Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = Co3O4/CuF electrode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1750 KiB  
Article
Mineral-Based Synthesis of CuFe2O4 Nanoparticles via Co-Precipitation and Microwave Techniques Using Leached Copper Solutions from Mined Minerals
by Carolina Venegas Abarzúa, Mauricio J. Morel, Gabriela Sandoval-Hevia, Thangavel Kavinkumar, Natarajan Chidhambaram, Sathish Kumar Kamaraj, Nagarajan Dineshbabu and Arun Thirumurugan
Minerals 2025, 15(8), 819; https://doi.org/10.3390/min15080819 (registering DOI) - 1 Aug 2025
Viewed by 139
Abstract
Environmental sustainability and responsible resource utilization are critical global challenges. In this work, we present a sustainable and circular-economy-based approach for synthesizing CuFe2O4 nanoparticles by directly utilizing copper oxide minerals sourced from Chilean mining operations. Copper sulfate (CuSO4) [...] Read more.
Environmental sustainability and responsible resource utilization are critical global challenges. In this work, we present a sustainable and circular-economy-based approach for synthesizing CuFe2O4 nanoparticles by directly utilizing copper oxide minerals sourced from Chilean mining operations. Copper sulfate (CuSO4) was extracted from these minerals through acid leaching and used as a precursor for nanoparticle synthesis via both chemical co-precipitation and microwave-assisted methods. The influence of different precipitating agents—NaOH, Na2CO3, and NaF—was systematically evaluated. XRD and FESEM analyses revealed that NaOH produced the most phase-pure and well-dispersed nanoparticles, while NaF resulted in secondary phase formation. The microwave-assisted method further improved particle uniformity and reduced agglomeration due to rapid and homogeneous heating. Electrochemical characterization was conducted to assess the suitability of the synthesized CuFe2O4 for supercapacitor applications. Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) measurements confirmed pseudocapacitive behavior, with a specific capacitance of up to 1000 F/g at 2 A/g. These findings highlight the potential of CuFe2O4 as a low-cost, high-performance electrode material for energy storage. This study underscores the feasibility of converting primary mined minerals into functional nanomaterials while promoting sustainable mineral valorization. The approach can be extended to other critical metals and mineral residues, including tailings, supporting the broader goals of a circular economy and environmental remediation. Full article
Show Figures

Figure 1

15 pages, 11303 KiB  
Article
Hierarchical Manganese-Doped Nickel–Cobalt Oxide Electrodes with Graphene for Use as High-Energy-Density Supercapacitors
by Kuan-Ching Lee, Guan-Ting Pan, Thomas Chung-Kuang Yang, Po-Cheng Shen, Kuan Lun Pan, Timm Joyce Tiong, Aleksandar N. Nikoloski and Chao-Ming Huang
Surfaces 2025, 8(3), 43; https://doi.org/10.3390/surfaces8030043 - 25 Jun 2025
Viewed by 394
Abstract
Thin films of manganese–nickel–cobalt oxide with graphene (G@MNCO) were deposited on copper foam using electrochemical deposition. NiCo2O4 is the main phase in these films. As the proportion of graphene in the precursor solution increases, the oxygen vacancies in the samples [...] Read more.
Thin films of manganese–nickel–cobalt oxide with graphene (G@MNCO) were deposited on copper foam using electrochemical deposition. NiCo2O4 is the main phase in these films. As the proportion of graphene in the precursor solution increases, the oxygen vacancies in the samples also increase. The microstructure of these samples evolves into hierarchical vertical flake structures. Cyclic voltammetry measurements conducted within the potential range of 0–1.2 V reveal that the electrode with the highest graphene content achieves the highest specific capacitance, approximately 475 F/g. Furthermore, it exhibits excellent cycling durability, maintaining 95.0% of its initial capacitance after 10,000 cycles. The superior electrochemical performance of the graphene-enhanced, manganese-doped nickel–cobalt oxide electrode is attributed to the synergistic contributions of the hierarchical G@MNCO structure, the three-dimensional Cu foam current collector, and the binder-free fabrication process. These features promote quicker electrolyte ion diffusion into the electrode material and ensure robust adhesion of the active materials to the current collector. Full article
(This article belongs to the Special Issue Surface Science in Electrochemical Energy Storage)
Show Figures

Figure 1

23 pages, 23602 KiB  
Article
Exploration of the Supercapacitive Performance of 3D Flower-like Architecture of Quaternary CuNiCoZnO Developed on Versatile Substrates
by Priya G. Gaikwad, Nidhi Tiwari, Rajanish K. Kamat, Sadaf Jamal Gilani, Sagar M. Mane, Jaewoong Lee and Shriniwas B. Kulkarni
Micromachines 2025, 16(6), 645; https://doi.org/10.3390/mi16060645 - 28 May 2025
Viewed by 452
Abstract
The demand for high-performance supercapacitors has driven extensive research into novel electrode materials with superior electrochemical properties. This study explores the supercapacitive behavior of quaternary CuNiCoZnO (CNCZO) films engineered into a three-dimensional (3D) flower-like morphology and developed on versatile substrates, including carbon cloth, [...] Read more.
The demand for high-performance supercapacitors has driven extensive research into novel electrode materials with superior electrochemical properties. This study explores the supercapacitive behavior of quaternary CuNiCoZnO (CNCZO) films engineered into a three-dimensional (3D) flower-like morphology and developed on versatile substrates, including carbon cloth, stainless steel mesh, and nickel foam. The unique structural design, comprising interconnected nanosheets, enhances the electroactive surface area, facilitates ion diffusion, and improves charge storage capability. The synergistic effect of the multi-metallic composition contributes to remarkable electrochemical characteristics, including high specific capacitance, excellent rate capability, and outstanding cycling stability. Furthermore, the influence of different substrates on the electrochemical performance is systematically investigated to optimize material–substrate interactions. Electrochemical evaluations reveal outstanding specific capacitance values of 2318.5 F/g, 1993.7 F/g, and 2741.3 F/g at 2 mA/cm2 for CNCZO electrodes on stainless steel mesh, carbon cloth, and nickel foam, respectively, with capacitance retention of 77.3%, 95.7%, and 86.1% over 5000 cycles. Furthermore, a symmetric device of CNCZO@Ni exhibits a peak specific capacitance of 67.7 F/g at a current density of 4 mA/cm2, a power density of 717.4 W/kg, and an energy density of 25.6 Wh/kg, maintaining 84.5% stability over 5000 cycles. The straightforward synthesis of CNCZO on multiple substrates presents a promising route for the development of flexible, high-performance energy storage devices. Full article
(This article belongs to the Special Issue Energy Conversion and Storage Devices: Materials and Applications)
Show Figures

Figure 1

15 pages, 5517 KiB  
Article
Cellulose Valorization via Electrochemical Oxidation: Efficient Formate Generation for Green Energy Storage
by Shuhan Xiao and Yang Yang
Biomass 2025, 5(2), 27; https://doi.org/10.3390/biomass5020027 - 16 May 2025
Viewed by 764
Abstract
Achieving efficient electrocatalytic oxidation of cellulose-derived biomass is a pivotal strategy for advancing bioenergy utilization and achieving carbon neutrality. This study addresses the challenges of low conversion efficiency caused by cellulose’s high crystallinity and excessive energy consumption in conventional processes by proposing a [...] Read more.
Achieving efficient electrocatalytic oxidation of cellulose-derived biomass is a pivotal strategy for advancing bioenergy utilization and achieving carbon neutrality. This study addresses the challenges of low conversion efficiency caused by cellulose’s high crystallinity and excessive energy consumption in conventional processes by proposing a novel integrated system combining solid heteropoly acid catalytic pretreatment and electrocatalytic oxidation. By preparing the (C16TA)H2PW solid acid catalyst, we successfully achieved hydrolysis of microcrystalline cellulose under 180 °C for 60 min, attaining a glucose yield of 40.1%. Furthermore, a non-noble metal electrocatalyst system based on foam copper (CuF) was developed, with the Co3O4/CuF electrode material demonstrating a Faradaic efficiency of 85.3% for formate production at 1.66 V (vs. RHE) in 1 mol L−1 KOH electrolyte containing the pretreated cellulose mixture, accompanied by a partial current density of 153.2 mA cm−2. The mechanism study indicates that hydroxyl radical-mediated C-C bond selective cleavage dominates the formate generation. This integrated system overcomes the limitations of poor catalyst stability and low product selectivity in biomass conversion, offering a sustainable strategy for green manufacturing of high-value chemicals from cellulose. Full article
Show Figures

Figure 1

13 pages, 3968 KiB  
Article
One-Step Synthesis CuCoNiSxO4−x Thio/Oxy Spinel on Ni Foam for High-Performance Asymmetric Supercapacitors
by Anastassiya A. Migunova, Renata R. Nemkayeva, Yeldar A. Zhakanbayev and Yuriy Zh. Tuleushev
Energies 2025, 18(3), 561; https://doi.org/10.3390/en18030561 - 24 Jan 2025
Cited by 3 | Viewed by 1020
Abstract
Mixed transition metal sulfides are promising materials for positive electrodes of asymmetric supercapacitors because they have a large potential for increasing the electrical characteristics of these devices. The paper presents the results of a study of a material based on spinel CuCoNiSx [...] Read more.
Mixed transition metal sulfides are promising materials for positive electrodes of asymmetric supercapacitors because they have a large potential for increasing the electrical characteristics of these devices. The paper presents the results of a study of a material based on spinel CuCoNiSxO4−x with both sulfide and oxide sublattices, prepared by a one-step hydrothermal method directly on nickel foam, forming an array of whiskers. Electrochemical studies showed that a positive electrode, CuCoNiS2O2, exhibited a high specific capacitance of 3612 F g−1 at a current density of 1 A g−1. The assembled asymmetric supercapacitor with activated carbon as a negative electrode achieved a specific capacitance of 133.5 F g−1 at 1 A g−1 and a potential window of 1.7 V. Its energy density was 53.6 Wh kg−1 at a power density of 805 W kg−1 and the power density reached 17,000 W kg−1 at an energy density of 18.9 W h kg−1. The assembled device exhibits 52% of capacitance retention after the 20,000 cycles at a current density of 10 A g−1 with 97% coulombic efficiency. These results demonstrate that the CuCoNiSxO4−x system is competitive with other quaternary transition metal sulfides, and this type of spinel is a perspective electrode material for high-performance supercapacitors. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

16 pages, 4720 KiB  
Article
Co-Hydrothermal Carbonization of Goose Feather and Pine Sawdust: A Promising Strategy for Disposal of Sports Waste and the Robust Improvement of the Supercapacitor Characteristics of Pyrolytic Nanoporous Carbon
by Tingyu Ma, Jieni Wang, Xiaobo Han, Chuanbing Zhang, Yahui Xu, Leichang Cao, Shuguang Zhao, Jinglai Zhang and Shicheng Zhang
Molecules 2025, 30(1), 26; https://doi.org/10.3390/molecules30010026 - 25 Dec 2024
Viewed by 803
Abstract
Discarded sports waste faces bottlenecks in application due to inadequate disposal measures, and there is often a neglect of enhancing resource utilization efficiency and minimizing environmental impact. In this study, nanoporous biochar was prepared through co-hydrothermal carbonization (co-HTC) and pyrolytic activation by using [...] Read more.
Discarded sports waste faces bottlenecks in application due to inadequate disposal measures, and there is often a neglect of enhancing resource utilization efficiency and minimizing environmental impact. In this study, nanoporous biochar was prepared through co-hydrothermal carbonization (co-HTC) and pyrolytic activation by using mixed goose feathers and heavy-metals-contaminated pine sawdust. Comprehensive characterization demonstrated that the prepared M-3-25 (Biochar derived from mixed feedstocks (25 mg/g Cu in pine sawdust) at 700 °C with activator ratios of 3) possesses a high specific surface area 2501.08 m2 g−1 and abundant heteroatomic (N, O, and Cu), exhibiting an outstanding physicochemical structure and ultrahigh electrochemical performance. Compared to nanocarbon from a single feedstock, M-3-25 showed an ultrahigh capacitance of 587.14 F g−1 at 1 A g−1, high energy density of 42.16 Wh kg−1, and only 8.61% capacitance loss after enduring 10,000 cycles at a current density of 10 A g−1, positioning M-3-25 at the forefront of previously known biomass-derived nanoporous carbon supercapacitors. This research not only introduces a promising countermeasure for the disposal of sports waste but also provides superior biochar electrode materials with robust supercapacitor characteristics. Full article
Show Figures

Figure 1

13 pages, 13370 KiB  
Article
Low-Temperature Sintering and Microwave Dielectric Properties of CuxZn1−xTi0.2Zr0.8Nb2O8 Ceramics with the Aid of LiF
by Xing-Hua Ma, Qi Qu, Haitao Wu, Zhenlu Zhang and Xingyi Ma
Materials 2024, 17(24), 6251; https://doi.org/10.3390/ma17246251 - 20 Dec 2024
Cited by 1 | Viewed by 950
Abstract
M2+N4+Nb2O8-type ceramics (where M = Mg, Ca, Mn, Co, Ni, Zn and N = Ti, Zr) are essential for satellite communication and mobile base stations due to their medium relative permittivity (εr) [...] Read more.
M2+N4+Nb2O8-type ceramics (where M = Mg, Ca, Mn, Co, Ni, Zn and N = Ti, Zr) are essential for satellite communication and mobile base stations due to their medium relative permittivity (εr) and high quality factor (Q × f). Although ZnTi0.2Zr0.8Nb2O8 ceramic exhibits impressive microwave dielectric properties, including an εr of 29.75, a Q × f of 107,303 GHz, and a τf of −24.41 ppm/°C, its sintering temperature of 1150 °C remains a significant barrier for integration into low-temperature co-fired ceramic (LTCC) technologies. To overcome this limitation, a strategy involving the partial substitution of Zn2+ with Cu2+ and the addition of LiF as a sintering aid was devised for ZnTi0.2Zr0.8Nb2O8. The dual impact of Cu2+ partial substitution and LiF as a sintering enhancer facilitated the successful sintering of Cu0.3Zn0.7Ti0.2Zr0.8Nb2O8 ceramics at a reduced temperature of 950 °C using the conventional solid-state reaction method. These ceramics exhibited excellent microwave dielectric properties. Notably, Cu0.3Zn0.7Ti0.2Zr0.8Nb2O8 ceramic with 40 mol% LiF addition demonstrated optimal microwave dielectric properties without any reaction with a silver electrode at a sintering temperature of 950 °C, yielding εr = 32, Q × f = 45,543 GHz, and τf = −43.5 ppm/°C. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

13 pages, 4216 KiB  
Article
NiMoO4 Nanosheets Embedded in Microflake-Assembled CuCo2O4 Island-like Structure on Ni Foam for High-Performance Asymmetrical Solid-State Supercapacitors
by Gaofeng Li, Lingling Chen and Longfei Li
Molecules 2023, 28(19), 6840; https://doi.org/10.3390/molecules28196840 - 28 Sep 2023
Cited by 1 | Viewed by 1613
Abstract
Micro/nano-heterostructure with subtle structural design is an effective strategy to reduce the self-aggregation of 2D structure and maintain a large specific surface area to achieve high-performance supercapacitors. Herein, we report a rationally designed micro/nano-heterostructure of complex ternary transition metal oxides (TMOs) by a [...] Read more.
Micro/nano-heterostructure with subtle structural design is an effective strategy to reduce the self-aggregation of 2D structure and maintain a large specific surface area to achieve high-performance supercapacitors. Herein, we report a rationally designed micro/nano-heterostructure of complex ternary transition metal oxides (TMOs) by a two-step hydrothermal method. Microflake-assembled island-like CuCo2O4 frameworks and secondary inserted units of NiMoO4 nanosheets endow CuCo2O4/NiMoO4 composites with desired micro/nanostructure features. Three-dimensional architectures constructed from CuCo2O4 microflakes offer a robust skeleton to endure structural change during cycling and provide efficient and rapid pathways for ion and electron transport. Two-dimensional NiMoO4 nanosheets possess numerous active sites and multi-access ion paths. Benefiting from above-mentioned advantages, the CuCo2O4/NiMoO4 heterostructures exhibit superior pseudocapacitive performance with a high specific capacitance of 2350 F/g at 1 A/g as well as an excellent cycling stability of 91.5% over 5000 cycles. A solid-state asymmetric supercapacitor based on the CuCo2O4/NiMoO4 electrode as a positive electrode and activated carbon as a negative electrode achieves a high energy density of 51.7 Wh/kg at a power density of 853.7 W/kg. These results indicate that the hybrid micro/nanostructured TMOs will be promising for high-performance supercapacitors. Full article
Show Figures

Graphical abstract

17 pages, 7120 KiB  
Article
Core–Shell Structured Carbon Nanofiber-Based Electrodes for High-Performance Supercapacitors
by Peizhi Fan, Jie Wang, Wenfei Ding and Lan Xu
Molecules 2023, 28(12), 4571; https://doi.org/10.3390/molecules28124571 - 6 Jun 2023
Cited by 12 | Viewed by 1647
Abstract
The combination of multiple electrode materials and their reasonable structural design are conducive to the preparation of composite electrodes with excellent performance. In this study, based on carbon nanofibers grown with Ni(OH)2 and NiO (CHO) prepared by electrospinning, hydrothermal growth, and low-temperature [...] Read more.
The combination of multiple electrode materials and their reasonable structural design are conducive to the preparation of composite electrodes with excellent performance. In this study, based on carbon nanofibers grown with Ni(OH)2 and NiO (CHO) prepared by electrospinning, hydrothermal growth, and low-temperature carbonization, five transition metal sulfides (MnS, CoS, FeS, CuS, and NiS) were hydrothermally grown on their surfaces, exhibiting that CHO/NiS had the optimal electrochemical properties. Subsequently, the effect of hydrothermal growth time on CHO/NiS revealed that the electrochemical performance of CHO/NiS-3h was optimal, with a specific capacitance of up to 1717 F g−1 (1 A g−1), due to its multistage core–shell structure. Moreover, the diffusion-controlled process of CHO/NiS-3h dominated its charge energy storage mechanism. Finally, the asymmetric supercapacitor assembled with CHO/NiS-3h as the positive electrode demonstrated an energy density of 27.76 Wh kg−1 at a maximum power density of 4000 W kg−1, and it still maintained a power density of 800 W kg−1 at a maximum energy density of 37.97 Wh kg−1, exhibiting the potential application of multistage core–shell composite materials in high-performance supercapacitors. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

16 pages, 34041 KiB  
Article
Impacts of Structure-Directing Agents on the Synthesis of Cu3Mo2O9 for Flexible Lignin-Based Supercapacitor Electrodes
by Siddhi Mehta, Sangeetha Kumaravel, Swarn Jha, Matthew Yen, Subrata Kundu and Hong Liang
J. Compos. Sci. 2023, 7(4), 155; https://doi.org/10.3390/jcs7040155 - 11 Apr 2023
Cited by 9 | Viewed by 2901
Abstract
Due to demands for sustainability, the interest in energy storage devices constructed from green materials has increased immensely. These devices currently have yet to be satisfactory. Issues include high production costs and toxicity, limited dependability, and subpar electrochemical performance. In this research, low-cost, [...] Read more.
Due to demands for sustainability, the interest in energy storage devices constructed from green materials has increased immensely. These devices currently have yet to be satisfactory. Issues include high production costs and toxicity, limited dependability, and subpar electrochemical performance. In this research, low-cost, plant-based electroactive Cu3Mo2O9 materials were synthesized via co-precipitation followed by an annealing method using two different structure-directing agents, i.e., the commonly used surfactant cetyltrimethylammonium bromide (CTAB) and the biomolecule deoxyribonucleic acid (DNA) as a greener alternative, and these materials were studied for the first time. Further, the Cu3Mo2O9 nanoparticles developed using CTAB and DNA were integrated into the lignin matrix and studied as flexible electrodes for supercapacitor application. Here, the morphological advantages of the nanorods and nanosheets formed by varying the synthesis methods and their effects during supercapacitor studies were studied in detail. After 1200 cycles, the Al/lig-Cu3Mo2O9@DNA supercapacitor exhibited higher capacitive performance when compared to the Al/lig-Cu3Mo2O9@CTAB supercapacitor. The Al/Lig-Cu3Mo2O9@DNA supercapacitor had an initial specific capacitance of 404.64 mF g−1 with a ~70% retention, while the Al/Lig-Cu3Mo2O9@CTAB supercapacitor had an initial specific capacitance of 309.59 mF g−1 with a ~50% retention. This study offers a new approach to creating scalable, low-cost, green composite CuMoO4-based electrodes for flexible supercapacitors. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

12 pages, 5841 KiB  
Article
Dandelion-Like CuCo2O4@ NiMn LDH Core/Shell Nanoflowers for Excellent Battery-Type Supercapacitor
by Wenhua Zhao, Xingliang Xu, Niandu Wu, Xiaodie Zhao and Jiangfeng Gong
Nanomaterials 2023, 13(4), 730; https://doi.org/10.3390/nano13040730 - 14 Feb 2023
Cited by 15 | Viewed by 2910
Abstract
Dandelion-like CuCo2O4 nanoflowers (CCO NFs) with ultrathin NiMn layered double hydroxide (LDH) shells were fabricated via a two-step hydrothermal method. The prepared CuCo2O4@NiMn LDH core/shell nanoflowers (CCO@NM LDH NFs) possessed a high specific surface area (~181 [...] Read more.
Dandelion-like CuCo2O4 nanoflowers (CCO NFs) with ultrathin NiMn layered double hydroxide (LDH) shells were fabricated via a two-step hydrothermal method. The prepared CuCo2O4@NiMn LDH core/shell nanoflowers (CCO@NM LDH NFs) possessed a high specific surface area (~181 m2·g−1) with an average pore size of ~256 nm. Herein, the CCO@NM LDH NFs exhibited the typical battery-type electrode material with a specific capacity of 2156.53 F·g−1 at a current density of 1 A·g−1. With the increase in current density, the rate capability retention was 68.3% at a current density of 10 A·g−1. In particular, the 94.6% capacity of CCO@NM LDH NFs remains after 2500 cycles at 5 A·g−1. An asymmetric supercapacitor (ASC) with CCO@NM LDH NFs//activated carbon (AC) demonstrates a remarkable capacitance of 303.11 F·g−1 at 1 A·g−1 with excellent cycling stability. The coupling and synergistic effects of multi-valence transition metals provide a convenient channel for the electrochemical process, which is beneficial to spread widely within the realm of electrochemical energy storage. Full article
(This article belongs to the Special Issue Nanostructured Thin Films: From Synthesis to Application)
Show Figures

Figure 1

14 pages, 4561 KiB  
Article
Magnetic CuFe2O4 Nanoparticles with Pseudocapacitive Properties for Electrical Energy Storage
by Wenyu Liang, Wenjuan Yang, Sadman Sakib and Igor Zhitomirsky
Molecules 2022, 27(16), 5313; https://doi.org/10.3390/molecules27165313 - 20 Aug 2022
Cited by 26 | Viewed by 2561
Abstract
This investigation is motivated by increasing interest in the development of magnetically ordered pseudocapacitors (MOPC), which exhibit interesting magnetocapacitive effects. Here, advanced pseudocapacitive properties of magnetic CuFe2O4 nanoparticles in negative potential range are reported, suggesting that CuFe2O4 [...] Read more.
This investigation is motivated by increasing interest in the development of magnetically ordered pseudocapacitors (MOPC), which exhibit interesting magnetocapacitive effects. Here, advanced pseudocapacitive properties of magnetic CuFe2O4 nanoparticles in negative potential range are reported, suggesting that CuFe2O4 is a promising MOPC and advanced negative electrode material for supercapacitors. A high capacitance of 2.76 F cm−2 is achieved at a low electrode resistance in a relatively large potential window of 0.8 V. The cyclic voltammograms and galvanostatic charge–discharge data show nearly ideal pseudocapacitive behavior. Good electrochemical performance is achieved at a high active mass loading due to the use of chelating molecules of ammonium salt of purpuric acid (ASPA) as a co-dispersant for CuFe2O4 nanoparticles and conductive multiwalled carbon nanotube (MCNT) additives. The adsorption of ASPA on different materials is linked to structural features of ASPA, which allows for different interaction and adsorption mechanisms. The combination of advanced magnetic and pseudocapacitive properties in a negative potential range in a single MOPC material provides a platform for various effects related to the influence of pseudocapacitive/magnetic properties on magnetic/pseudocapacitive behavior. Full article
Show Figures

Figure 1

12 pages, 4178 KiB  
Article
Influence of Fe and Cu Co-Doping on Structural, Magnetic and Electrochemical Properties of CeO2 Nanoparticles
by Shalendra Kumar, Faheem Ahmed, Naushad Ahmad, Nagih M. Shaalan, Rajesh Kumar, Adil Alshoaibi, Nishat Arshi, Saurabh Dalela, Parvez Ahmad Alvi and Kavita Kumari
Materials 2022, 15(12), 4119; https://doi.org/10.3390/ma15124119 - 9 Jun 2022
Cited by 15 | Viewed by 2290
Abstract
The nanoparticles of CeO2, Ce0.98Fe0.02O2, and Ce0.78Fe0.02Cu0.20O2 were synthesized using the co-precipitation-synthesis technique. The effect of co-doping of Fe and Cu on structural, optical, and magnetic properties as [...] Read more.
The nanoparticles of CeO2, Ce0.98Fe0.02O2, and Ce0.78Fe0.02Cu0.20O2 were synthesized using the co-precipitation-synthesis technique. The effect of co-doping of Fe and Cu on structural, optical, and magnetic properties as well as specific capacitance have been studied using X-ray diffraction (XRD), scanning-electron microscopy (SEM), UV-visible spectroscopy, Raman spectroscopy, dc magnetization, and electrochemical measurements at room temperature. The results of the XRD analysis infer that all the samples have a single-phase nature and exclude the formation of any extra phase. Particle size has been found to reduce as a result of doping and co-doping. The smallest particle size was obtained to be 5.59 nm for Ce0.78Fe0.02Cu0.20O2. The particles show a spherical-shape morphology. Raman active modes, corresponding to CeO2, were observed in the Raman spectra, with noticeable shifting with doping and co-doping indicating the presence of defect states. The bandgap, calculated using UV-Vis spectroscopy, showed relatively low bandgap energy (1.7 eV). The dc magnetization results indicate the enhancement of the magnetic moment in the samples, with doping and co-doping. The highest value of saturation magnetization (1.3 × 10−2 emu/g) has been found for Ce0.78Fe0.02Cu0.20O2 nanoparticles. The electrochemical behavior studied using cyclic-voltammetry (CV) measurements showed that the Ce0.98Fe0.02O2 electrode exhibits superior-specific capacitance (~532 F g−1) along with capacitance retention of ~94% for 1000 cycles. Full article
Show Figures

Figure 1

14 pages, 50409 KiB  
Article
Fabrication of Bimetallic Oxides (MCo2O4: M=Cu, Mn) on Ordered Microchannel Electro-Conductive Plate for High-Performance Hybrid Supercapacitors
by Mai Li, Zheyi Meng, Ruichao Feng, Kailan Zhu, Fengfeng Zhao, Chunrui Wang, Jiale Wang, Lianwei Wang and Paul K. Chu
Sustainability 2021, 13(17), 9896; https://doi.org/10.3390/su13179896 - 3 Sep 2021
Cited by 18 | Viewed by 2908
Abstract
AB2O4-type binary-transition metal oxides (BTMOs) of CuCo2O4 and MnCo2O4 were successfully prepared on ordered macroporous electrode plates (OMEP) for supercapacitors. Under the current density of 5 mA cm−2, the CuCo2 [...] Read more.
AB2O4-type binary-transition metal oxides (BTMOs) of CuCo2O4 and MnCo2O4 were successfully prepared on ordered macroporous electrode plates (OMEP) for supercapacitors. Under the current density of 5 mA cm−2, the CuCo2O4/OMEP electrode achieved a specific capacitance of 1199 F g−1. The asymmetric supercapacitor device prepared using CuCo2O4/OMEP as the positive electrode and carbon-based materials as the negative electrode (CuCo2O4/OMEP//AC) achieved the power density of 14.58 kW kg−1 under the energy density of 11.7 Wh kg−1. After 10,000 GCD cycles, the loss capacitance of CuCo2O4/OMEP//AC is only 7.5% (the retention is 92.5%). The MnCo2O4/OMEP electrode shows the specific and area capacitance of 843 F g−1 and 5.39 F cm−2 at 5 mA cm−2. The MnCo2O4/OMEP-based supercapacitor device (MnCo2O4/OMEP//AC) has a power density of 8.33 kW kg−1 under the energy density of 11.6 Wh kg−1 and the cycle stability was 90.2% after 10,000 cycles. The excellent power density and cycle stability prove that the prepared hybrid supercapacitor fabricated under silicon process has a good prospect as the power buffer device for solar cells. Full article
(This article belongs to the Special Issue Utilization of Solar Energy in Smart Buildings)
Show Figures

Figure 1

12 pages, 3031 KiB  
Article
An Investigation of the Electrochemical Properties of CuCo2O4@NiCo2O4 Composite as Binder-Free Electrodes of a Supercapacitor
by Bushra Nawaz, Muhammad Obaid Ullah and Ghulam Ali
Energies 2021, 14(11), 3237; https://doi.org/10.3390/en14113237 - 1 Jun 2021
Cited by 19 | Viewed by 3870
Abstract
Metallic oxides are considered promising candidates for supercapacitors owing to their inherent pseudocapacitive behavior and superior electrochemical properties. In this work, NiCo2O4, CuCo2O4, and CuCo2O4@NiCo2O4 composite electrodes are [...] Read more.
Metallic oxides are considered promising candidates for supercapacitors owing to their inherent pseudocapacitive behavior and superior electrochemical properties. In this work, NiCo2O4, CuCo2O4, and CuCo2O4@NiCo2O4 composite electrodes are synthesized directly on a nickel foam substrate via the facile hydrothermal method. The phase of the prepared materials was analyzed using the X-ray diffraction method. The morphology of the prepared binder-free electrodes was observed by scanning electron microscopy. The electrochemical testing was done in a 2 M KOH solution against an Ag/AgCl reference electrode. The CuCo2O4@NiCo2O4 composite electrode demonstrated a value of specific capacitance as high as 422 F g−1 at a current density of 1 A g−1 and thus outperformed the NiCo2O4 and CuCo2O4 in terms of its electrochemical performance. The CuCo2O4@NiCo2O4 composite retained a specific capacitance of 278 F g−1 even with the increase of current density to 10 A g−1, which corresponds to a 34% loss of capacitance compared to 40% and 48% of individual NiCo2O4 and CuCo2O4 electrodes, respectively. Hence, the synergy in a composite material demonstrates it to be a potential candidate as an electrode in supercapacitors. Full article
(This article belongs to the Special Issue Approaches for Energy Storage, Sensing and Electrocatalysis)
Show Figures

Graphical abstract

Back to TopTop