zhang, Vishwanatha R. A. P. Reddy, Pengxiang Chang, Venugopal Nair and Nattawooti Sthitmatee
Vaccines 2022, 10(5), 686; https://doi.org/10.3390/vaccines10050686 - 27 Apr 2022
Cited by 12 | Viewed by 4287
Abstract
Duck enteritis virus (DEV) and Pasteurella multocida, the causative agent of duck plague and fowl cholera, are acute contagious diseases and leading causes of morbidity and mortality in duck. The NHEJ-CRISPR/Cas9-mediated gene editing strategy, accompanied with the Cre–Lox system, have been employed [...] Read more.
Duck enteritis virus (DEV) and Pasteurella multocida, the causative agent of duck plague and fowl cholera, are acute contagious diseases and leading causes of morbidity and mortality in duck. The NHEJ-CRISPR/Cas9-mediated gene editing strategy, accompanied with the Cre–Lox system, have been employed in the present study to show that two new sites at UL55-LORF11 and UL44-44.5 loci in the genome of the attenuated Jansen strain of DEV can be used for the stable expression of the outer membrane protein H (ompH) gene of P. multocida that could be used as a bivalent vaccine candidate with the potential of protecting ducks simultaneously against major viral and bacterial pathogens. The two recombinant viruses, DEV-OmpH-V5-UL55-LORF11 and DEV-OmpH-V5-UL44-44.5, with the insertion of ompH-V5 gene at the UL55-LORF11 and UL44-44.5 loci respectively, showed similar growth kinetics and plaque size, compared to the wildtype virus, confirming that the insertion of the foreign gene into these did not have any detrimental effects on DEV. This is the first time the CRISPR/Cas9 system has been applied to insert a highly immunogenic gene from bacteria into the DEV genome rapidly and efficiently. This approach offers an efficient way to introduce other antigens into the DEV genome for multivalent vector. Full article
Show Figures

Figure 1

19 pages, 11952 KiB  
Article
Cre/LoxP Genetic Recombination Sustains Cartilage Anabolic Factor Expression in Hyaluronan Encapsulated MSCs Alleviates Intervertebral Disc Degeneration
by Long-Yi Chan, Cheng-Chung Chang, Po-Liang Lai, Tomoji Maeda, Horng-Chaung Hsu, Chin-Yu Lin and Shu-Jui Kuo
Biomedicines 2022, 10(3), 555; https://doi.org/10.3390/biomedicines10030555 - 26 Feb 2022
Cited by 8 | Viewed by 3247
Abstract
(1) Background: Inexplicable low back and neck pain frequently results from spinal disc degeneration with an imbalanced intervertebral disc (IVD) cell homeostasis. We hypothesize that introducing MSC expressing a sustained cartilage-anabolic factor in the IVD may stimulate the mucoid materials secreted from the [...] Read more.
(1) Background: Inexplicable low back and neck pain frequently results from spinal disc degeneration with an imbalanced intervertebral disc (IVD) cell homeostasis. We hypothesize that introducing MSC expressing a sustained cartilage-anabolic factor in the IVD may stimulate the mucoid materials secreted from the IVD cells, promote the MSC’s chondrogenesis and maintain the hydration content providing mechanical strength to decelerate the disc degeneration progression; (2) Methods: This study expressed a cartilage-anabolic factor runx1 by a baculoviral vector (BV) transduced MSCs through a Cre/LoxP gene editing and recombination system for sustained recombinant runx1 transcription factor production. The Cre/LoxP BV modified MSCs were encapsulated by hyaluronan hydrogel, due to its’ vital composition in ECM of a healthy disc and transplanted to a punctured coccygeal disc in rats through micro-injection, followed by X-ray radiography and histological analysis at the 4- and 12-weeks post-transplantation; (3) Results: Data reveals the Cre/LoxP BV system-mediated long-termed runx1 gene expression, possessing good biosafety characteristics in the in vitro cell transduction and in vivo MSCs transplantation, and maintained superior hydration content in the disc than that of mock transduced MSCs; (4) Conclusions: This proof-of-concept study fulfills the need of implanting therapeutic cells accompanied with microinjection in the disc, such as a discography and paves a road to manufacture composite hyaluronan, such as peptide modified hyaluronan as an MSC carrier for IVD regeneration in the future study. Full article
Show Figures

Figure 1

13 pages, 2497 KiB  
Article
Hydrophobic Optimization of Functional Poly(TPAE-co-suberoyl chloride) for Extrahepatic mRNA Delivery following Intravenous Administration
by Xueliang Yu, Shuai Liu, Qiang Cheng, Sang M. Lee, Tuo Wei, Di Zhang, Lukas Farbiak, Lindsay T. Johnson, Xu Wang and Daniel John Siegwart
Pharmaceutics 2021, 13(11), 1914; https://doi.org/10.3390/pharmaceutics13111914 - 12 Nov 2021
Cited by 14 | Viewed by 4708
Abstract
Messenger RNA (mRNA) has generated great attention due to its broad potential therapeutic applications, including vaccines, protein replacement therapy, and immunotherapy. Compared to other nucleic acids (e.g., siRNA and pDNA), there are more opportunities to improve the delivery efficacy of mRNA through systematic [...] Read more.
Messenger RNA (mRNA) has generated great attention due to its broad potential therapeutic applications, including vaccines, protein replacement therapy, and immunotherapy. Compared to other nucleic acids (e.g., siRNA and pDNA), there are more opportunities to improve the delivery efficacy of mRNA through systematic optimization. In this report, we studied a high-throughput library of 1200 functional polyesters for systemic mRNA delivery. We focused on the chemical investigation of hydrophobic optimization as a method to adjust mRNA polyplex stability, diameter, pKa, and efficacy. Focusing on a region of the library heatmap (PE4K-A17), we further explored the delivery of luciferase mRNA to IGROV1 ovarian cancer cells in vitro and to C57BL/6 mice in vivo following intravenous administration. PE4K-A17-0.2C8 was identified as an efficacious carrier for delivering mRNA to mouse lungs. The delivery selectivity between organs (lungs versus spleen) was found to be tunable through chemical modification of polyesters (both alkyl chain length and molar ratio in the formulation). Cre recombinase mRNA was delivered to the Lox-stop-lox tdTomato mouse model to study potential application in gene editing. Overall, we identified a series of polymer-mRNA polyplexes stabilized with Pluronic F-127 for safe and effective delivery to mouse lungs and spleens. Structure–activity relationships between alkyl side chains and in vivo delivery were elucidated, which may be informative for the continued development of polymer-based mRNA delivery. Full article
Show Figures

Figure 1

17 pages, 4385 KiB  
Article
Unlocking loxP to Track Genome Editing In Vivo
by William A. C. Gendron, Jeffrey D. Rubin, Michael J. Hansen, Rebecca A. Nace, Brandon W. Simone, Stephen C. Ekker and Michael A. Barry
Genes 2021, 12(8), 1204; https://doi.org/10.3390/genes12081204 - 3 Aug 2021
Cited by 1 | Viewed by 5562
Abstract
The development of CRISPR-associated proteins, such as Cas9, has led to increased accessibility and ease of use in genome editing. However, additional tools are needed to quantify and identify successful genome editing events in living animals. We developed a method to rapidly quantify [...] Read more.
The development of CRISPR-associated proteins, such as Cas9, has led to increased accessibility and ease of use in genome editing. However, additional tools are needed to quantify and identify successful genome editing events in living animals. We developed a method to rapidly quantify and monitor gene editing activity non-invasively in living animals that also facilitates confocal microscopy and nucleotide level analyses. Here we report a new CRISPR “fingerprinting” approach to activating luciferase and fluorescent proteins in mice as a function of gene editing. This system is based on experience with our prior cre recombinase (cre)-detector system and is designed for Cas editors able to target loxP including gRNAs for SaCas9 and ErCas12a. These CRISPRs cut specifically within loxP, an approach that is a departure from previous gene editing in vivo activity detection techniques that targeted adjacent stop sequences. In this sensor paradigm, CRISPR activity was monitored non-invasively in living cre reporter mice (FVB.129S6(B6)-Gt(ROSA)26Sortm1(Luc)Kael/J and Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J, which will be referred to as LSL-luciferase and mT/mG throughout the paper) after intramuscular or intravenous hydrodynamic plasmid injections, demonstrating utility in two diverse organ systems. The same genome-editing event was examined at the cellular level in specific tissues by confocal microscopy to determine the identity and frequency of successfully genome-edited cells. Further, SaCas9 induced targeted editing at efficiencies that were comparable to cre, demonstrating high effective delivery and activity in a whole animal. This work establishes genome editing tools and models to track CRISPR editing in vivo non-invasively and to fingerprint the identity of targeted cells. This approach also enables similar utility for any of the thousands of previously generated loxP animal models. Full article
Show Figures

Graphical abstract

14 pages, 2426 KiB  
Article
Generation of Marker-Free pbd-2 Knock-in Pigs Using the CRISPR/Cas9 and Cre/loxP Systems
by Jing Huang, Antian Wang, Chao Huang, Yufan Sun, Bingxiao Song, Rui Zhou and Lu Li
Genes 2020, 11(8), 951; https://doi.org/10.3390/genes11080951 - 18 Aug 2020
Cited by 26 | Viewed by 7344
Abstract
Porcine β-defensin 2 (PBD-2), expressed by different tissues of pigs, is a multifunctional cationic peptide with antimicrobial, immunomodulatory and growth-promoting abilities. As the latest generation of genome-editing tool, CRISPR/Cas9 system makes it possible to enhance the expression of PBD-2 in pigs by site-specific [...] Read more.
Porcine β-defensin 2 (PBD-2), expressed by different tissues of pigs, is a multifunctional cationic peptide with antimicrobial, immunomodulatory and growth-promoting abilities. As the latest generation of genome-editing tool, CRISPR/Cas9 system makes it possible to enhance the expression of PBD-2 in pigs by site-specific knock-in of pbd-2 gene into the pig genome. In this study, we aimed to generate marker-free pbd-2 knock-in pigs using the CRISPR/Cas9 and Cre/loxP systems. Two copies of pbd-2 gene linked by a T2A sequence were inserted into the porcine Rosa26 locus through CRISPR/Cas9-mediated homology-directed repair. The floxed selectable marker gene neoR, used for G418 screening of positive cell clones, was removed by cell-penetrating Cre recombinase with a recombination efficiency of 48.3%. Cloned piglets were produced via somatic cell nuclear transfer and correct insertion of pbd-2 genes was confirmed by PCR and Southern blot. Immunohistochemistry and immunofluorescence analyses indicated that expression levels of PBD-2 in different tissues of transgenic (TG) piglets were significantly higher than those of their wild-type (WT) littermates. Bactericidal assays demonstrated that there was a significant increase in the antimicrobial properties of the cell culture supernatants of porcine ear fibroblasts from the TG pigs in comparison to those from the WT pigs. Altogether, our study improved the protein expression level of PBD-2 in pigs by site-specific integration of pbd-2 into the pig genome, which not only provided an effective pig model to study the anti-infection mechanisms of PBD-2 but also a promising genetic material for the breeding of disease-resistant pigs. Full article
(This article belongs to the Special Issue Pig Genomics and Genetics)
Show Figures

Figure 1

14 pages, 2174 KiB  
Article
Distinct Tumor Microenvironments Are a Defining Feature of Strain-Specific CRISPR/Cas9-Induced MPNSTs
by Amanda Scherer, Victoria R. Stephens, Gavin R. McGivney, Wade R. Gutierrez, Emily A. Laverty, Vickie Knepper-Adrian and Rebecca D. Dodd
Genes 2020, 11(5), 583; https://doi.org/10.3390/genes11050583 - 23 May 2020
Cited by 14 | Viewed by 4113
Abstract
The tumor microenvironment plays important roles in cancer biology, but genetic backgrounds of mouse models can complicate interpretation of tumor phenotypes. A deeper understanding of strain-dependent influences on the tumor microenvironment of genetically-identical tumors is critical to exploring genotype–phenotype relationships, but these interactions [...] Read more.
The tumor microenvironment plays important roles in cancer biology, but genetic backgrounds of mouse models can complicate interpretation of tumor phenotypes. A deeper understanding of strain-dependent influences on the tumor microenvironment of genetically-identical tumors is critical to exploring genotype–phenotype relationships, but these interactions can be difficult to identify using traditional Cre/loxP approaches. Here, we use somatic CRISPR/Cas9 tumorigenesis approaches to determine the impact of mouse background on the biology of genetically-identical malignant peripheral nerve sheath tumors (MPNSTs) in four commonly-used inbred strains. To our knowledge, this is the first study to systematically evaluate the impact of host strain on CRISPR/Cas9-generated mouse models. Our data identify multiple strain-dependent phenotypes, including changes in tumor onset and the immune microenvironment. While BALB/c mice develop MPNSTs earlier than other strains, similar tumor onset is observed in C57BL/6, 129X1 and 129/SvJae mice. Indel pattern analysis demonstrates that indel frequency, type and size are similar across all genetic backgrounds. Gene expression and IHC analysis identify multiple strain-dependent differences in CD4+ T cell infiltration and myeloid cell populations, including M2 macrophages and mast cells. These data highlight important strain-specific phenotypes of genomically-matched MPNSTs that have implications for the design of future studies using similar in vivo gene editing approaches. Full article
(This article belongs to the Special Issue Genomics and Models of Nerve Sheath Tumors)
Show Figures

Figure 1

13 pages, 2835 KiB  
Article
Calcium-Free and Cytochalasin B Treatment Inhibits Blastomere Fusion in 2-Cell Stage Embryos for the Generation of Floxed Mice via Sequential Electroporation
by Takuro Horii, Ryosuke Kobayashi, Mika Kimura, Sumiyo Morita and Izuho Hatada
Cells 2020, 9(5), 1088; https://doi.org/10.3390/cells9051088 - 28 Apr 2020
Cited by 5 | Viewed by 4524
Abstract
The generation of conditional knockout mice using the Cre-loxP system is advantageous for the functional analysis of genes. Flanked by two loxP sites (floxed) mice can be directly obtained from fertilized eggs by the CRISPR/Cas9 genome editing system. We previously reported that sequential [...] Read more.
The generation of conditional knockout mice using the Cre-loxP system is advantageous for the functional analysis of genes. Flanked by two loxP sites (floxed) mice can be directly obtained from fertilized eggs by the CRISPR/Cas9 genome editing system. We previously reported that sequential knock-in (KI) of each loxP site by electroporation (EP) at the 1- and 2-cell embryonic stages increases the number of mice with floxed alleles compared with simultaneous KI. However, EP at the 2-cell stage frequently induced blastomere fusion. These fused embryos cannot develop to term because they are tetraploidized. In this study, we examined the following three conditions to inhibit blastomere fusion by EP at the 2-cell stage: (1) hypertonic treatment, (2) Calcium (Ca2+)-free treatment, and (3) actin polymerization inhibition. Hypertonic treatment of 2-cell stage embryos prevented blastomere fusion and facilitated blastocyst development; however, KI efficiency was decreased. Ca2+-free treatment and actin polymerization inhibition by cytochalasin B (CB) reduced fusion rate, and did not have negative effects on development and KI efficiency. These results suggest that Ca2+-free and CB treatment at the 2-cell stage is effective to generate floxed mice in combination with a sequential EP method. Full article
(This article belongs to the Special Issue Genome Editing Systems, Methods, Techniques and Their Application)
Show Figures

Figure 1

19 pages, 3052 KiB  
Article
Sequential i-GONAD: An Improved In Vivo Technique for CRISPR/Cas9-Based Genetic Manipulations in Mice
by Masahiro Sato, Rico Miyagasako, Shuji Takabayashi, Masato Ohtsuka, Izuho Hatada and Takuro Horii
Cells 2020, 9(3), 546; https://doi.org/10.3390/cells9030546 - 26 Feb 2020
Cited by 15 | Viewed by 6082
Abstract
Improved genome-editing via oviductal nucleic acid delivery (i-GONAD) is a technique capable of inducing genomic changes in preimplantation embryos (zygotes) present within the oviduct of a pregnant female. i-GONAD involves intraoviductal injection of a solution containing genome-editing components via a [...] Read more.
Improved genome-editing via oviductal nucleic acid delivery (i-GONAD) is a technique capable of inducing genomic changes in preimplantation embryos (zygotes) present within the oviduct of a pregnant female. i-GONAD involves intraoviductal injection of a solution containing genome-editing components via a glass micropipette under a dissecting microscope, followed by in vivo electroporation using tweezer-type electrodes. i-GONAD does not involve ex vivo handling of embryos (isolation of zygotes, microinjection or electroporation of zygotes, and egg transfer of the treated embryos to the oviducts of a recipient female), which is required for in vitro genome-editing of zygotes. i-GONAD enables the generation of indels, knock-in (KI) of ~ 1 kb sequence of interest, and large deletion at a target locus. i-GONAD is usually performed on Day 0.7 of pregnancy, which corresponds to the late zygote stage. During the initial development of this technique, we performed i-GONAD on Days 1.4–1.5 (corresponding to the 2-cell stage). Theoretically, this means that at least two GONAD steps (on Day 0.7 and Day 1.4–1.5) must be performed. If this is practically demonstrated, it provides additional options for various clustered regularly interspaced palindrome repeats (CRISPR)/Caspase 9 (Cas9)-based genetic manipulations. For example, it is usually difficult to induce two independent indels at the target sites, which are located very close to each other, by simultaneous transfection of two guide RNAs and Cas9 protein. However, the sequential induction of indels at a target site may be possible when repeated i-GONAD is performed on different days. Furthermore, simultaneous introduction of two mutated lox sites (to which Cre recombinase bind) for making a floxed allele is reported to be difficult, as it often causes deletion of a sequence between the two gRNA target sites. However, differential KI of lox sites may be possible when repeated i-GONAD is performed on different days. In this study, we performed proof-of-principle experiments to demonstrate the feasibility of the proposed approach called “sequential i-GONAD (si-GONAD).” Full article
(This article belongs to the Special Issue Genome Editing Systems, Methods, Techniques and Their Application)
Show Figures

Graphical abstract

Back to TopTop