Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Chinese black goats

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2900 KiB  
Article
Genome-Wide Association Study of the Reproductive Traits of the Dazu Black Goat (Capra hircus) Using Whole-Genome Resequencing
by Xingqiang Fang, Bowen Gu, Meixi Chen, Ruifan Sun, Jipan Zhang, Le Zhao and Yongju Zhao
Genes 2023, 14(10), 1960; https://doi.org/10.3390/genes14101960 - 19 Oct 2023
Cited by 10 | Viewed by 2733
Abstract
Reproductive traits are the basic economic traits of goats and important indicators in goat breeding. In this study, Dazu black goats (DBGs; n = 150), an important Chinese local goat breed with excellent reproductive performance, were used to screen for important variation loci [...] Read more.
Reproductive traits are the basic economic traits of goats and important indicators in goat breeding. In this study, Dazu black goats (DBGs; n = 150), an important Chinese local goat breed with excellent reproductive performance, were used to screen for important variation loci and genes of reproductive traits. Through genome-wide association studies (GWAS), 18 SNPs were found to be associated with kidding traits (average litter size, average litter size in the first three parity, and average litter size in the first six parity), and 10 SNPs were associated with udder traits (udder depth, teat diameter, teat length, and supernumerary teat). After gene annotation of the associated SNPs and in combination with relevant references, the candidate genes, namely ATP1A1, LRRC4C, SPCS2, XRRA1, CELF4, NTM, TMEM45B, ATE1, and FGFR2, were associated with udder traits, while the ENSCHIG00000017110, SLC9A8, GLRB, GRIA2, GASK1B, and ENSCHIG00000026285 genes were associated with litter size. These SNPs and candidate genes can provide useful biological information for improvement of the reproductive traits of goats. Full article
(This article belongs to the Special Issue Livestock Genomics, Genetics and Breeding)
Show Figures

Figure 1

14 pages, 2527 KiB  
Article
Identifying Candidate Genes for Litter Size and Three Morphological Traits in Youzhou Dark Goats Based on Genome-Wide SNP Markers
by Xiaoyan Sun, Qunhao Niu, Jing Jiang, Gaofu Wang, Peng Zhou, Jie Li, Cancan Chen, Liangjia Liu, Lingyang Xu and Hangxing Ren
Genes 2023, 14(6), 1183; https://doi.org/10.3390/genes14061183 - 29 May 2023
Cited by 18 | Viewed by 3740
Abstract
This study aimed to reveal the potential genetic basis for litter size, coat colour, black middorsal stripe and skin colour by combining genome-wide association analysis (GWAS) and selection signature analysis and ROH detection within the Youzhou dark (YZD) goat population (n = 206) [...] Read more.
This study aimed to reveal the potential genetic basis for litter size, coat colour, black middorsal stripe and skin colour by combining genome-wide association analysis (GWAS) and selection signature analysis and ROH detection within the Youzhou dark (YZD) goat population (n = 206) using the Illumina GoatSNP54 BeadChip. In the GWAS, we identified one SNP (snp54094-scaffold824-899720) on chromosome 11 for litter size, two SNPs on chromosome 26 (snp11508-scaffold142-1990450, SORCS3) and chromosome 12 (snp55048-scaffold842-324525, LOC102187779) for coat colour and one SNP on chromosome 18 (snp56013-scaffold873-22716, TCF25) for the black middorsal stripe. In contrast, no SNPs were identified for skin colour. In selection signature analysis, 295 significant iHS genomic regions with a mean |iHS| score > 2.66, containing selection signatures encompassing 232 candidate genes were detected. In particular, 43 GO terms and one KEGG pathway were significantly enriched in the selected genes, which may contribute to the excellent environmental adaptability and characteristic trait formation during the domestication of YZD goats. In ROH detection, we identified 4446 ROH segments and 282 consensus ROH regions, among which nine common genes overlapped with those detected using the iHS method. Some known candidate genes for economic traits such as reproduction (TSHR, ANGPT4, CENPF, PIBF1, DACH1, DIS3, CHST1, COL4A1, PRKD1 and DNMT3B) and development and growth (TNPO2, IFT80, UCP2, UCP3, GHRHR, SIM1, CCM2L, CTNNA3 and CTNNA1) were revealed by iHS and ROH detection. Overall, this study is limited by the small population size, which affects the results of GWAS to a certain extent. Nevertheless, our findings could provide the first overview of the genetic mechanism underlying these important traits and provide novel insights into the future conservation and utilisation of Chinese goat germplasm resources. Full article
(This article belongs to the Special Issue Livestock Genomics, Genetics and Breeding)
Show Figures

Figure 1

15 pages, 2242 KiB  
Article
Genetic Diversity and Selection Signatures in Jianchang Black Goats Revealed by Whole-Genome Sequencing Data
by Xueliang Sun, Jiazhong Guo, Li Li, Tao Zhong, Linjie Wang, Siyuan Zhan, Juan Lu, Decheng Wang, Dinghui Dai, George E. Liu and Hongping Zhang
Animals 2022, 12(18), 2365; https://doi.org/10.3390/ani12182365 - 10 Sep 2022
Cited by 19 | Viewed by 3561
Abstract
Understanding the genetic composition of indigenous goats is essential to promote the scientific conservation and sustainable utilization of these breeds. The Jianchang Black (JC) goat, a Chinese native breed, is solid black and exhibits crude feed tolerance, but is characterized by a low [...] Read more.
Understanding the genetic composition of indigenous goats is essential to promote the scientific conservation and sustainable utilization of these breeds. The Jianchang Black (JC) goat, a Chinese native breed, is solid black and exhibits crude feed tolerance, but is characterized by a low growth rate and small body size. Based on the whole-genome sequencing data for 30 JC, 41 Jintang Black (JT), and 40 Yunshang Black (YS) goats, and 21 Bezoar ibexes, here, we investigated the genetic composition of JC goats by conducting analyses of the population structure, runs of homozygosity (ROH), genomic inbreeding, and selection signature. Our results revealed that JT and YS showed a close genetic relationship with a non-negligible amount of gene flows but were genetically distant from JC, apart from Bezoars. An average of 2039 ROHs were present in the autosomal genome per individual. The ROH-based inbreeding estimates in JC goats generally showed moderate values ranging from 0.134 to 0.264, mainly due to rapid declines in the effective population size during recent generations. The annotated genes (e.g., IL2, IL7, and KIT) overlapping with ROH islands were significantly enriched in immune-related biological processes. Further, we found 61 genes (e.g., STIM1, MYO9A, and KHDRBS2) under positive selection in JC goats via three complementary approaches, which may underly genetic adaptations to local environmental conditions. Our findings provided references for the conservation and sustainable utilization of JC goats. Full article
(This article belongs to the Special Issue Conservation and Management of Genetic Resources in Animal Breeding)
Show Figures

Figure 1

11 pages, 1369 KiB  
Article
Genome-Wide Association Study of Body Conformation Traits by Whole Genome Sequencing in Dazu Black Goats
by Bowen Gu, Ruifan Sun, Xingqiang Fang, Jipan Zhang, Zhongquan Zhao, Deli Huang, Yuanping Zhao and Yongju Zhao
Animals 2022, 12(5), 548; https://doi.org/10.3390/ani12050548 - 23 Feb 2022
Cited by 21 | Viewed by 3976
Abstract
Identifying associations between genetic markers and economic traits has practical benefits for the meat goat industry. To better understand the genomic regions and biological pathways contributing to body conformation traits of meat goats, a genome-wide association study was performed using Dazu black goats [...] Read more.
Identifying associations between genetic markers and economic traits has practical benefits for the meat goat industry. To better understand the genomic regions and biological pathways contributing to body conformation traits of meat goats, a genome-wide association study was performed using Dazu black goats (DBGs), a Chinese indigenous goat breed. In particular, 150 DBGs were genotyped by whole-genome sequencing, and six body conformation traits, including body height (BH), body length (BL), cannon circumference (CC), chest depth (CD), chest width (CW), and heart girth (HG), were examined. In total, 53 potential SNPs were associated with these body conformation traits. A bioinformatics analysis was performed to evaluate the genes located close to the significant SNPs. Finally, 42 candidate genes (e.g., PSTPIP2, C7orf57, CCL19, FGF9, SGCG, FIGN, and SIPA1L) were identified as components of the genetic architecture underlying body conformation traits. Our results provide useful biological information for the improvement of growth performance and have practical applications for genomic selection in goats. Full article
(This article belongs to the Collection Applications of Quantitative Genetics in Livestock Production)
Show Figures

Figure 1

11 pages, 517 KiB  
Article
Detection of 15-bp Deletion Mutation within PLAG1 Gene and Its Effects on Growth Traits in Goats
by Zhenyu Wei, Ke Wang, Hui Wu, Zhen Wang, Chuanying Pan, Hong Chen and Xianyong Lan
Animals 2021, 11(7), 2064; https://doi.org/10.3390/ani11072064 - 10 Jul 2021
Cited by 13 | Viewed by 4517
Abstract
Stature and weight are important growth and development traits for animals, which also significantly affect the productivity of livestock. Polymorphic adenoma gene 1 (PLAG1) is located in the growth-related quantitative trait nucleotides (QTN), and its variation has been determined to significantly [...] Read more.
Stature and weight are important growth and development traits for animals, which also significantly affect the productivity of livestock. Polymorphic adenoma gene 1 (PLAG1) is located in the growth-related quantitative trait nucleotides (QTN), and its variation has been determined to significantly affect the body stature of bovines. This study found that novel 15-bp InDel could significantly influence important growth traits in goats. The frequencies of genotypes of the 15-bp mutation and relationship with core growth traits such as body weight, body height, height at hip cross, chest circumference, hip width and body index were explored in 1581 individuals among 4 Chinese native goat breeds. The most frequent genotypes of Shaanbei white Cashmere goat (SWCG), Inner Mongolia White Cashmere goat (IMCG) and Guanzhong Dairy goat (GZDG) were II genotypes (insertion/insertion), and the frequency of ID genotype (insertion/deletion) was found to be slightly higher than that of II genotype in Hainan Black goat (HNBG), showing that the frequency of the I allele was higher than that of the D allele. In adult goats, there were significant differences between 15-bp variation and body weight, chest circumference and body height traits in SWCG (p < 0.05). Furthermore, the locus was also found to be significantly correlated with the body index of HNBG (p = 0.044) and hip width in GZDG (p = 0.002). In regard to lambs, there were significant differences in height at the hip cross of SWCG (p = 0.036) and hip width in IMWC (p = 0.005). The corresponding results suggest that the 15-bp InDel mutation of PLAG1 is associated with the regulation of important growth characteristics of both adult and lamb of goats, which may serve as efficient molecular markers for goat breeding. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

11 pages, 564 KiB  
Article
An 11-bp Indel Polymorphism within the CSN1S1 Gene Is Associated with Milk Performance and Body Measurement Traits in Chinese Goats
by Yanghai Zhang, Ke Wang, Jinwang Liu, Haijing Zhu, Lei Qu, Hong Chen, Xianyong Lan, Chuanying Pan and Xiaoyue Song
Animals 2019, 9(12), 1114; https://doi.org/10.3390/ani9121114 - 11 Dec 2019
Cited by 26 | Viewed by 3578
Abstract
The casein alpha s1 (CSN1S1) gene encodes α-s1 casein, one of the proteins constituting milk, which affects milk performance, as well as improving the absorption of calcium and bone development in mammals. A previous study found that an 11-bp insertion/deletion (indel) [...] Read more.
The casein alpha s1 (CSN1S1) gene encodes α-s1 casein, one of the proteins constituting milk, which affects milk performance, as well as improving the absorption of calcium and bone development in mammals. A previous study found that an 11-bp insertion/deletion (indel) of this gene strongly affected litter size in goats. However, to our knowledge, the relationships between this polymorphism and the milk performance and body measurement traits of goats have not been reported. In this paper, the previously identified indel has been recognized in three Chinese goat breeds, namely the Guanzhong dairy goat (GZDG; n = 235), Shaanbei white cashmere goat (SBWC; n = 1092), and Hainan black goat (HNBG; n = 278), and the following three genotypes have been studied for all of the breeds: insertion/insertion (II), deletion/deletion (DD), and insertion/deletion (ID). The allele frequencies analyzed signified that the frequencies of the “D” allele were higher (47.8%–65.5%), similar to the previous report, which indicates that this polymorphism is genetically stable in different goat breeds. Further analysis showed that this indel was markedly associated with milk fat content, total solids content, solids-not-fat content, freezing point depression, and acidity in GZDG (p < 0.05), and also affected different body measurement traits in all three breeds (p < 0.05). The goats with II genotypes had superior milk performance, compared with the others; however, goats with DD genotypes had better body measurement sizes. Hence, it may be necessary to select goats with an II or DD genotype, based on the desired traits, while breeding. Our study provides information on the potential impact of the 11-bp indel polymorphism of the CSN1S1 gene for improving the milk performance and body measurement traits in goats. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

Back to TopTop