Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Clavularia viridis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1849 KiB  
Article
Dolabellane Diterpenoids from Soft Coral Clavularia viridis with Anti-Inflammatory Activities
by Chufan Gu, Hongli Jia, Kang Zhou, Bin Wang, Wenhan Lin and Wei Cheng
Mar. Drugs 2025, 23(8), 312; https://doi.org/10.3390/md23080312 - 30 Jul 2025
Viewed by 192
Abstract
A chemical investigation of the EtOAc fraction from soft coral Clavularia viridis resulted in the isolation of 12 undescribed dolabellane-type diterpenoids, namely clavirolides W–Z (14), clavularols A–H (512), and three known analogs (13 [...] Read more.
A chemical investigation of the EtOAc fraction from soft coral Clavularia viridis resulted in the isolation of 12 undescribed dolabellane-type diterpenoids, namely clavirolides W–Z (14), clavularols A–H (512), and three known analogs (1315). Their structures were characterized by an extensive analysis of spectroscopic data, including X-ray diffraction and ECD calculations for the assignment of absolute configurations. The structures of 2 and 46 are feathered as peroxyl-substituted derivatives, while compounds 712 possess additional oxidative cyclization, including epoxide or furan that are rare in the dolabellane family. All these compounds were evaluated for activities on cytotoxic and anti-inflammatory models. Compound 10 exhibited most potential against NO production in the BV2 cell induced by LPS with an IC50 value of 18.3 μM. Full article
(This article belongs to the Section Structural Studies on Marine Natural Products)
Show Figures

Figure 1

14 pages, 8049 KiB  
Article
Synthesis and Luminescence Properties of Eu2+-Doped Sr3MgSi2O8 Blue Light-Emitting Phosphor for Application in Near-Ultraviolet Excitable White Light-Emitting Diodes
by Chou-Yuan Lee, Chia-Ching Wu, Hsin-Hua Li and Cheng-Fu Yang
Nanomaterials 2022, 12(15), 2706; https://doi.org/10.3390/nano12152706 - 6 Aug 2022
Cited by 13 | Viewed by 2435
Abstract
In this study, [Sr0.99Eu0.01]3MgSi2O8 phosphors were sintered at 1200–1400 °C for 1–5 h by using the solid-state reaction method. The crystallinity and morphology of these phosphors were characterized through X-ray diffraction analysis and field-emission [...] Read more.
In this study, [Sr0.99Eu0.01]3MgSi2O8 phosphors were sintered at 1200–1400 °C for 1–5 h by using the solid-state reaction method. The crystallinity and morphology of these phosphors were characterized through X-ray diffraction analysis and field-emission scanning electron microscopy, respectively, to determine their luminescence. The photoluminescence properties, including the excitation and emission properties, of the prepared phosphors were investigated through fluorescence spectrophotometry. The α-Sr2SiO4, Sr2MgSi2O7, and Sr3MgSi2O8 phases coexisted in the [Sr0.99Eu0.01]3MgSi2O8 phosphors, which were synthesized at low temperatures. The particles of these phosphors had many fine hairs on their surface and resembled Clavularia viridis, which is a coral species. Transmission electron microscopy and energy dispersive X-ray spectroscopy indicated that the fine hairs contained the Sr2SiO4 and Sr2MgSi2O7 phases. However, when the [Sr0.99Eu0.01]3MgSi2O8 phosphors were sintered at 1400 °C, the Sr3MgSi2O8 phase was observed, and the Eu2+-doped Sr3MgSi2O8 phase dominated the only broad emission band, which had a central wavelength of 457 nm (blue light). The emission peaks at this wavelength were attributed to the 4f65d1–4f7 transition at the Sr2+(I) site, where Sr2+ was substituted by Eu2+. The average decay time of the synthesized phosphors was calculated to be 1.197 ms. The aforementioned results indicate that [Sr0.99Eu0.01]3MgSi2O8 can be used as a blue-emitting phosphor in ultraviolet-excited white light-emitting diodes. Full article
(This article belongs to the Special Issue Recent Advances in Luminescent Nanomaterials for LEDs)
Show Figures

Figure 1

12 pages, 1245 KiB  
Article
Extracts from Cladiella australis, Clavularia viridis and Klyxum simplex (Soft Corals) are Capable of Inhibiting the Growth of Human Oral Squamous Cell Carcinoma Cells
by Chia-Hua Liang, Guey-Horng Wang, Chih-Chuang Liaw, Mei-Feng Lee, Shih-Hao Wang, Da-Long Cheng and Tzung-Han Chou
Mar. Drugs 2008, 6(4), 595-606; https://doi.org/10.3390/md6040595 - 3 Nov 2008
Cited by 19 | Viewed by 15878
Abstract
Many biomedical products have already been obtained from marine organisms. In order to search more therapeutic drugs against cancer, this study demonstrates the cytotoxicity effects of Cladiella australis, Clavularia viridis and Klyxum simplex extractson human oral squamous cell carcinoma (SCC4, SCC9 and [...] Read more.
Many biomedical products have already been obtained from marine organisms. In order to search more therapeutic drugs against cancer, this study demonstrates the cytotoxicity effects of Cladiella australis, Clavularia viridis and Klyxum simplex extractson human oral squamous cell carcinoma (SCC4, SCC9 and SCC25) cells using cell adhesion and cell viability assay. The morphological alterations in SCCs cells after treatment with three extracts, such as typical nuclear condensation, nuclear fragmentation and apoptotic bodies of cells were demonstrated by Hoechst stain. Flow cytometry indicated that three extracts sensitized SCC25 cells in the G0/G1 and S-G2/M phases with a concomitant significantly increased sub-G1 fraction, indicating cell death by apoptosis. This apoptosis process was accompanied by activation of caspase-3 expression after SCC25 cells were treated with three extracts. Thereby, it is possible that extracts of C. australis, C. viridis and K. simplex cause apoptosis of SCCs and warrant further research investigating the possible anti-oral cancer compounds in these soft corals. Full article
Show Figures

Graphical abstract

Back to TopTop