Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Cohen diabetic rat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3304 KiB  
Article
Integrating Computational Analysis of In Vivo Investigation of Modulatory Effect of Fagonia cretica Plant Extract on Letrozole-Induced Polycystic Ovary Syndrome in Female Rats
by Ayesha Qasim, Hiram Calvo, Jesús Jaime Moreno Escobar and Zia-ud-din Akhtar
Biology 2025, 14(7), 903; https://doi.org/10.3390/biology14070903 - 21 Jul 2025
Viewed by 248
Abstract
Fagonia cretica, a medicinal herb from the Zygophyllaceae family, is traditionally utilized to treat various conditions such as hepatitis, gynecological disorders, tumors, urinary tract issues, and diabetes. The present study aimed to evaluate the therapeutic potential of Fagonia cretica in treating polycystic [...] Read more.
Fagonia cretica, a medicinal herb from the Zygophyllaceae family, is traditionally utilized to treat various conditions such as hepatitis, gynecological disorders, tumors, urinary tract issues, and diabetes. The present study aimed to evaluate the therapeutic potential of Fagonia cretica in treating polycystic ovarian syndrome (PCOS) induced in female rats. PCOS, a complex hormonal disorder, was experimentally induced by administering Letrozole (1 mg/kg) in combination with a high-fat diet for 21 days. The affected rats were then treated with hydro-alcoholic extracts of Fagonia cretica at doses of 100 mg/kg, 200 mg/kg, and 300 mg/kg for 20 days. Key biochemical parameters—including serum testosterone, insulin, fasting blood glucose, insulin resistance (HOMA-IR), cholesterol, triglycerides, and lipoprotein levels—were measured. Ultrasound imaging and histopathological analysis of ovarian tissues were also performed. The data were analyzed using computer-based statistical tools, including one-way ANOVA, Cohen’s d effect size, and Tukey’s HSD test, with graphical representations generated using Python 3.10 on the Kaggle platform. Results demonstrated a significant reduction in serum testosterone, insulin, cholesterol, and triglyceride levels (p < 0.05) in treated groups, along with improved ovarian morphology. These findings support the therapeutic potential of Fagonia cretica as a natural treatment for PCOS. Full article
Show Figures

Figure 1

25 pages, 17447 KiB  
Article
BuZhong YiQi Formula Alleviates Diabetes-Caused Hyposalivation by Activating Salivary Secretion Pathway in the Parotid and Submandibular Glands of Rats
by Ming-Yu Wang, Zhen-Ran Hu, Liang Wang, Xin-Xin Zeng, Xiang-Ke Li, Guo-Jun Fei, Jing-Li Zhang, Jing-Ru Chen and Ze-Min Yang
Pharmaceuticals 2025, 18(3), 377; https://doi.org/10.3390/ph18030377 - 6 Mar 2025
Viewed by 1102
Abstract
Background/Objectives: BuZhong Yiqi Formula (BZYQF) has significant ameliorative effects on type 2 diabetes mellitus (T2DM). However, its efficacy in alleviating the hyposalivation caused by T2DM needs to be confirmed, and its mechanism is unclear. Methods: Network pharmacology and molecular docking were [...] Read more.
Background/Objectives: BuZhong Yiqi Formula (BZYQF) has significant ameliorative effects on type 2 diabetes mellitus (T2DM). However, its efficacy in alleviating the hyposalivation caused by T2DM needs to be confirmed, and its mechanism is unclear. Methods: Network pharmacology and molecular docking were combined to analyze the molecular mechanism by which BZYQF alleviates T2DM-caused hyposalivation. A T2DM rat model was induced to evaluate the efficacy of BZYQF. The total saliva before and after acid stimulation was collected to determine the salivary flow rate and salivary alpha-amylase (sAA) activity. The parotid (PG) and submandibular glands (SMG) of experimental rats were removed to perform histopathology observation, biochemical indicator determination, and expression detection of signaling molecules in the salivary secretion pathway. Results: The present study screened out 1014 potential targets of BZYQF regarding the treatment of T2DM. These targets were mainly involved in the formation of the receptor complex, exercising the neurotransmitter receptor activity and regulating secretion. They were significantly enriched in the salivary secretion pathway of β1-AR/PKA/AMY1 and CHRM3/IP3R/AQP5. Furthermore, in BZYQF, nine validated compounds were able to dock into the active site of β1-AR, and three validated compounds were able to dock into the active site of CHRM3. Animal experiments confirmed that BZYQF significantly reduces fasting blood glucose, total cholesterol and triglyceride levels; enhances insulin level and HOMA-IS (p < 0.05); and increases salivary flow rate (Basal: increase from 21.04 ± 14.31 to 42.65 ± 8.84 μL/min, effect size of Cohen’s d = 6.80, p = 0.0078; Stimulated: increase from 36.88 ± 17.48 to 72.63 ± 17.67 μL/min, effect size of Cohen’s d = 7.61, p = 0.0025) and sAA activity (Basal: increase from 0.68 ± 0.32 to 2.17 ± 0.77 U/mL, effect size of Cohen’s d = 9.49, p = 0.0027; Stimulated: increase from 1.15 ± 0.77 to 4.80 ± 1.26 U/mL, effect size of Cohen’s d = 13.10, p = 0.0001) in basal and stimulated saliva in T2DM rats. Further mechanistic studies revealed that BZYQF reduces glucose and lipid accumulation, enhances acetylcholine content, improves pathological lesions and inflammation, and significantly increases the expression of salivary secretion pathway signaling molecules, including PKA, IP3R, β1-AR, AQP5, CHRM3, and AMY1 in the PG and SMG of T2DM rats (p < 0.05). Conclusions: The present study demonstrated that BZYQF is able to alleviate T2DM-caused hyposalivation by improving glucose metabolism and activating the salivary secretion pathway in the PG and SMG of T2DM rats. This study might provide a novel rationale and treatment strategy for BZYQF in diabetes-induced hyposalivation in a clinical setting. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

17 pages, 2061 KiB  
Article
High Sucrose Diet-Induced Subunit I Tyrosine 304 Phosphorylation of Cytochrome c Oxidase Leads to Liver Mitochondrial Respiratory Dysfunction in the Cohen Diabetic Rat Model
by Tasnim Arroum, Lucynda Pham, Taryn E. Raisanen, Paul T. Morse, Junmei Wan, Jamie Bell, Rachel Lax, Ann Saada, Maik Hüttemann and Sarah Weksler-Zangen
Antioxidants 2024, 13(1), 19; https://doi.org/10.3390/antiox13010019 - 21 Dec 2023
Cited by 2 | Viewed by 1865
Abstract
The mitochondrial oxidative phosphorylation process generates most of the cellular energy and free radicals in mammalian tissues. Both factors play a critical role in numerous human diseases that could be affected by reversible phosphorylation events that regulate the function and activity of the [...] Read more.
The mitochondrial oxidative phosphorylation process generates most of the cellular energy and free radicals in mammalian tissues. Both factors play a critical role in numerous human diseases that could be affected by reversible phosphorylation events that regulate the function and activity of the oxidative phosphorylation complexes. In this study, we analyzed liver mitochondria of Cohen diabetes-sensitive (CDs) and Cohen diabetes-resistant (CDr) rats, using blue native gel electrophoresis (BN-PAGE) in combination with mitochondrial activity measurements and a site-specific tyrosine phosphorylation implicated in inflammation, a known driver of diabetes pathology. We uncovered the presence of a specific inhibitory phosphorylation on tyrosine 304 of catalytic subunit I of dimeric cytochrome c oxidase (CcO, complex IV). Driven by a high sucrose diet in both CDr and CDs rats, Y304 phosphorylation, which occurs close to the catalytic oxygen binding site, correlates with a decrease in CcO activity and respiratory dysfunction in rat liver tissue under hyperglycemic conditions. We propose that this phosphorylation, specifically seen in dimeric CcO and induced by high sucrose diet-mediated inflammatory signaling, triggers enzymatic activity decline of complex IV dimers and the assembly of supercomplexes in liver tissue as a molecular mechanism underlying a (pre-)diabetic phenotype. Full article
Show Figures

Graphical abstract

17 pages, 2900 KiB  
Article
Dysregulated UPR and ER Stress Related to a Mutation in the Sdf2l1 Gene Are Involved in the Pathophysiology of Diet-Induced Diabetes in the Cohen Diabetic Rat
by Chana Yagil, Ronen Varadi-Levi, Chen Ifrach and Yoram Yagil
Int. J. Mol. Sci. 2023, 24(2), 1355; https://doi.org/10.3390/ijms24021355 - 10 Jan 2023
Cited by 5 | Viewed by 2440
Abstract
The Cohen Diabetic rat is a model of type 2 diabetes mellitus that consists of the susceptible (CDs/y) and resistant (CDr/y) strains. Diabetes develops in CDs/y provided diabetogenic diet (DD) but not when fed regular diet (RD) nor in CDr/y given either diet. [...] Read more.
The Cohen Diabetic rat is a model of type 2 diabetes mellitus that consists of the susceptible (CDs/y) and resistant (CDr/y) strains. Diabetes develops in CDs/y provided diabetogenic diet (DD) but not when fed regular diet (RD) nor in CDr/y given either diet. We recently identified in CDs/y a deletion in Sdf2l1, a gene that has been attributed a role in the unfolded protein response (UPR) and in the prevention of endoplasmic reticulum (ER) stress. We hypothesized that this deletion prevents expression of SDF2L1 and contributes to the pathophysiology of diabetes in CDs/y by impairing UPR, enhancing ER stress, and preventing CDs/y from secreting sufficient insulin upon demand. We studied SDF2L1 expression in CDs/y and CDr/y. We evaluated UPR by examining expression of key proteins involved in both strains fed either RD or DD. We assessed the ability of all groups of animals to secrete insulin during an oral glucose tolerance test (OGTT) over 4 weeks, and after overnight feeding (postprandial) over 4 months. We found that SDF2L1 was expressed in CDr/y but not in CDs/y. The pattern of expression of proteins involved in UPR, namely the PERK (EIF2α, ATF4 and CHOP) and IRE1 (XBP-1) pathways, was different in CDs/y DD from all other groups, with consistently lower levels of expression at 4 weeks after initiation of DD and coinciding with the development of diabetes. In CDs/y RD, insulin secretion was mildly impaired, whereas in CDs/y DD, the ability to secrete insulin decreased over time, leading to the development of the diabetic phenotype. We conclude that in CDs/y DD, UPR participating proteins were dysregulated and under-expressed at the time point when the diabetic phenotype became overt. In parallel, insulin secretion in CDs/y DD became markedly impaired. Our findings suggest that under conditions of metabolic load with DD and increased demand for insulin secretion, the lack of SDF2L1 expression in CDs/y is associated with UPR dysregulation and ER stress which, combined with oxidative stress previously attributed to the concurrent Ndufa4 mutation, are highly likely to contribute to the pathophysiology of diabetes in this model. Full article
Show Figures

Figure 1

15 pages, 7618 KiB  
Review
Is Type 2 Diabetes a Primary Mitochondrial Disorder?
by Sarah Weksler-Zangen
Cells 2022, 11(10), 1617; https://doi.org/10.3390/cells11101617 - 12 May 2022
Cited by 14 | Viewed by 4481
Abstract
Diabetes mellitus is the most common endocrine disturbance in inherited mitochondrial diseases. It is essential to increase awareness of the correct diagnosis and treatment of diabetes in these patients and screen for the condition in family members, as diabetes might appear with distinctive [...] Read more.
Diabetes mellitus is the most common endocrine disturbance in inherited mitochondrial diseases. It is essential to increase awareness of the correct diagnosis and treatment of diabetes in these patients and screen for the condition in family members, as diabetes might appear with distinctive clinical features, complications and at different ages of onset. The severity of mitochondrial-related diabetes is likely to manifest on a large scale of phenotypes depending on the location of the mutation and whether the number of affected mitochondria copies (heteroplasmy) reaches a critical threshold. Regarding diabetes treatment, the first-choice treatment for type 2 diabetes (T2D), metformin, is not recommended because of the risk of lactic acidosis. The preferred treatment for diabetes in patients with mitochondrial disorders is SGLT-2i and mitochondrial GLP-1-related substances. The tight relationship between mitochondrial dysfunction, reduced glucose-stimulated insulin secretion (GSIS), and diabetes development in human patients is acknowledged. However, despite the well-characterized role of mitochondria in GSIS, there is a relative lack of data in humans implicating mitochondrial dysfunction as a primary defect in T2D. Our recent studies have provided data supporting the significant role of the mitochondrial respiratory-chain enzyme, cytochrome c oxidase (COX), in regulating GSIS in a rodent model of T2D, the Cohen diabetic sensitive (CDs) rat. The nutritionally induced diabetic CDs rat demonstrates several features of mitochondrial diseases: markedly reduced COX activity in several tissues, increased reactive oxygen production, decreased ATP generation, and increased lactate dehydrogenase expression in islets. Moreover, our data demonstrate that reduced islet-COX activity precedes the onset of diabetes, suggesting that islet-COX deficiency is the primary defect causing diabetes in this model. This review examines the possibility of including T2D as a primary mitochondrial-related disease. Understanding the critical interdependence between diabetes and mitochondrial dysfunction, centering on the role of COX, may open novel avenues to diagnose and treat diabetes in patients with mitochondrial diseases and mitochondrial dysfunction in diabetic patients. Full article
(This article belongs to the Collection The Pathomechanism of Mitochondrial Diseases)
Show Figures

Figure 1

12 pages, 2698 KiB  
Article
Cytochrome c Oxidase Activity as a Metabolic Regulator in Pancreatic Beta-Cells
by Genya Aharon-Hananel, Leonor Romero-Afrima, Ann Saada, Carmit Mantzur, Itamar Raz and Sarah Weksler-Zangen
Cells 2022, 11(6), 929; https://doi.org/10.3390/cells11060929 - 8 Mar 2022
Cited by 10 | Viewed by 3201
Abstract
Pancreatic β-cells couple glucose-stimulated insulin secretion (GSIS) with oxidative phosphorylation via cytochrome c oxidase (COX), a mitochondrial respiratory-chain enzyme. The Cohen diabetic-sensitive (CDs) rats exhibit hyperglycemia when fed a diabetogenic diet but maintain normoglycemia on a regular diet. We have previously reported a [...] Read more.
Pancreatic β-cells couple glucose-stimulated insulin secretion (GSIS) with oxidative phosphorylation via cytochrome c oxidase (COX), a mitochondrial respiratory-chain enzyme. The Cohen diabetic-sensitive (CDs) rats exhibit hyperglycemia when fed a diabetogenic diet but maintain normoglycemia on a regular diet. We have previously reported a decreased COX activity in CDs rats and explored its relevance for type 2 diabetes (T2D). In this study, we investigated the relation between COX activity in islets, peripheral-blood mononuclear cells (PBMCs), and GSIS during diabetes development in CDs rats fed a diabetogenic diet for 4, 11, 20, and 30 days and during reversion to normoglycemia in hyperglycemic CDs rats fed a reversion diet for 7, 11, and 20 days. An oral glucose-tolerance test was performed at different periods of the diets measuring blood glucose and insulin concentrations. COX activity was determined in islets and PBMCs isolated from rats at the different periods of the diets. We demonstrated a progressive reduction in COX activity in CDs-islets that correlated positively with the decreasing GSIS (R2 = 0.9691, p < 0.001) and inversely with the elevation in blood glucose levels (R2 = 0.8396, p < 0.001). Hyperglycemia was initiated when islet COX activity decreased below 46%. The reversion diet restored >46% of the islet COX activity and GSIS while re-establishing normoglycemia. Interestingly, COX activity in PBMCs correlated significantly with islet COX activity (R2 = 0.8944, p < 0.001). Our data support islet COX activity as a major metabolic regulator of β-cells function. The correlation between COX activity in PBMCs and islets may serve as a noninvasive biomarker to monitor β-cell dysfunction in diabetes. Full article
(This article belongs to the Collection The Pathomechanism of Mitochondrial Diseases)
Show Figures

Figure 1

24 pages, 206 KiB  
Review
Combating Combination of Hypertension and Diabetes in Different Rat Models
by Talma Rosenthal, Firas Younis and Ariela Alter
Pharmaceuticals 2010, 3(4), 916-939; https://doi.org/10.3390/ph3040916 - 26 Mar 2010
Cited by 6 | Viewed by 11770
Abstract
Rat experimental models are used extensively for studying physiological mechanisms and treatments of hypertension and diabetes co-existence. Each one of these conditions is a major risk factor for cardiovascular disease (CVD), and the combination of the two conditions is a potent enhancer of [...] Read more.
Rat experimental models are used extensively for studying physiological mechanisms and treatments of hypertension and diabetes co-existence. Each one of these conditions is a major risk factor for cardiovascular disease (CVD), and the combination of the two conditions is a potent enhancer of CVD. Five major animal models that advanced our understanding of the mechanisms and therapeutic approaches in humans are discussed in this review: Zucker, Goto-Kakizaki, SHROB, SHR/NDmcr-cp and Cohen Rosenthal diabetic hypertensive (CRDH) rats. The use of various drugs, such as angiotensin-converting enzyme (ACE) inhibitors (ACEIs), various angiotensin receptor blockers (ARBs), and calcium channel blockers (CCBs), to combat the effects of concomitant pathologies on the combination of diabetes and hypertension, as well as the non-pharmacological approach are reviewed in detail for each rat model. Results from experiments on these models indicate that classical factors contributing to the pathology of hypertension and diabetes combination—Including hypertension, hyperglycemia, hyperinsulinemia and hyperlipidemia—can now be treated, although these treatments do not completely prevent renal complications. Animal studies have focused on several mechanisms involved in hypertension/diabetes that remain to be translated into clinical medicine, including hypoxia, oxidative stress, and advanced glycation. Several target molecules have been identified that need to be incorporated into a treatment modality. The challenge continues to be the identification and interpretation of the clinical evidence from the animal models and their application to human treatment. Full article
(This article belongs to the Special Issue Antihypertensive Drugs)
Back to TopTop