Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Combo CCS Type 2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 56717 KB  
Article
Development and Validation of V2G Technology for Electric Vehicle Chargers Using Combo CCS Type 2 Connector Standards
by Shahid Jaman, Boud Verbrugge, Oscar Hernandez Garcia, Mohamed Abdel-Monem, Blum Oliver, Thomas Geury and Omar Hegazy
Energies 2022, 15(19), 7364; https://doi.org/10.3390/en15197364 - 7 Oct 2022
Cited by 24 | Viewed by 10101
Abstract
Vehicle-to-Grid (V2G) technology is viewed as a viable solution to offer auxiliary power system services. Currently, V2G operation is only possible through DC chargers using the CHAdeMO connector with the necessary communication protocol. However, in Europe, for high-power DC charging (>50 kW), the [...] Read more.
Vehicle-to-Grid (V2G) technology is viewed as a viable solution to offer auxiliary power system services. Currently, V2G operation is only possible through DC chargers using the CHAdeMO connector with the necessary communication protocol. However, in Europe, for high-power DC charging (>50 kW), the Combined Charging Service (CCS) Type 2 is preferred over CHAdeMO. Therefore, this work presents the development of a V2G testing system with a Combo CCSType 2 charger including communication via the ISO 15118-2 protocol. The BOSCH passenger car with a 400 V battery pack is used to test and validate the technical feasibility of V2G charging via a Combo CCS Type 2 connector standard. The V2G feature is characterized in terms of efficiency, signal delay, response proportionality, magnitude accuracy and noise precision. A data driven V2G charger simulation model based on the real-time data is also developed in MATLAB/Simulink. The performance under various operating settings is presented in the outcomes, emphasizing the need for appropriate hardware calibration, and understanding while delivering standard-compliant grid control services using V2G technology. Finally, the results of the simulation model are compared with the real hardware results in terms of error, noise level and data magnitude accuracy. Full article
Show Figures

Figure 1

20 pages, 3171 KB  
Article
Optimization and Analysis of Electric Vehicle Operation with Fast-Charging Technologies
by Mohammed Al-Saadi, Manuel Mathes, Johannes Käsgen, Koffrie Robert, Matthias Mayrock, Joeri Van Mierlo and Maitane Berecibar
World Electr. Veh. J. 2022, 13(1), 20; https://doi.org/10.3390/wevj13010020 - 13 Jan 2022
Cited by 21 | Viewed by 7286
Abstract
This work presents three demos, which include Electric Buses (EBs) from four various brands with lengths of 12 m and 18 m and an Electric Truck (E-truck) for refuse collection. The technical operation of these EVs were analyzed to implement further operational cost [...] Read more.
This work presents three demos, which include Electric Buses (EBs) from four various brands with lengths of 12 m and 18 m and an Electric Truck (E-truck) for refuse collection. The technical operation of these EVs were analyzed to implement further operational cost optimization on the demo vehicles. The Electric Vehicles (EVs) were tested against superfast-charging solutions based on Pantograph (Type A & Type B) on the route lines (and depots) and based on Combined Charging System Type 2 (CCS2, Combo2) from various brands to validate the interoperability among several vendors and support further EV integration with more affordable solutions. The optimization includes the calculation of the EBs’ consumption at various seasons and under various operating conditions in order to use optimum battery system design, heating system, optimum EB fleet operation and size and to find the charging solutions properly. The results showed that the EB consumption increases in some cases by 64.5% in wintertime due to heating systems, and the consumption in urban areas is more than that on the route lines outside cities. In the E-truck demo, where the electric heater was replaced with a heat-pump to optimize the energy consumption, it was found that the consumption of the heat-pump is about half of the electric heater under certain operating conditions. Under strict EB schedule, Pantograph charging solutions with power ratings of 300–600 kW have been adopted to charge the batteries of the EBs within 4–10 min. In order to minimize the cumulative costs of energy, (pantograph) charging infrastructure depreciation and battery degradation, as well as depot charging (at the bus operator’s depot), was adopted with a power level of 50–350 kW based on CCS2 and pantograph. Full article
Show Figures

Figure 1

35 pages, 16370 KB  
Article
Slow and Fast Charging Solutions for Li-Ion Batteries of Electric Heavy-Duty Vehicles with Fleet Management Strategies
by Mohammed Al-Saadi, Bartosz Patkowski, Maciej Zaremba, Agnieszka Karwat, Mateusz Pol, Łukasz Chełchowski, Joeri Van Mierlo and Maitane Berecibar
Sustainability 2021, 13(19), 10639; https://doi.org/10.3390/su131910639 - 25 Sep 2021
Cited by 23 | Viewed by 4955
Abstract
This work presents a real-life demonstration of 23 heavy-duty (HD) public electric buses (e-buses) in Jaworzno, Poland, with three lengths: 8.9 m, 12 m, and 18 m. The e-bus demo is based on the development of baseline e-buses to optimize the operational cost [...] Read more.
This work presents a real-life demonstration of 23 heavy-duty (HD) public electric buses (e-buses) in Jaworzno, Poland, with three lengths: 8.9 m, 12 m, and 18 m. The e-bus demo is based on the development of baseline e-buses to optimize the operational cost based on technical optimization. The demo aims to switch public transportation from internal combustion engine vehicles (ICEVs) to electric ones to minimize CO2 emissions. The e-buses are equipped with standard charging solutions, which are plug-in charging with Combined Charging System Type 2 (CCS2, Combo 2) and pantograph-up (Type B). The CCS2 solution is used for overnight slow/normal charging (NC) in the depot of the e-bus operator, whereas the pantograph charging solutions are installed along the e-buses routes and used for fast charging (FC) when the e-buses are stopped for a short time. In Jaworzno, there are 20 chargers with CCS2 in the depot of the e-bus operator and 12 pantograph-up (Type B solution) fast-charging stations. This work studies the technical operations and operational costs of the e-bus fleet, and the impact of the NC and FC solutions on the Li-ion battery packs and on the grid. The uncoordinated/standard and coordinated charging (smart charging) based on load shifting were investigated to study the impact of e-bus fleet integration on the distribution grid. The exploited data in this study were collected from the data logger devices, which are installed on the e-buses and record over 46 signals. Data from over one year were collected, and some sample data were processed and analyzed to study the technical and economic operations of the e-bus fleet. Full article
(This article belongs to the Special Issue New Trends in Ionic Liquids)
Show Figures

Figure 1

Back to TopTop