Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = Ciguatera Fish Poisoning (CFP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9989 KiB  
Article
Application of High-Resolution Mass Spectrometry for Ciguatoxin Detection in Fish from the Asia–Pacific Region
by Xin Li, Ker Lew, Yu Lee Leyau, Ping Shen, Joachim Chua, Kung Ju Lin, Yuansheng Wu and Sheot Harn Chan
Toxins 2025, 17(3), 100; https://doi.org/10.3390/toxins17030100 - 20 Feb 2025
Cited by 2 | Viewed by 1120
Abstract
Fish is a major source of protein in Asia–Pacific countries. Ciguatera fish poisoning (CFP), caused by consuming reef fish contaminated with ciguatoxins (CTXs), poses a significant health risk, affecting the neurological, gastrointestinal, and cardiovascular systems. Climate change and the global food trade are [...] Read more.
Fish is a major source of protein in Asia–Pacific countries. Ciguatera fish poisoning (CFP), caused by consuming reef fish contaminated with ciguatoxins (CTXs), poses a significant health risk, affecting the neurological, gastrointestinal, and cardiovascular systems. Climate change and the global food trade are potentially major factors contributing to the expanding geographical range and frequency of CFP outbreaks. Therefore, the surveillance and monitoring of CTXs in fishery products are essential to safeguard food safety. In this study, liquid chromatography–high-resolution mass spectrometry (LC-HRMS) was used to screen for CTXs in wild-caught fish from the region. Analysis of two grouper fish samples from Okinawa, Japan, detected CTX-1B, a major CTX known to incur in fish from the Asia–Pacific region. Additionally, putative Indian Ocean CTXs (I-CTXs) were also identified. Further study with HRMS on wild-caught red emperor fish from Southeast Asia waters revealed low levels of I-CTXs as well. These findings underscore the urgent need for enhanced food safety measures and expansion of monitoring protocols to include I-CTXs. This research contributes to the global understanding of CTX distribution and confirms the importance of HRMS application in routine surveillance to mitigate the risks associated with ciguatera fish poisoning (CFP). Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

38 pages, 5610 KiB  
Article
Morphological, Toxicological, and Biochemical Characterization of Two Species of Gambierdiscus from Bahía de La Paz, Gulf of California
by Leyberth José Fernández-Herrera, Erick Julián Núñez-Vázquez, Francisco E. Hernández-Sandoval, Daniel Octavio Ceseña-Ojeda, Sara García-Davis, Andressa Teles, Marte Virgen-Félix and Dariel Tovar-Ramírez
Mar. Drugs 2024, 22(9), 422; https://doi.org/10.3390/md22090422 - 16 Sep 2024
Cited by 1 | Viewed by 2109
Abstract
We describe five new isolates of two Gambierdiscus species from Bahía de La Paz in the southern Gulf of California. Batch cultures of Gambierdiscus were established for morphological characterization using light microscopy (LM) and scanning electron microscopy (SEM). Pigment and amino acid profiles [...] Read more.
We describe five new isolates of two Gambierdiscus species from Bahía de La Paz in the southern Gulf of California. Batch cultures of Gambierdiscus were established for morphological characterization using light microscopy (LM) and scanning electron microscopy (SEM). Pigment and amino acid profiles were also analyzed using high-performance liquid chromatography (HPLC-UV and HPLC-DAD). Finally, toxicity (CTX-like and MTX-like activity) was evaluated using the Artemia salina assay (ARTOX), mouse assay (MBA), marine fish assay (MFA), and fluorescent receptor binding assay (fRBA). These strains were identified as Gambierdiscus cf. caribaeus and Gambierdiscus cf. carpenteri. Toxicity for CTX-like and MTX-like activity was confirmed in all evaluated clones. Seven pigments were detected, with chlorophyll a, pyridine, Chl2, and diadinoxanthin being particularly noteworthy. For the first time, a screening of the amino acid profile of Gambierdiscus from the Pacific Ocean was conducted, which showed 14 amino acids for all strains except histidine, which was only present in G. cf. caribeaus. We report the presence of Gambierdiscus and Fukuyoa species in the Mexican Pacific, where ciguatera fish poisoning (CFP) cases have occurred. Full article
(This article belongs to the Special Issue Commemorating the Launch of the Section "Marine Toxins")
Show Figures

Figure 1

17 pages, 933 KiB  
Review
Expansion of Toxic Algal Blooms in Coastal and Marine Areas in the Philippines and Malaysia: Is It Climate Change Related?
by Rhodora V. Azanza, Aletta T. Yñiguez, Deo Florence Onda, Garry A. Benico, Po Teen Lim, Chui Pin Leaw and Mitsunori Iwataki
Sustainability 2024, 16(8), 3304; https://doi.org/10.3390/su16083304 - 15 Apr 2024
Cited by 9 | Viewed by 9106
Abstract
This paper provides a review of toxic algal blooms in the Philippine and Malaysian coastal and marine systems, considering relevant available knowledge, including climate change dimension/s in the assessment of their recorded recent expansion. The first record of human toxicity in the Philippines [...] Read more.
This paper provides a review of toxic algal blooms in the Philippine and Malaysian coastal and marine systems, considering relevant available knowledge, including climate change dimension/s in the assessment of their recorded recent expansion. The first record of human toxicity in the Philippines associated with HABs/toxic algal blooms specifically was during the bloom of Pyrodinium bahamense in the Sorsogon, Samar, and Leyte waters in 1983. Since then, the species has been identified to occur and cause blooms in about 44 sites/areas in the country. Recent government reports, i.e., 2021, 2022, and 2023, have also identified other paralytic shellfish poisoning (PSP) causative organisms (Gymnodinium catenatum, Alexandrium spp.) in the country. New records indicate that the presence of PSP causative species has been reported almost year-round in the Philippines. In Malaysia, PSP caused by P. bahamense was initially confined in 1981 to the state of Sabah, Malaysia Borneo, but since then, blooms of this species have been reported almost annually at different scales across the coastal waters of Sabah. P. bahamense and other cyst-forming dinoflagellates could be transported naturally or through human activities. Other eco-physiological and environment factors from the field and the laboratory have been used to study the bloom dynamics and transport of PSP causative species in several areas in the Philippines and Malaysia. More recently, plastics and other marine litter have been considered potential vectors of invasion/transport or expansion of dinoflagellates with other microorganisms. ENSO events have been observed to be stronger since 1950 compared with those recorded from 1850 to 1950. The extreme phases of the ENSO phenomenon have a strong modulating effect based on seasonal rainfall in the Philippines, with extreme ENSO warm events (El Niño) often associated with drought and stresses on water resources and agriculture/aquaculture. In contrast, cold events (La Niña) often result in excessive rainfall. The La Nina Advisories from 2021 to 2023 (18 advisories) showed the persistence of this part of ENSO, particularly in regions with recurrent and new records of HABs/toxic algal blooms. More studies and monitoring of another type of toxic algal bloom, Ciguatera Fish Poisoning (CFP), are recommended in tropical countries such as the Philippines and Malaysia, which have extensive reef areas that harvest and culture marine fish for local and export purposes, as accelerating reports of this type of poisoning have apparently increased and causative organisms have been identified in several areas. There is an urgent need to enhance HAB/toxic algal bloom research and monitoring, particularly those related to climate change, which has apparently impacted these blooms/occurrences directly or indirectly. Local researchers and managers should be made aware of the knowledge and tools already available for their utilization and enhancement to meet local conditions and challenges for potential recurrence and expansion of HABs/toxic algal blooms. Regional and international HAB research and collaboration should be further advanced for the protection of public health and marine resources. Full article
Show Figures

Figure 1

12 pages, 2966 KiB  
Communication
Structural Assignment of the Product Ion Generated from a Natural Ciguatoxin-3C Congener, 51-Hydroxyciguatoxin-3C, and Discovery of Distinguishable Signals in Congeners Bearing the 51-Hydroxy Group
by Ryogo Ukai, Hideaki Uchida, Kouichi Sugaya, Jun-ichi Onose, Naomasa Oshiro, Takeshi Yasumoto and Naoki Abe
Toxins 2024, 16(2), 89; https://doi.org/10.3390/toxins16020089 - 6 Feb 2024
Cited by 1 | Viewed by 1796
Abstract
Ciguatoxins (CTXs) stand as the primary toxins causing ciguatera fish poisoning (CFP) and are essential compounds distinguished by their characteristic polycyclic ether structure. In a previous report, we identified the structures of product ions generated via homolytic fragmentation by assuming three charge sites [...] Read more.
Ciguatoxins (CTXs) stand as the primary toxins causing ciguatera fish poisoning (CFP) and are essential compounds distinguished by their characteristic polycyclic ether structure. In a previous report, we identified the structures of product ions generated via homolytic fragmentation by assuming three charge sites in the mass spectrometry (MS)/MS spectrum of ciguatoxin-3C (CTX3C) using LC-MS. This study aims to elucidate the homolytic fragmentation of a ciguatoxin-3C congener. We assigned detailed structures of the product ions in the MS/MS spectrum of a naturally occurring ciguatoxin-3C congener, 51-hydroxyciguatoxin-3C (51-hydoxyCTX3C), employing liquid chromatography/quadrupole time-of-flight mass spectrometry with an atmospheric pressure chemical ionization (APCI) source. The introduction of a hydroxy substituent on C51 induced different fragmentation pathways, including a novel cleavage mechanism of the M ring involving the elimination of 51-OH and the formation of enol ether. Consequently, new cleavage patterns generated product ions at m/z 979 (C55H79O15), 439 (C24H39O7), 149 (C10H13O), 135 (C9H11O), and 115 (C6H11O2). Additionally, characteristic product ions were observed at m/z 509 (C28H45O8), 491 (C28H43O7), 481 (C26H41O8), 463 (C26H39O7), 439 (C24H39O7), 421 (C24H37O6), 171 (C9H15O3), 153 (C9H13O2), 141 (C8H13O2), and 123 (C8H11O). Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Graphical abstract

15 pages, 1771 KiB  
Review
A 15-Year Retrospective Review of Ciguatera in the Madeira Islands (North-East Atlantic, Portugal)
by Pedro Reis Costa, Catarina Churro, Susana Margarida Rodrigues, Bárbara Frazão, Miguel Barbosa, Lia Godinho, Lucía Soliño, Viriato Timóteo and Neide Gouveia
Toxins 2023, 15(11), 630; https://doi.org/10.3390/toxins15110630 - 27 Oct 2023
Cited by 5 | Viewed by 3054
Abstract
The first ciguatera fish poisoning (CFP) in Portugal dates from 2008 when 11 people reported CFP symptoms after consuming a 30 kg amberjack caught around the Selvagens Islands (Madeira Archipelago). Since then, 49 human poisonings have been reported. The emergence of a new [...] Read more.
The first ciguatera fish poisoning (CFP) in Portugal dates from 2008 when 11 people reported CFP symptoms after consuming a 30 kg amberjack caught around the Selvagens Islands (Madeira Archipelago). Since then, 49 human poisonings have been reported. The emergence of a new threat challenged scientists and regulators, as methods for toxic microalgae analyses and ciguatoxin (CTX) detection were not implemented. To minimise the risk of ciguatera, the Madeira Archipelago authorities interdicted fisheries in Selvagens Islands and banned the capture of amberjacks weighing more than 10 kg in the entire region of Madeira Archipelago. The accurate identification and quantification of the benthic toxin-producing algae species spreading to new areas require efforts in terms of both microscopy and molecular techniques. Two ciguatera-causing dinoflagellates, Gambierdiscus excentricus and Gambierdiscus australes, were identified in the Madeira Island and Selvagens sub-archipelago, respectively. Regarding the CTX analysis (N2a cell-based assay and LC-MS) in fish, the results indicate that the Selvagens Islands are a ciguatera risk area and that fish vectoring CTX are not limited to top predator species. Nevertheless, advances and improvements in screening methods for the fast detection of toxicity in seafood along with certified reference material and sensitive and selective targeted analytical methods for the determination of CTX content are still pending. This study aims to revise the occurrence of ciguatera cases in the Madeira Archipelago since its first detection in 2008, to discuss the risk management strategy that was implemented, and to provide a summary of the available data on the bioaccumulation of CTX in marine fish throughout the marine food web, taking into consideration their ecological significance, ecosystem dynamics, and fisheries relevance. Full article
(This article belongs to the Special Issue Ciguatoxins 2022–2023)
Show Figures

Graphical abstract

13 pages, 2937 KiB  
Article
Analytical Studies on Ciguateric Fish in Okinawa, Japan (II): The Grouper Variola albimarginata
by Naomasa Oshiro, Hiroya Nagasawa, Mio Nishimura, Kyoko Kuniyoshi, Naoki Kobayashi, Yoshiko Sugita-Konishi, Tsuyoshi Ikehara, Katsunori Tachihara and Takeshi Yasumoto
J. Mar. Sci. Eng. 2023, 11(2), 242; https://doi.org/10.3390/jmse11020242 - 17 Jan 2023
Cited by 8 | Viewed by 3544
Abstract
Ciguatera fish poisoning (CFP) refers to an illness caused by ingesting fish that have accumulated ciguatoxins (CTXs). CFP frequently occurs in the tropical and subtropical Indo-Pacific Ocean and the Caribbean Sea. In Japan, CFP occurs sporadically but constantly in Okinawa and the Amami [...] Read more.
Ciguatera fish poisoning (CFP) refers to an illness caused by ingesting fish that have accumulated ciguatoxins (CTXs). CFP frequently occurs in the tropical and subtropical Indo-Pacific Ocean and the Caribbean Sea. In Japan, CFP occurs sporadically but constantly in Okinawa and the Amami Islands. The grouper Variola albimarginata is regarded to be safe for consumption. To assess the real risk of V. albimarginata, we analyzed 133 specimens of the fish in Okinawa using liquid chromatography–tandem mass spectrometry (LC–MS/MS). Ciguatoxin-1B, 54-deoxyciguatoxin-1B, and 52-epi-54-deoxyciguatoxin-1B were detected in 28 specimens (21%). In 11 of these specimens (8%), the CTX levels exceeded the US FDA guidance level (0.01 µg/kg CTX1B equivalent). However, only one fish (<1%) was found to have levels above the recommended level in Japan (0.175 μg/kg CTX1B equivalent). The amount of CTXs in the flesh (280 g) of the most toxic specimen (0.225 μg/kg) did not reach the level needed to cause illness. The CFP risk due to the consumption of this species was thus considered to be low in Okinawa, supporting local belief. The CTX levels in the flesh were positively correlated with standard length, body weight, and age. The total CTX levels significantly fluctuated between the male and the female of the species. The estimated annual catch of V. albimarginata in Okinawa and Yaeyama Islands was 4909 kg or 13,636 fish. As many as 1227 fish had levels over the US FDA guidance level, but only 136 fish had levels above the Japanese recommendation. Risk management based on the Japanese recommendation level seems to be effective in protecting public health and enabling appropriate exploitation of fishery resources. Full article
(This article belongs to the Special Issue Chemistry, Toxicology and Etiology of Marine Biotoxins)
Show Figures

Figure 1

18 pages, 4548 KiB  
Review
Gambierdiscus and Its Associated Toxins: A Minireview
by Da-Zhi Wang, Ye-Hong Xin and Ming-Hua Wang
Toxins 2022, 14(7), 485; https://doi.org/10.3390/toxins14070485 - 14 Jul 2022
Cited by 19 | Viewed by 6482
Abstract
Gambierdiscus is a dinoflagellate genus widely distributed throughout tropical and subtropical regions. Some members of this genus can produce a group of potent polycyclic polyether neurotoxins responsible for ciguatera fish poisoning (CFP), one of the most significant food-borne illnesses associated with fish consumption. [...] Read more.
Gambierdiscus is a dinoflagellate genus widely distributed throughout tropical and subtropical regions. Some members of this genus can produce a group of potent polycyclic polyether neurotoxins responsible for ciguatera fish poisoning (CFP), one of the most significant food-borne illnesses associated with fish consumption. Ciguatoxins and maitotoxins, the two major toxins produced by Gambierdiscus, act on voltage-gated channels and TRPA1 receptors, consequently leading to poisoning and even death in both humans and animals. Over the past few decades, the occurrence and geographic distribution of CFP have undergone a significant expansion due to intensive anthropogenic activities and global climate change, which results in more human illness, a greater public health impact, and larger economic losses. The global spread of CFP has led to Gambierdiscus and its toxins being considered an environmental and human health concern worldwide. In this review, we seek to provide an overview of recent advances in the field of Gambierdiscus and its associated toxins based on the existing literature combined with re-analyses of current data. The taxonomy, phylogenetics, geographic distribution, environmental regulation, toxin detection method, toxin biosynthesis, and pharmacology and toxicology of Gambierdiscus are summarized and discussed. We also highlight future perspectives on Gambierdiscus and its associated toxins. Full article
(This article belongs to the Special Issue Marine Biotoxins: Predicting and Cumulative Risk Assessment)
Show Figures

Graphical abstract

19 pages, 1838 KiB  
Review
Toxic Effects and Tumor Promotion Activity of Marine Phytoplankton Toxins: A Review
by Biswajita Pradhan, Hansol Kim, Sofia Abassi and Jang-Seu Ki
Toxins 2022, 14(6), 397; https://doi.org/10.3390/toxins14060397 - 8 Jun 2022
Cited by 26 | Viewed by 5442
Abstract
Phytoplankton are photosynthetic microorganisms in aquatic environments that produce many bioactive substances. However, some of them are toxic to aquatic organisms via filter-feeding and are even poisonous to humans through the food chain. Human poisoning from these substances and their serious long-term consequences [...] Read more.
Phytoplankton are photosynthetic microorganisms in aquatic environments that produce many bioactive substances. However, some of them are toxic to aquatic organisms via filter-feeding and are even poisonous to humans through the food chain. Human poisoning from these substances and their serious long-term consequences have resulted in several health threats, including cancer, skin disorders, and other diseases, which have been frequently documented. Seafood poisoning disorders triggered by phytoplankton toxins include paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), diarrheic shellfish poisoning (DSP), ciguatera fish poisoning (CFP), and azaspiracid shellfish poisoning (AZP). Accordingly, identifying harmful shellfish poisoning and toxin-producing species and their detrimental effects is urgently required. Although the harmful effects of these toxins are well documented, their possible modes of action are insufficiently understood in terms of clinical symptoms. In this review, we summarize the current state of knowledge regarding phytoplankton toxins and their detrimental consequences, including tumor-promoting activity. The structure, source, and clinical symptoms caused by these toxins, as well as their molecular mechanisms of action on voltage-gated ion channels, are briefly discussed. Moreover, the possible stress-associated reactive oxygen species (ROS)-related modes of action are summarized. Finally, we describe the toxic effects of phytoplankton toxins and discuss future research in the field of stress-associated ROS-related toxicity. Moreover, these toxins can also be used in different pharmacological prospects and can be established as a potent pharmacophore in the near future. Full article
Show Figures

Figure 1

14 pages, 4042 KiB  
Article
An Extensive Survey of Ciguatoxins on Grouper Variola louti from the Ryukyu Islands, Japan, Using Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS)
by Naomasa Oshiro, Hiroya Nagasawa, Miharu Watanabe, Mio Nishimura, Kyoko Kuniyoshi, Naoki Kobayashi, Yoshiko Sugita-Konishi, Hiroshi Asakura, Katsunori Tachihara and Takeshi Yasumoto
J. Mar. Sci. Eng. 2022, 10(3), 423; https://doi.org/10.3390/jmse10030423 - 15 Mar 2022
Cited by 15 | Viewed by 3879
Abstract
Ingesting fish contaminated with ciguatoxins (CTXs) originating from epibenthic dinoflagellates causes ciguatera fish poisoning (CFP). CFP occurs mainly in the tropical and subtropical Indo–Pacific region and the Caribbean Sea. Furthermore, it occurs sporadically in Japan, especially in the Ryukyu Islands between Taiwan and [...] Read more.
Ingesting fish contaminated with ciguatoxins (CTXs) originating from epibenthic dinoflagellates causes ciguatera fish poisoning (CFP). CFP occurs mainly in the tropical and subtropical Indo–Pacific region and the Caribbean Sea. Furthermore, it occurs sporadically in Japan, especially in the Ryukyu Islands between Taiwan and Kyushu, Japan. Variola louti is the most frequently implicated fish with a suggested toxin profile, consisting of ciguatoxin-1B and two deoxy congeners. Therefore, using the liquid chromatography–tandem mass spectrometry (LC-MS/MS), we analyzed CTXs in the flesh of 154 individuals from various locations and detected CTXs in 99 specimens (64%). In 65 fish (43%), CTX levels exceeded the Food and Drug Administration (FDA) guidance level (0.01 µg/kg). Furthermore, in four specimens (3%), the guideline level in Japan (>0.18 µg/kg) was met. Additionally, although the highest total CTX level was 0.376 µg/kg, the consumption of 180 g of this specimen was assumed to cause CFP. Moreover, only CTX1B, 52-epi-54-deoxyCTX1B, and 54-deoxyCTX1B were detected, with the relative contribution of the three CTX1B analogs to the total toxin content (35 ± 7.7 (SD)%, 27 ± 8.1%, and 38 ± 5.6%, respectively) being similar to those reported in this region in a decade ago. Subsequently, the consistency of the toxin profile in V. louti was confirmed using many specimens from a wide area. As observed, total CTX levels were correlated with fish sizes, including standard length (r = 0.503, p = 3.08 × 10−11), body weight (r = 0.503, p = 3.01 × 10−11), and estimated age (r = 0.439, p = 3.81 × 10−7) of the specimens. Besides, although no correlation was observed between condition factor (CF) and total CTX levels, a significance difference was observed (p = 0.039) between the groups of skinnier and fattier fish, separated by the median CF (3.04). Results also showed that the CF of four specimens with the highest CTX level (>0.18 µg/kg) ranged between 2.49 and 2.87, and they were skinnier than the average (3.03) and median of all specimens. Full article
(This article belongs to the Special Issue Chemistry, Toxicology and Etiology of Marine Biotoxins)
Show Figures

Graphical abstract

21 pages, 3447 KiB  
Review
Digital Technologies and Open Data Sources in Marine Biotoxins’ Risk Analysis: The Case of Ciguatera Fish Poisoning
by Panagiota Katikou
Toxins 2021, 13(10), 692; https://doi.org/10.3390/toxins13100692 - 30 Sep 2021
Cited by 7 | Viewed by 3854
Abstract
Currently, digital technologies influence information dissemination in all business sectors, with great emphasis put on exploitation strategies. Public administrations often use information systems and establish open data repositories, primarily supporting their operation but also serving as data providers, facilitating decision-making. As such, risk [...] Read more.
Currently, digital technologies influence information dissemination in all business sectors, with great emphasis put on exploitation strategies. Public administrations often use information systems and establish open data repositories, primarily supporting their operation but also serving as data providers, facilitating decision-making. As such, risk analysis in the public health sector, including food safety authorities, often relies on digital technologies and open data sources. Global food safety challenges include marine biotoxins (MBs), being contaminants whose mitigation largely depends on risk analysis. Ciguatera Fish Poisoning (CFP), in particular, is a MB-related seafood intoxication attributed to the consumption of fish species that are prone to accumulate ciguatoxins. Historically, CFP occurred endemically in tropical/subtropical areas, but has gradually emerged in temperate regions, including European waters, necessitating official policy adoption to manage the potential risks. Researchers and policy-makers highlight scientific data inadequacy, under-reporting of outbreaks and information source fragmentation as major obstacles in developing CFP mitigation strategies. Although digital technologies and open data sources provide exploitable scientific information for MB risk analysis, their utilization in counteracting CFP-related hazards has not been addressed to date. This work thus attempts to answer the question, “What is the current extent of digital technologies’ and open data sources’ utilization within risk analysis tasks in the MBs field, particularly on CFP?”, by conducting a systematic literature review of the available scientific and grey literature. Results indicate that the use of digital technologies and open data sources in CFP is not negligible. However, certain gaps are identified regarding discrepancies in terminology, source fragmentation and a redundancy and downplay of social media utilization, in turn constituting a future research agenda for this under-researched topic. Full article
(This article belongs to the Special Issue Ciguatoxins)
Show Figures

Figure 1

11 pages, 1139 KiB  
Article
Identification of Fish Species and Toxins Implicated in a Snapper Food Poisoning Event in Sabah, Malaysia, 2017
by Ha Viet Dao, Aya Uesugi, Hajime Uchida, Ryuichi Watanabe, Ryoji Matsushima, Zhen Fei Lim, Steffiana J. Jipanin, Ky Xuan Pham, Minh-Thu Phan, Chui Pin Leaw, Po Teen Lim and Toshiyuki Suzuki
Toxins 2021, 13(9), 657; https://doi.org/10.3390/toxins13090657 - 15 Sep 2021
Cited by 9 | Viewed by 4097
Abstract
In the coastal countries of Southeast Asia, fish is a staple diet and certain fish species are food delicacies to local populations or commercially important to individual communities. Although there have been several suspected cases of ciguatera fish poisoning (CFP) in Southeast Asian [...] Read more.
In the coastal countries of Southeast Asia, fish is a staple diet and certain fish species are food delicacies to local populations or commercially important to individual communities. Although there have been several suspected cases of ciguatera fish poisoning (CFP) in Southeast Asian countries, few have been confirmed by ciguatoxins identification, resulting in limited information for the correct diagnosis of this food-borne disease. In the present study, ciguatoxin-1B (CTX-1B) in red snapper (Lutjanus bohar) implicated in a CFP case in Sabah, Malaysia, in December 2017 was determined by single-quadrupole selected ion monitoring (SIM) liquid chromatography/mass spectrometry (LC/MS). Continuous consumption of the toxic fish likely resulted in CFP, even when the toxin concentration in the fish consumed was low. The identification of the fish species was performed using the molecular characterization of the mitochondrial cytochrome c oxidase subunit I gene marker, with a phylogenetic analysis of the genus Lutjanus. This is the first report identifying the causative toxin in fish-implicated CFP in Malaysia. Full article
(This article belongs to the Special Issue Monitoring of Marine Biotoxins)
Show Figures

Figure 1

19 pages, 2340 KiB  
Article
Pacific-Ciguatoxin-2 and Brevetoxin-1 Induce the Sensitization of Sensory Receptors Mediating Pain and Pruritus in Sensory Neurons
by Ophélie Pierre, Maxime Fouchard, Nelig Le Goux, Paul Buscaglia, Raphaël Leschiera, Richard J. Lewis, Olivier Mignen, Joachim W. Fluhr, Laurent Misery and Raphaële Le Garrec
Mar. Drugs 2021, 19(7), 387; https://doi.org/10.3390/md19070387 - 6 Jul 2021
Cited by 2 | Viewed by 3700
Abstract
Ciguatera fish poisoning (CFP) and neurotoxic shellfish poisoning syndromes are induced by the consumption of seafood contaminated by ciguatoxins and brevetoxins. Both toxins cause sensory symptoms such as paresthesia, cold dysesthesia and painful disorders. An intense pruritus, which may become chronic, occurs also [...] Read more.
Ciguatera fish poisoning (CFP) and neurotoxic shellfish poisoning syndromes are induced by the consumption of seafood contaminated by ciguatoxins and brevetoxins. Both toxins cause sensory symptoms such as paresthesia, cold dysesthesia and painful disorders. An intense pruritus, which may become chronic, occurs also in CFP. No curative treatment is available and the pathophysiology is not fully elucidated. Here we conducted single-cell calcium video-imaging experiments in sensory neurons from newborn rats to study in vitro the ability of Pacific-ciguatoxin-2 (P-CTX-2) and brevetoxin-1 (PbTx-1) to sensitize receptors and ion channels, (i.e., to increase the percentage of responding cells and/or the response amplitude to their pharmacological agonists). In addition, we studied the neurotrophin release in sensory neurons co-cultured with keratinocytes after exposure to P-CTX-2. Our results show that P-CTX-2 induced the sensitization of TRPA1, TRPV4, PAR2, MrgprC, MrgprA and TTX-r NaV channels in sensory neurons. P-CTX-2 increased the release of nerve growth factor and brain-derived neurotrophic factor in the co-culture supernatant, suggesting that those neurotrophins could contribute to the sensitization of the aforementioned receptors and channels. Our results suggest the potential role of sensitization of sensory receptors/ion channels in the induction or persistence of sensory disturbances in CFP syndrome. Full article
(This article belongs to the Special Issue Marine Biotoxins)
Show Figures

Figure 1

12 pages, 3444 KiB  
Article
Characteristic Distribution of Ciguatoxins in the Edible Parts of a Grouper, Variola louti
by Naomasa Oshiro, Hiroya Nagasawa, Kyoko Kuniyoshi, Naoki Kobayashi, Yoshiko Sugita-Konishi, Hiroshi Asakura and Takeshi Yasumoto
Toxins 2021, 13(3), 218; https://doi.org/10.3390/toxins13030218 - 17 Mar 2021
Cited by 24 | Viewed by 3653
Abstract
Ciguatera fish poisoning (CFP) is one of the most frequently encountered seafood poisoning syndromes; it is caused by the consumption of marine finfish contaminated with ciguatoxins (CTXs). The majority of CFP cases result from eating fish flesh, but a traditional belief exists among [...] Read more.
Ciguatera fish poisoning (CFP) is one of the most frequently encountered seafood poisoning syndromes; it is caused by the consumption of marine finfish contaminated with ciguatoxins (CTXs). The majority of CFP cases result from eating fish flesh, but a traditional belief exists among people that the head and viscera are more toxic and should be avoided. Unlike the viscera, scientific data to support the legendary high toxicity of the head is scarce. We prepared tissue samples from the fillet, head, and eyes taken from five yellow-edged lyretail (Variola louti) individuals sourced from Okinawa, Japan, and analyzed the CTXs by LC-MS/MS. Three CTXs, namely, CTX1B, 52-epi-54-deoxyCTX1B, and 54-deoxyCTX1B, were confirmed in similar proportions. The toxins were distributed nearly evenly in the flesh, prepared separately from the fillet and head. Within the same individual specimen, the flesh in the fillet and the flesh from the head, tested separately, had the same level and composition of toxins. We, therefore, conclude that flesh samples for LC-MS/MS analysis can be taken from any part of the body. However, the tissue surrounding the eyeball displayed CTX levels two to four times higher than those of the flesh. The present study is the first to provide scientific data demonstrating the high toxicity of the eyes. Full article
(This article belongs to the Special Issue Ciguatoxins)
Show Figures

Figure 1

9 pages, 1421 KiB  
Article
LC–MS/MS Analysis of Ciguatoxins Revealing the Regional and Species Distinction of Fish in the Tropical Western Pacific
by Naomasa Oshiro, Takumi Tomikawa, Kyoko Kuniyoshi, Akira Ishikawa, Hajime Toyofuku, Takashi Kojima and Hiroshi Asakura
J. Mar. Sci. Eng. 2021, 9(3), 299; https://doi.org/10.3390/jmse9030299 - 8 Mar 2021
Cited by 26 | Viewed by 3916
Abstract
Ciguatera fish poisoning (CFP) is one of the most frequently reported seafood poisoning diseases. It is endemic to the tropical region and occurs most commonly in the regions around the Pacific Ocean, Indian Ocean, and Caribbean Sea. The principal toxins causing CFP are [...] Read more.
Ciguatera fish poisoning (CFP) is one of the most frequently reported seafood poisoning diseases. It is endemic to the tropical region and occurs most commonly in the regions around the Pacific Ocean, Indian Ocean, and Caribbean Sea. The principal toxins causing CFP are ciguatoxins (CTXs). In the Pacific region, more than 20 analogs of CTXs have been identified to date. Based on their skeletal structures, they are classified into CTX1B-type and CTX3C-type toxins. We have previously reported species-specific and regional-specific toxin profiles. In this study, the levels and profiles of CTXs in fish present in the tropical western Pacific regions were analyzed using the liquid chromatography–tandem mass spectrometry (LC–MS/MS) technique. Forty-two fish specimens, belonging to the categories of snappers, groupers, Spanish mackerel, and moray eel, were purchased from various places such as Fiji, the Philippines, Thailand, and Taiwan. Only the fish captured from Fijian coastal waters contained detectable amounts of CTXs. The toxin levels in the fish species found along the coastal regions of the Viti Levu Island, the main island in Fiji, and the toxin profiles were significantly different from those of the fish species present in other coastal regions. The toxin levels and profiles varied among the different fish samples collected from different coastal areas. Based on the toxin levels and toxin profiles, the coast was demarcated into three zones. In Zone-1, which covers the northern coast of the main island and the regions of the Malake Island and Korovau, CTXs in fish were below the detection level. In Zone-2, CTX3C-type toxins were present in low levels in the fish. CTX1B-type and CTX3C-type toxins co-occurred in the fish present in Zone-3. The toxin profiles may have reflected the variation in Gambierdiscus spp. Full article
(This article belongs to the Special Issue Chemistry, Toxicology and Etiology of Marine Biotoxins)
Show Figures

Figure 1

13 pages, 1384 KiB  
Article
Accumulation of C-CTX1 in Muscle Tissue of Goldfish (Carassius auratus) by Dietary Experience
by Andres Sanchez-Henao, Natalia García-Álvarez, Daniel Padilla, María Ramos-Sosa, Freddy Silva Sergent, Antonio Fernández, Pablo Estévez, Ana Gago-Martínez, Jorge Diogène and Fernando Real
Animals 2021, 11(1), 242; https://doi.org/10.3390/ani11010242 - 19 Jan 2021
Cited by 12 | Viewed by 4069
Abstract
Ciguatoxins (CTXs) are produced by dinoflagellates usually present in tropical and subtropical waters. These toxins are bioaccumulated and transformed in fish causing ciguatera fish poisoning (CFP) in humans. Few trials have been performed to understand how CTXs are incorporated into fish. This study [...] Read more.
Ciguatoxins (CTXs) are produced by dinoflagellates usually present in tropical and subtropical waters. These toxins are bioaccumulated and transformed in fish causing ciguatera fish poisoning (CFP) in humans. Few trials have been performed to understand how CTXs are incorporated into fish. This study developed an experimental model of goldfish (Carassius auratus) fed flesh contaminated with Caribbean ciguatoxin (C-CTX1). Fourteen goldfish were fed 0.014 ng CTX1B (Eq. g−1 of body weight) daily, and control goldfish received non-toxic flesh. CTX presence was determined by a cell-based assay on days 1, 8, 15, 29, 36, 43, and 84. Toxicity was detected in muscle from the second sampling and then seemed to stabilize at ~0.03 ng CTX1B Eq. g−1. After two weeks, all experimental goldfish developed lethargy and loss of brightness, but only two of them displayed erratic swimming and jerking movements near the sixth sampling. One of these fish had its toxic diet replaced by commercial food for 60 more days; the fish showed recovery signs within the first weeks and no CTX activity was detected. These results indicate that C-CTX1 could accumulate in goldfish muscle tissue and produce toxic symptoms, but also remarked on the detoxification and recovery capacity of this species. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Graphical abstract

Back to TopTop