Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Castanopsis sieboldii

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4598 KiB  
Article
Castanopsis sieboldii Extract Alleviates Acute Liver Injury by Antagonizing Inflammasome-Mediated Pyroptosis
by Jae Min Kim, Sam Seok Cho, Sohi Kang, Changjong Moon, Ji Hye Yang and Sung Hwan Ki
Int. J. Mol. Sci. 2023, 24(15), 11982; https://doi.org/10.3390/ijms241511982 - 26 Jul 2023
Cited by 6 | Viewed by 1943
Abstract
Castanopsis sieboldii (CS), a subtropical species, was reported to have antioxidant and antibacterial effects. However, the anti-inflammatory effects of CS have not been studied. This study aimed to investigate whether the 70% ethanol extract of the CS leaf (CSL3) inhibited lipopolysaccharide (LPS)-induced inflammatory [...] Read more.
Castanopsis sieboldii (CS), a subtropical species, was reported to have antioxidant and antibacterial effects. However, the anti-inflammatory effects of CS have not been studied. This study aimed to investigate whether the 70% ethanol extract of the CS leaf (CSL3) inhibited lipopolysaccharide (LPS)-induced inflammatory responses and LPS and ATP-induced pyroptosis in macrophages. CSL3 treatment inhibited NO release and iNOS expression in LPS-stimulated cells. CSL3 antagonized NF-κB and AP-1 activation, which was due to MAPK (p38, ERK, and JNK) inhibition. CSL3 successfully decreased NLRP3 inflammasome activation and increased IL-1β expression. CSL3 treatment diminished LPS and ATP-induced pore formation in GSDMD. The in vivo effect of CSL3 on acute liver injury was evaluated in a CCl4-treated mouse model. CCl4 treatment increased the activity of serum alanine aminotransferase and aspartate aminotransferase, which decreased by CSL3. In addition, CCl4-induced an increase in TNF-α, and IL-6 levels decreased by CSL3 treatment. Furthermore, we verified that the CCl4-induced inflammasome and pyroptosis-related gene expression in liver tissue and release of IL-1β into serum were suppressed by CSL3 treatment. Our results suggest that CSL3 protects against acute liver injury by inhibiting inflammasome formation and pyroptosis. Full article
(This article belongs to the Special Issue Natural Products as Source of Molecules for Drugs and Therapy)
Show Figures

Figure 1

14 pages, 3797 KiB  
Article
Distribution of Plant Hormones and Their Precursors in Cambial Region Tissues of Quercus myrsinifolia and Castanopsis cuspidata var.sieboldii after Bending Stems or Applying Ethylene precursor
by Yoshio Kijidani, Taku Tsuyama and Yuji Tokumoto
Forests 2023, 14(4), 813; https://doi.org/10.3390/f14040813 - 15 Apr 2023
Cited by 3 | Viewed by 2102
Abstract
The role of plant hormones in tension wood (TW) formation has been studied but is still unclear. IAA, ABA, ACC, tZ, tZR, iP, and iPR in cambial region tissues were identified and quantified by liquid chromatography/mass spectrometry (LC/MS). We examined the distribution of [...] Read more.
The role of plant hormones in tension wood (TW) formation has been studied but is still unclear. IAA, ABA, ACC, tZ, tZR, iP, and iPR in cambial region tissues were identified and quantified by liquid chromatography/mass spectrometry (LC/MS). We examined the distribution of plant hormones and their precursors in the stems of Quercus myrsinifolia Blume and Castanopsis cuspidata var.sieboldii Nakai after bending the stems or applying an ethylene precursor (ACC). After 3 weeks of bending, though not after 1 week of bending, the auxin (IAA) and abscisic acid (ABA) amounts were larger on the TW side than on the opposite wood (OW) side and in upright trees. After 2 weeks of bending, the peak concentrations of IAA in cambium on the TW side were obviously higher than those on the OW side. After 1 week of bending, the ACC amounts on both sides were larger than in upright trees, but after 3 weeks of bending, they were smaller than in upright trees. Applied ACC did not enhance TW formation but induced axical parenchyma and phloem formation in C. cuspidata var.sieboldii. These results indicated that the distribution patterns of IAA and ABA might have important roles in TW formation in these two species. The role of ACC might be limited in the early stages of TW formation. Full article
(This article belongs to the Special Issue Intrinsic Regulation of Diameter Growth in Woody Plants)
Show Figures

Figure 1

20 pages, 8070 KiB  
Article
Protective Effect of Castanopsis sieboldii Extract against UVB-Induced Photodamage in Keratinocytes
by Hye Rim Lee, Ji Hye Yang, Ji Hyun Lee, Kyu Min Kim, Sam Seok Cho, Jin Sol Baek, Jae Min Kim, Moon-Hee Choi, Hyun-Jae Shin and Sung Hwan Ki
Molecules 2023, 28(6), 2842; https://doi.org/10.3390/molecules28062842 - 21 Mar 2023
Cited by 7 | Viewed by 2602
Abstract
Ultraviolet B (UVB) rays disrupt the skin by causing photodamage via processes such as reactive oxygen species (ROS) production, endoplasmic reticulum (ER) stress, DNA damage, and/or collagen degradation. Castanopsis sieboldii is an evergreen tree native to the southern Korean peninsula. Although it is [...] Read more.
Ultraviolet B (UVB) rays disrupt the skin by causing photodamage via processes such as reactive oxygen species (ROS) production, endoplasmic reticulum (ER) stress, DNA damage, and/or collagen degradation. Castanopsis sieboldii is an evergreen tree native to the southern Korean peninsula. Although it is known to have antioxidant and anti-inflammatory effects, its protective effect against photodamage in keratinocytes has not been investigated. Thus, in the present study, we investigated the effect of 70% ethanol extract of C. sieboldii leaf (CSL3) on UVB-mediated skin injuries and elucidated the underlying molecular mechanisms. CSL3 treatment restored the cell viability decreased by UVB irradiation. Moreover, CSL3 significantly inhibited UVB- or tert-butyl hydroperoxide-mediated ROS generation in HaCaT cells. ER stress was inhibited, whereas autophagy was upregulated by CSL3 treatment against UVB irradiation. Additionally, CSL3 increased collagen accumulation and cell migration, which were decreased by UVB exposure. Notably, epigallocatechin gallate, the major component of CSL3, improved the cell viability decreased by UVB irradiation through regulation of ER stress and autophagy. Conclusively, CSL3 may represent a promising therapeutic candidate for the treatment of UVB-induced skin damage. Full article
(This article belongs to the Special Issue Antioxidant Activity of Natural Products)
Show Figures

Figure 1

21 pages, 7558 KiB  
Article
Ethyl Gallate Isolated from Castanopsis cuspidata var. sieboldii Branches Inhibits Melanogenesis and Promotes Autophagy in B16F10 Cells
by Moon-Hee Choi, Seung-Hwa Yang, Da-Song Kim, Nam-Doo Kim and Hyun-Jae Shin
Antioxidants 2023, 12(2), 269; https://doi.org/10.3390/antiox12020269 - 25 Jan 2023
Cited by 9 | Viewed by 3104
Abstract
The Castanopsis cuspidata var. sieboldii (CCS) plant grows predominantly in temperate regions of Asian countries, such as South Korea. Research on CCS has so far concentrated on the nutritional analysis, antioxidant activity, and anti-inflammation properties of its branches. However, the isolation of compounds [...] Read more.
The Castanopsis cuspidata var. sieboldii (CCS) plant grows predominantly in temperate regions of Asian countries, such as South Korea. Research on CCS has so far concentrated on the nutritional analysis, antioxidant activity, and anti-inflammation properties of its branches. However, the isolation of compounds and structural elucidation of effective single molecules remain unexplored, necessitating further exploration of CCS branches. Therefore, this study demonstrates the antioxidant and antimelanogenic activity of a single substance of ethyl gallate (EG) isolated from CCS branch extracts. Notably, the antimelanogenic (whitening) activity of EG extracted from CCS branches remains unexplored. Tyrosinase inhibition, kinetic enzyme assays, and molecular docking studies were conducted using mushroom tyrosinase in order to examine the antioxidant mechanism and antimelanin activity of EG in B16F10 melanoma cells. Nontoxic EG concentrations were found to be below 5 µg/mL. While EG significantly reduced the levels of whitening-associated proteins, p-CREB, and p-PKA, it dose-dependently inhibited the expression of TYR, TRP-1, TRP-2, and transcription factor (MITF). In addition, EG downregulated melanogenetic gene expression and activated autophagy signals. Therefore, EG extracted from CCS branches could serve as a novel functional cosmetic material with antimelanogenic and autophagy-enhancing activity. Full article
(This article belongs to the Special Issue Antioxidants in Skin Aging)
Show Figures

Figure 1

14 pages, 2005 KiB  
Article
Metabolic Diversity of Xylariaceous Fungi Associated with Leaf Litter Decomposition
by Kohei Tabuchi, Dai Hirose, Motohiro Hasegawa and Takashi Osono
J. Fungi 2022, 8(7), 701; https://doi.org/10.3390/jof8070701 - 1 Jul 2022
Cited by 3 | Viewed by 2100
Abstract
Fungi in the family Xylariaceae are primary agents of leaf litter decomposition. However, the diversity of carbon source utilization by xylariaceous fungi and the relative effects on this from environmental and phylogenetic factors are largely unknown. This study assessed the metabolic diversity and [...] Read more.
Fungi in the family Xylariaceae are primary agents of leaf litter decomposition. However, the diversity of carbon source utilization by xylariaceous fungi and the relative effects on this from environmental and phylogenetic factors are largely unknown. This study assessed the metabolic diversity and redundancy of xylariaceous fungi, associated with leaf litter decomposition, by measuring their in vitro capacity to utilize multiple carbon sources. The work identified the relative influences of geographic and climatic sources, as well as the taxonomic and phylogenetic relatedness, of the fungi. Using Biolog EcoPlateTM, 43 isolates belonging to Nemania, Xylaria, Nodulisporium, Astrocystis, and Hypoxylon, isolated from Castanopsis sieboldii leaf litter at eight sites in Japan, were found to have the capacity to utilize a variety of carbohydrates, amino acids/amines, carboxylic acids, and polymers. The genera of xylariaceous fungi and their origins significantly affected their metabolic diversity and utilization of carbon sources. Variation partitioning demonstrated that dissimilarities in carbon utilization among fungal isolates were mostly attributable to site differences, especially climatic factors: mean annual temperature and precipitation, and maximum snow depth. Moreover, xylariaceous isolates that originated from adjacent sites tended to have similar patterns of carbon source utilization, suggesting metabolic acclimation to local environmental conditions. Full article
(This article belongs to the Special Issue Fungi in Decomposition Processes)
Show Figures

Figure 1

9 pages, 2316 KiB  
Article
Visualization and Localization of Submicron-Sized Ammonium Sulfate Particles on Needles of Japanese Larch (Larix kaempferi) and Japanese Cedar (Cryptomeria japonica) and Leaves of Japanese Beech (Fagus crenata) and Japanese Chinquapin (Castanopsis sieboldii) after Artificial Exposure
by Kenichi Yamane, Satoshi Nakaba, Masahiro Yamaguchi, Katsushi Kuroda, Yuzou Sano, I. Wuled Lenggoro, Takeshi Izuta and Ryo Funada
Forests 2019, 10(12), 1151; https://doi.org/10.3390/f10121151 - 17 Dec 2019
Cited by 1 | Viewed by 2924
Abstract
We applied a method combining field-emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectrometry (EDX) to visualize the deposition and localization of the submicron-sized ammonium sulfate (AS) particles. The AS particles emitted from an aerosol generator in the laboratory were spherical in [...] Read more.
We applied a method combining field-emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectrometry (EDX) to visualize the deposition and localization of the submicron-sized ammonium sulfate (AS) particles. The AS particles emitted from an aerosol generator in the laboratory were spherical in shape and individually deposited without aggregation on the surface of a silicon substrate. We determined the AS particles on the surfaces of the needles of Japanese larch (Larix kaempferi) and Japanese cedar (Cryptomeria japonica), and the leaves of Japanese beech (Fagus crenata) and Japanese chinquapin (Castanopsis sieboldii), using EDX. The particles were deposited on either the adaxial or abaxial side of the leaves and needles. The AS particles deposited on the surfaces of the leaves and needles did not aggregate, and they were deposited on the surfaces of the leaves and needles in the same manner, regardless of leaf structure. These results, using a new method, highlight the early stages of the deposition and localization of submicron-sized AS particles on the surfaces of the leaves and needles of forest trees. Full article
(This article belongs to the Special Issue Responses of Trees to Pollutants)
Show Figures

Figure 1

14 pages, 1470 KiB  
Article
Reductive Metabolism of Ellagitannins in the Young Leaves of Castanopsis sieboldii
by Hatsumi Wakamatsu, Sumire Tanaka, Yosuke Matsuo, Yoshinori Saito, Koyo Nishida and Takashi Tanaka
Molecules 2019, 24(23), 4279; https://doi.org/10.3390/molecules24234279 - 24 Nov 2019
Cited by 12 | Viewed by 3423
Abstract
The leaves of Castanopsis sieboldii (Fagaceae) contain characteristic hexahydroxydiphenoyl (HHDP) esters of 28-O-glucosyl 2α,3β,23,24-tetrahydroxyolean- and urs-12-en-28-oic acids. In this study, uncharacterized substances were detected in the young leaves, which are not observed in the mature leaves. Preliminary HPLC analyses indicated that [...] Read more.
The leaves of Castanopsis sieboldii (Fagaceae) contain characteristic hexahydroxydiphenoyl (HHDP) esters of 28-O-glucosyl 2α,3β,23,24-tetrahydroxyolean- and urs-12-en-28-oic acids. In this study, uncharacterized substances were detected in the young leaves, which are not observed in the mature leaves. Preliminary HPLC analyses indicated that the substances had dehydro-HHDP (DHHDP) ester groups; however, the esters were unstable and decomposed during extraction. Therefore, the compounds were isolated as their stable phenazine derivatives by extracting the young leaves with acidic aqueous EtOH containing o-phenylenediamine. The structures of the phenazine derivatives indicated that the unstable metabolites of the young leaves were 3,24-DHHDP esters of the abovementioned triterpenes. Extraction of the young leaves with 80% acetonitrile containing reducing agents, ascorbic acid or dithiothreitol afforded the corresponding HHDP esters. Furthermore, heating of the young leaves in 80% acetonitrile also yielded the same HHDP esters as the reduction products. The results suggested that the HHDP esters are reductively produced from DHHDP esters in the young leaves. In addition, the structures of five previously reported triterpene HHDP esters were revised. Full article
(This article belongs to the Special Issue Tannin Analysis, Chemistry, and Functions)
Show Figures

Graphical abstract

Back to TopTop