Axion Electrodynamics and the Casimir Effect
Abstract
:1. Introduction
2. Axion Electrodynamics
2.1. Basic Equations
2.2. Hybrid Form of Maxwell’s Equations. Boundary Conditions
2.3. Dispersion Relations
2.4. Dispersion Relations, When Is Time-Dependent
3. Energy–Momentum Considerations
4. Casimir Effect between Two Plates
5. An Axion Echo from Reflection in Outer Space
6. Discussions and Future Outlooks
- As already mentioned, the influence of axions, at least in cosmology, is expected to be very weak. The cosmological axion energy density is often expected to be about GeV/cm3, corresponding to an axion mass of about eV and a relative velocity of about . Various experiments and proposals of experiments have been launched:
- (a)
- (b)
- (c)
- The broadband solenoidal haloscope proposed in Ref. [71], which proposes to make use of the axion “antenna” effect to focus the electromagnetic radiation emitted from dielectric boundaries towards a detector.
- The above treatment provides a general review of axion electrodynamics and is, in principle, not limited to the semiclassical case. This constraint applies similarly to ordinary electrodynamics, usually when distances are small or temperatures are high.
- The axion formalism is useful as regards application to topological insulators. Thus, the constitutive relations (17) can formally be taken over to this kind of modern material science as they stand. The case of chiral materials, for instance, a Faraday material, is more complicated since the coupling parameter becomes imaginary; see, for instance, Ref. [74].
- To conclude, we have presented a concise summary of the basics of axion electrodynamics, linking it to the general field of Casimir physics. Notably, additional contributions to the Casimir interaction are observed that occur as direct consequences of the extra pseudoscalar axion field. Novel physics, based on improved materials characterization requiring new and improved physical models, is likely to be discovered in the years to come.
Author Contributions
Funding
Conflicts of Interest
References
- Peccei, R.D.; Quinn, H.R. CP Conservation in the presence of pseudoparticles. Phys. Rev. Lett. 1977, 38, 1440–1443. [Google Scholar] [CrossRef]
- Peccei, R.D. The strong CP problem and axions. In Axions: Theory, Cosmology, and Experimental Searches; Kuster, M., Raffelt, G., Beltrán, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 3–17. [Google Scholar] [CrossRef]
- Kane, C.L.; Mele, E.J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 2005, 95, 146802. [Google Scholar] [CrossRef]
- Kane, C.L.; Mele, E.J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801. [Google Scholar] [CrossRef]
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067. [Google Scholar] [CrossRef]
- Bernevig, B.A.; Hughes, T.L.; Zhang, S.C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 2006, 314, 1757–1761. [Google Scholar] [CrossRef]
- Qi, X.L.; Zhang, S.C. The quantum spin Hall effect and topological insulators. Phys. Today 2010, 63, 33–38. [Google Scholar] [CrossRef]
- Wilczek, F. Two applications of axion electrodynamics. Phys. Rev. Lett. 1987, 58, 1799–1802. [Google Scholar] [CrossRef]
- Wilczek, F. Problem of strong P and T invariance in the presence of instantons. Phys. Rev. Lett. 1978, 40, 279–282. [Google Scholar] [CrossRef]
- Weinberg, S. A new light boson? Phys. Rev. Lett. 1978, 40, 223–226. [Google Scholar] [CrossRef]
- Fu, L.; Kane, C.L. Topological insulators with inversion symmetry. Phys. Rev. B 2007, 76, 045302. [Google Scholar] [CrossRef]
- Liu, C.C.; Feng, W.; Yao, Y. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 2011, 107, 076802. [Google Scholar] [CrossRef]
- Fukui, T.; Hatsugai, Y.; Suzuki, H. Chern numbers in discretized Brillouin zone: Efficient method of computing (spin) Hall conductances. J. Phys. Soc. Jpn. 2005, 74, 1674–1677. [Google Scholar] [CrossRef]
- Sekine, A.; Nomura, K. Axion electrodynamics in topological materials. J. Appl. Phys. 2021, 129, 141101. [Google Scholar] [CrossRef]
- Li, R.D.; Wang, J.; Qi, X.L.; Zhang, S.C. Dynamical axion field in topological magnetic insulators. Nat. Phys. 2010, 6, 284–288. [Google Scholar] [CrossRef]
- Boström, M.; Gholamhosseinian, A.; Pal, S.; Li, Y.; Brevik, I. Semi-classical electrodynamics and the Casimir effect. Physics 2024, 6, 456–467. [Google Scholar] [CrossRef]
- Casimir, H.B.G. On the attraction between two perfectly conducting plates. Proc. Kon. Ned. Akad. Wetensch. B 1948, 51, 793–795. Available online: https://dwc.knaw.nl/DL/publications/PU00018547.pdf (accessed on 1 February 2024).
- Casimir, H.B.G.; Polder, D. The influence of retardation on the London–van der Waals forces. Phys. Rev. 1948, 73, 360–372. [Google Scholar] [CrossRef]
- Lifshitz, E.M. The theory of molecular attractive forces between solids. Sov. Phys. JETP 1956, 2, 73–83. Available online: http://jetp.ras.ru/cgi-bin/e/index/e/2/1/p73?a=list (accessed on 1 February 2024).
- Dzyaloshinskii, I.E.; Lifshitz, E.M.; Pitaevskii, L.P. The general theory of van der Waals forces. Adv. Phys. 1961, 10, 165–209. [Google Scholar] [CrossRef]
- Parsegian, V.A.; Ninham, B.W. Application of the Lifshitz theory to the calculation of van der Waals forces across thin lipid films. Nature 1969, 224, 1197–1198. [Google Scholar] [CrossRef]
- Ninham, B.W.; Parsegian, V.A.; Weiss, G.H. On the macroscopic theory of temperature-dependent van der Waals forces. J. Stat. Phys. 1970, 2, 323–328. [Google Scholar] [CrossRef]
- Richmond, P.; Ninham, B.W. A note on the extension of the Lifshitz theory of van der Waals forces to magnetic media. J. Phys. C Solid State Phys. 1971, 4, 1988–1993. [Google Scholar] [CrossRef]
- Richmond, P.; Ninham, B.W. Calculations, using Lifshitz theory, of the height vs. thickness for vertical liquid helium films. Solid State Commun. 1971, 9, 1045–1047. [Google Scholar] [CrossRef]
- Richmond, P.; Ninham, B.W.; Ottewill, R.H. A theoretical study of hydrocarbon adsorption on water surfaces using Lifshitz theory. J. Coll. Interf. Sci. 1973, 45, 69–80. [Google Scholar] [CrossRef]
- Boström, M.; Sernelius, B.E. Thermal effects on the Casimir force in the 0.1–5 μm range. Phys. Rev. Lett. 2000, 84, 4757–4760. [Google Scholar] [CrossRef]
- Bordag, M.; Geyer, B.; Klimchitskaya, G.L.; Mostepanenko, V.M. Casimir force at both nonzero temperature and finite conductivity. Phys. Rev. Lett. 2000, 85, 503–506. [Google Scholar] [CrossRef]
- Ninham, B.W.; Boström, M.; Persson, C.; Brevik, I.; Buhmann, S.Y.; Sernelius, B.E. Casimir forces in a plasma: Possible connections to Yukawa Potentials. Eur. Phys. J. D 2014, 68, 328. [Google Scholar] [CrossRef]
- Dou, M.; Lou, F.; Boström, M.; Brevik, I.; Persson, C. Casimir quantum levitation tuned by means of material properties and geometries. Phys. Rev. B 2014, 89, 201407. [Google Scholar] [CrossRef]
- Esteso, V.; Carretero-Palacios, S.; Miguez, H. Nanolevitation phenomena in real plane-parallel systems due to the balance between Casimir and gravity forces. J. Phys. Chem. C 2015, 119, 5663–5670. [Google Scholar] [CrossRef] [PubMed]
- Boström, M.; Dou, M.; Malyi, O.I.; Parashar, P.; Parsons, D.F.; Brevik, I.; Persson, C. Fluid-sensitive nanoscale switching with quantum levitation controlled by α-Sn/β-Sn phase transition. Phys. Rev. B 2018, 97, 125421. [Google Scholar] [CrossRef]
- Esteso, V.; Carretero-Palacios, S.; Miguez, H. Casimir–Lifshitz force based optical resonators. J. Phys. Chem. Lett. 2019, 10, 5856–5860. [Google Scholar] [CrossRef] [PubMed]
- Esteso, V.; Carretero-Palacios, S.; MacDowell, L.G.; Fiedler, J.; Parsons, D.F.; Spallek, F.; Míguez, H.; Persson, C.; Buhmann, S.Y.; Brevik, I.; et al. Premelting of ice adsorbed on a rock surface. Phys. Chem. Chem. Phys. 2020, 22, 11362–11373. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Brevik, I.; Malyi, O.I.; Boström, M. Different pathways to anomalous stabilization of ice layers on methane hydrates. Phys. Rev. E 2023, 108, 034801. [Google Scholar] [CrossRef] [PubMed]
- Boström, M.; Khan, M.R.; Gopidi, H.R.; Brevik, I.; Li, Y.; Persson, C.; Malyi, O.I. Tuning the Casimir-Lifshitz force with gapped metals. Phys. Rev. B 2023, 108, 165306. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mostepanenko, V.M. Casimir effect invalidates the Drude model for transverse electric evanescent waves. Physics 2023, 5, 952–967. [Google Scholar] [CrossRef]
- Hauxwell, F.; Ottewill, R. A study of the surface of water by hydrocarbon adsorption. J. Coll. Interf. Sci. 1970, 34, 473–479. [Google Scholar] [CrossRef]
- Anderson, C.H.; Sabisky, E.S. Phonon interference in thin films of liquid helium. Phys. Rev. Lett. 1970, 24, 1049–1052. [Google Scholar] [CrossRef]
- Lamoreaux, S.K. Demonstration of the Casimir force in the 0.6 to 6 μm range. Phys. Rev. Lett. 1997, 78, 5–8. [Google Scholar] [CrossRef]
- Harris, B.W.; Chen, F.; Mohideen, U. Precision measurement of the Casimir force using gold surfaces. Phys. Rev. A 2000, 62, 052109. [Google Scholar] [CrossRef]
- Decca, R.S.; López, D.; Fischbach, E.; Krause, D.E. Measurement of the Casimir force between dissimilar metals. Phys. Rev. Lett. 2003, 91, 050402. [Google Scholar] [CrossRef]
- Feiler, A.A.; Bergström, L.; Rutland, M.W. Superlubricity using repulsive van der Waals forces. Langmuir 2008, 24, 2274–2276. [Google Scholar] [CrossRef]
- Munday, J.N.; Capasso, F.; Parsegian, V.A. Measured long-range repulsive Casimir–Lifshitz forces. Nature 2009, 457, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Somers, D.; Garrett, J.; Palm, K.; Munday, J.N. Measurement of the Casimir torque. Nature 2018, 564, 386–389. [Google Scholar] [CrossRef]
- Mahanty, J.; Ninham, B.W. Dispersion Forces; Academic Press Inc. Ltd.: London, UK, 1976. [Google Scholar]
- Milton, K.A. The Casimir Effect: Physical Manifestations of Zero-Point Energy; World Scientific Co. Ltd.: Singapore, 2001. [Google Scholar] [CrossRef]
- Parsegian, V.A. Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists; Cambridge University Press: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Bordag, M.; Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. Advances in the Casimir Effect; Oxford Science Publications: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Sernelius, B.E. Surface Modes in Physics; Wiley-VCH Verlag Berlin GmbH: Berlin, Germany, 2005. [Google Scholar] [CrossRef]
- Buhmann, S.Y. Dispersion Forces I: Macroscopic Quantum Electrodynamics and Ground-State Casimir, Casimir–Polder and Van der Waals Forces; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Sernelius, B.E. Fundamentals of van der Waals and Casimir Interactions; Springer Nature Switzerland AG: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Boström, M.; Williams, D.R.M.; Ninham, B.W. Specific ion effects: Why DLVO theory fails for biology and colloid systems. Phys. Rev. Lett. 2001, 87, 168103. [Google Scholar] [CrossRef]
- Parsons, D.F.; Ninham, B.W. Ab initio molar volumes and Gaussian radii. J. Phys. Chem. A 2009, 113, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
- Parsons, D.F.; Ninham, B.W. Nonelectrostatic ionic forces between dissimilar surfaces: A mechanism for colloid separation. J. Phys. Chem. C 2012, 116, 7782–7792. [Google Scholar] [CrossRef]
- Medda, L.; Barse, B.; Cugia, F.; Boström, M.; Parsons, D.F.; Ninham, B.W.; Monduzzi, M.; Salis, A. Hofmeister challenges: Ion binding and charge of the BSA protein as explicit examples. Langmuir 2012, 28, 16355–16363. [Google Scholar] [CrossRef] [PubMed]
- Duignan, T.T.; Parsons, D.F.; Ninham, B.W. A continuum model of solvation energies including electrostatic, dispersion, and cavity contributions. J. Phys. Chem. B 2013, 117, 9421–9429. [Google Scholar] [CrossRef]
- Parsons, D.F.; Salis, A. The impact of the competitive adsorption of ions at surface sites on surface free energies and surface forces. J. Chem. Phys. 2015, 142, 134707. [Google Scholar] [CrossRef]
- Boström, M.; Malyi, O.I.; Thiyam, P.; Berland, K.; Brevik, I.; Persson, C.; Parsons, D.F. The influence of Lifshitz forces and gas on premelting of ice within porous materials. EPL (Europhys. Lett.) 2016, 115, 13001. [Google Scholar] [CrossRef]
- Thiyam, P.; Fiedler, J.; Buhmann, S.Y.; Persson, C.; Brevik, I.; Boström, M.; Parsons, D.F. Ice particles sink below the water surface due to a balance of salt, van der Waals, and buoyancy forces. J. Phys. Chem. C 2018, 122, 15311–15317. [Google Scholar] [CrossRef]
- Ninham, B.W.; Yaminsky, V. Ion binding and ion specificity: The Hofmeister effect and Onsager and Lifshitz theories. Langmuir 1997, 13, 2097–2108. [Google Scholar] [CrossRef]
- Boström, M.; Li, Y.; Brevik, I.; Persson, C.; Carretero-Palacios, S.; Malyi, O.I. van der Waals induced ice growth on partially melted ice nuclei in mist and fog. Phys. Chem. Chem. Phys. 2023, 25, 32709–32714. [Google Scholar] [CrossRef]
- Luengo-Márquez, J.; MacDowell, L.G. Lifshitz theory of wetting films at three phase coexistence: The case of ice nucleation on Silver Iodide (AgI). J. Coll. Interf. Sci. 2021, 590, 527–538. [Google Scholar] [CrossRef]
- Luengo-Marquez, J.; Izquierdo-Ruiz, F.; MacDowell, L.G. Intermolecular forces at ice and water interfaces: Premelting, surface freezing, and regelation. J. Chem. Phys. 2022, 157, 044704. [Google Scholar] [CrossRef] [PubMed]
- Sikivie, P. Experimental tests of the “invisible” axion. Phys. Rev. Lett. 1983, 51, 1415–1417. [Google Scholar] [CrossRef]
- Preskill, J.; Wise, M.B.; Wilczek, F. Cosmology of the invisible axion. Phys. Lett. B 1983, 120, 127–132. [Google Scholar] [CrossRef]
- Abbott, L.F.; Sikivie, P. A cosmological bound on the invisible axion. Phys. Lett. B 1983, 120, 133–136. [Google Scholar] [CrossRef]
- Dine, M.; Fischler, W. The not-so-harmless axion. Phys. Lett. B 1983, 120, 137–141. [Google Scholar] [CrossRef]
- Sikivie, P. Axion cosmology. In Axions: Theory, Cosmology, and Experimental Searches; Kuster, M., Raffelt, G., Beltrán, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 19–50. [Google Scholar] [CrossRef]
- Sikivie, P.; Sullivan, N.; Tanner, D.B. Proposal for axion dark matter detection using an LC circuit. Phys. Rev. Lett. 2014, 112, 131301. [Google Scholar] [CrossRef] [PubMed]
- Millar, A.J.; Redondo, J.; Steffen, F.D. Dielectric haloscopes: Sensitivity to the axion dark matter velocity. J. Cosmol. Astropart. Phys. 2017, 2017, 006. [Google Scholar] [CrossRef]
- Liu, J.; Dona, K.; Hoshino, G.; Knirck, S.; Kurinsky, N.; Malaker, M.; Bread Collaboration. [BREAD Collaboration]. Broadband solenoidal haloscope for terahertz axion detection. Phys. Rev. Lett. 2022, 128, 131801. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shi, X.; Zhang, J. Generalized Riemann ζ-function regularization and Casimir energy for a piecewise uniform string. Phys. Rev. D 1991, 44, 560–562. [Google Scholar] [CrossRef] [PubMed]
- Lawson, M.; Millar, A.J.; Pancaldi, M.; Vitagliano, E.; Wilczek, F. Tunable axion plasma haloscopes. Phys. Rev. Lett. 2019, 123, 141802. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.D.; Wilczek, F. Chiral Casimir forces: Repulsive, enhanced, tunable. Phys. Rev. B 2019, 99, 125403. [Google Scholar] [CrossRef]
- Sikivie, P. Invisible axion search methods. Rev. Mod. Phys. 2021, 93, 015004. [Google Scholar] [CrossRef]
- McDonald, J.I.; Ventura, L.B. Optical properties of dynamical axion backgrounds. Phys. Rev. D 2020, 101, 123503. [Google Scholar] [CrossRef]
- Zyla, P.A.; Hayes, K.G.; Olive, K.E.; Aguilar-Benitez, M.; Amsler, C.; Asner, D.; Webber, B.R. [Particle Data Group]. Review of Particle Physics. Prog. Theor. Exp. Phys 2020, 2020, 083C01, Ch. 79. [Google Scholar] [CrossRef]
- Arza, A.; Schwetz, T.; Todarello, E. How to suppress exponential growth—On the parametric resonance of photons in an axion background. J. Cosmol. Astropart. Phys. 2020, 2020, 013. [Google Scholar] [CrossRef]
- Carenza, P.; Mirizzi, A.; Sigl, G. Dynamical evolution of axion condensates under stimulated decays into photons. Phys. Rev. D 2020, 101, 103016. [Google Scholar] [CrossRef]
- Leroy, M.; Chianese, M.; Edwards, T.D.; Weniger, C. Radio signal of axion-photon conversion in neutron stars: A ray tracing analysis. Phys. Rev. D 2020, 101, 123003. [Google Scholar] [CrossRef]
- Ouellet, J.; Bogorad, Z. Solutions to axion electrodynamics in various geometries. Phys. Rev. D 2019, 99, 055010. [Google Scholar] [CrossRef]
- Arza, A.; Sikivie, P. Production and detection of an axion dark matter echo. Phys. Rev. Lett. 2019, 123, 131804. [Google Scholar] [CrossRef]
- Qiu, Z.; Cao, G.; Huang, X.G. Electrodynamics of chiral matter. Phys. Rev. D 2017, 95, 036002. [Google Scholar] [CrossRef]
- Dror, J.A.; Murayama, H.; Rodd, N.L. Cosmic axion background. Phys. Rev. D 2021, 103, 115004. [Google Scholar] [CrossRef]
- Fukushima, K.; Imaki, S.; Qiu, Z. Anomalous Casimir effect in axion electrodynamics. Phys. Rev. D 2019, 100, 045013. [Google Scholar] [CrossRef]
- Tobar, M.E.; McAllister, B.T.; Goryachev, M. Modified axion electrodynamics as impressed electromagnetic sources through oscillating background polarization and magnetization. Phys. Dark Univ. 2019, 26, 100339. [Google Scholar] [CrossRef]
- Bae, S.; Youn, S.; Jeong, J. Tunable photonic crystal haloscope for high-mass axion searches. Phys. Rev. D 2023, 107, 015012. [Google Scholar] [CrossRef]
- Adshead, P.; Draper, P.; Lillard, B. Time-domain properties of electromagnetic signals in a dynamical axion background. Phys. Rev. D 2020, 102, 123011. [Google Scholar] [CrossRef]
- Tobar, M.E.; McAllister, B.T.; Goryachev, M. Poynting vector controversy in axion modified electrodynamics. Phys. Rev. D 2022, 105, 045009. [Google Scholar] [CrossRef]
- DeRocco, W.; Hook, A. Axion interferometry. Phys. Rev. D 2018, 98, 035021. [Google Scholar] [CrossRef]
- Brevik, I.H.; Chaichian, M.M. Axion electrodynamics: Energy–momentum tensor and possibilities for experimental tests. Int. J. Mod. Phys. A 2022, 37, 2250151. [Google Scholar] [CrossRef]
- Brevik, I.H.; Chaichian, M.M. Electric current and heat production by a neutral carrier: An effect of the axion. Eur. Phys. J. C 2022, 82, 202. [Google Scholar] [CrossRef]
- Brevik, I.; Favitta, A.M.; Chaichian, M. Axionic and nonaxionic electrodynamics in plane and circular geometry. Phys. Rev. D 2023, 107, 043522. [Google Scholar] [CrossRef]
- Brevik, I.; Chaichian, M.; Favitta, A.M. On the Axion Electrodynamics in a two-dimensional slab and the Casimir effect. arXiv 2023, arXiv:2310.05575. [Google Scholar] [CrossRef]
- Qi, X.L.; Zhang, S.C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110. [Google Scholar] [CrossRef]
- Qi, X.L.; Hughes, T.L.; Zhang, S.C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 2008, 78, 195424. [Google Scholar] [CrossRef]
- Peccei, R.D.; Quinn, H.R. Constraints imposed by CP conservation in the presence of pseudoparticles. Phys. Rev. D 1977, 16, 1791–1797. [Google Scholar] [CrossRef]
- Lu, B.S. The Casimir effect in topological matter. Universe 2021, 7, 237. [Google Scholar] [CrossRef]
- Martín-Ruiz, A.; Cambiaso, M.; Urrutia, L. The magnetoelectric coupling in electrodynamics. Int. J. Mod. Phys. A 2019, 34, 1941002. [Google Scholar] [CrossRef]
- Nogueira, F.S.; van den Brink, J. Absence of induced magnetic monopoles in Maxwellian magnetoelectrics. Phys. Rev. Res. 2022, 4, 013074. [Google Scholar] [CrossRef]
- Woods, L.M.; Krüger, M.; Dodonov, V.V. Perspective on some recent and future developments in Casimir interactions. Appl. Sci. 2020, 11, 293. [Google Scholar] [CrossRef]
- To, D.Q.; Wang, Z.; Ho, D.Q.; Hu, R.; Acuna, W.; Liu, Y.; Bryant, G.W.; Janotti, A.; Zide, J.M.; Law, S.; et al. Strong coupling between a topological insulator and a III-V heterostructure at terahertz frequency. Phys. Rev. Mater. 2022, 6, 035201. [Google Scholar] [CrossRef]
- Kargarian, M.; Randeria, M.; Trivedi, N. Theory of Kerr and Faraday rotations and linear dichroism in topological Weyl semimetals. Sci. Rep. 2015, 5, 12683. [Google Scholar] [CrossRef]
- Wilson, J.H.; Allocca, A.A.; Galitski, V. Repulsive Casimir force between Weyl semimetals. Phys. Rev. B 2015, 91, 235115. [Google Scholar] [CrossRef]
- Martín-Ruiz, A.; Cambiaso, M.; Urrutia, L. A Green’s function approach to the Casimir effect on topological insulators with planar symmetry. Europhys. Lett. 2016, 113, 60005. [Google Scholar] [CrossRef]
- Woods, L.; Dalvit, D.A.R.; Tkatchenko, A.; Rodriguez-Lopez, P.; Rodriguez, A.W.; Podgornik, R. Materials perspective on Casimir and van der Waals interactions. Rev. Mod. Phys. 2016, 88, 045003. [Google Scholar] [CrossRef]
- Khusnutdinov, N.; Woods, L.M. Casimir effects in 2D Dirac materials (Scientific Summary). JETP Lett. 2019, 110, 183–192. [Google Scholar] [CrossRef]
- Brevik, I. Axion electrodynamics and the axionic Casimir effect. Universe 2021, 7, 133. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brevik, I.; Pal, S.; Li, Y.; Gholamhosseinian, A.; Boström, M. Axion Electrodynamics and the Casimir Effect. Physics 2024, 6, 407-421. https://doi.org/10.3390/physics6010027
Brevik I, Pal S, Li Y, Gholamhosseinian A, Boström M. Axion Electrodynamics and the Casimir Effect. Physics. 2024; 6(1):407-421. https://doi.org/10.3390/physics6010027
Chicago/Turabian StyleBrevik, Iver, Subhojit Pal, Yang Li, Ayda Gholamhosseinian, and Mathias Boström. 2024. "Axion Electrodynamics and the Casimir Effect" Physics 6, no. 1: 407-421. https://doi.org/10.3390/physics6010027
APA StyleBrevik, I., Pal, S., Li, Y., Gholamhosseinian, A., & Boström, M. (2024). Axion Electrodynamics and the Casimir Effect. Physics, 6(1), 407-421. https://doi.org/10.3390/physics6010027