Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,231)

Search Parameters:
Keywords = Canning Basin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 14336 KiB  
Article
Geospatial Mudflow Risk Modeling: Integration of MCDA and RAMMS
by Ainur Mussina, Assel Abdullayeva, Victor Blagovechshenskiy, Sandugash Ranova, Zhixiong Zeng, Aidana Kamalbekova and Ulzhan Aldabergen
Water 2025, 17(15), 2316; https://doi.org/10.3390/w17152316 - 4 Aug 2025
Abstract
This article presents a comprehensive assessment of mudflow risk in the Talgar River basin through the application of Multi-Criteria Decision Analysis (MCDA) methods and numerical modeling using the Rapid Mass Movement Simulation (RAMMS) environment. The first part of the study involves a spatial [...] Read more.
This article presents a comprehensive assessment of mudflow risk in the Talgar River basin through the application of Multi-Criteria Decision Analysis (MCDA) methods and numerical modeling using the Rapid Mass Movement Simulation (RAMMS) environment. The first part of the study involves a spatial assessment of mudflow hazard and susceptibility using GIS technologies and MCDA. The key condition for evaluating mudflow hazard is the identification of factors influencing the formation of mudflows. The susceptibility assessment was based on viewing the area as an object of spatial and functional analysis, enabling determination of its susceptibility to mudflow impacts across geomorphological zones: initiation, transformation, and accumulation. Relevant criteria were selected for analysis, each assigned weights based on expert judgment and the Analytic Hierarchy Process (AHP). The results include maps of potential mudflow hazard and susceptibility, showing areas of hazard occurrence and risk impact zones within the Talgar River basin. According to the mudflow hazard map, more than 50% of the basin area is classified as having a moderate hazard level, while 28.4% is subject to high hazard, and only 1.8% falls under the very high hazard category. The remaining areas are categorized as very low (4.1%) and low (14.7%) hazard zones. In terms of susceptibility to mudflows, 40.1% of the territory is exposed to a high level of susceptibility, 35.6% to a moderate level, and 5.5% to a very high level. The remaining areas are classified as very low (1.8%) and low (15.6%) susceptibility zones. The predictive performance was evaluated through Receiver Operating Characteristic (ROC) curves, and the Area Under the Curve (AUC) value of the mudflow hazard assessment is 0.86, which indicates good adaptability and relatively high accuracy, while the AUC value for assessing the susceptibility of the territory is 0.71, which means that the accuracy of assessing the susceptibility of territories to mudflows is within the acceptable level of model accuracy. To refine the spatial risk assessment, mudflow modeling was conducted under three scenarios of glacial-moraine lake outburst using the RAMMS model. For each scenario, key flow parameters—height and velocity—were identified, forming the basis for classification of zones by impact intensity. The integration of MCDA and RAMMS results produced a final mudflow risk map reflecting both the likelihood of occurrence and the extent of potential damage. The presented approach demonstrates the effectiveness of combining GIS analysis, MCDA, and physically-based modeling for comprehensive natural hazard assessment and can be applied to other mountainous regions with high mudflow activity. Full article
Show Figures

Figure 1

21 pages, 4289 KiB  
Article
H2 Transport in Sedimentary Basin
by Luisa Nicoletti, Juan Carlos Hidalgo, Dariusz Strąpoć and Isabelle Moretti
Geosciences 2025, 15(8), 298; https://doi.org/10.3390/geosciences15080298 - 3 Aug 2025
Viewed by 104
Abstract
Natural hydrogen is generated by fairly deep processes and/or in low-permeability rocks. In such contexts, fluids circulate mainly through the network of faults and fractures. However, hydrogen flows from these hydrogen-generating layers can reach sedimentary rocks with more typical permeability and porosity, allowing [...] Read more.
Natural hydrogen is generated by fairly deep processes and/or in low-permeability rocks. In such contexts, fluids circulate mainly through the network of faults and fractures. However, hydrogen flows from these hydrogen-generating layers can reach sedimentary rocks with more typical permeability and porosity, allowing H2 flows to spread out rather than be concentrated in fractures. In that case, three different H2 transport modes exist: advection (displacement of water carrying dissolved gas), diffusion, and free gas Darcy flow. Numerical models have been run to compare the efficiency of these different modes and the pathway they imply for the H2 in a sedimentary basin with active aquifers. The results show the key roles of these aquifers but also the competition between free gas flow and the dissolved gas displacement which can go in opposite directions. Even with a conservative hypothesis on the H2 charge, a gaseous phase exists at few kilometers deep as well as free gas accumulation. Gaseous phase displacement could be the faster and diffusion is neglectable. The modeling also allows us to predict where H2 is expected in the soil: in fault zones, eventually above accumulations, and, more likely, due to exsolution, above shallow aquifers. Full article
Show Figures

Figure 1

26 pages, 3711 KiB  
Article
Probability Characteristics of High and Low Flows in Slovakia: A Comprehensive Hydrological Assessment
by Pavla Pekárová, Veronika Bačová Mitková and Dana Halmová
Hydrology 2025, 12(8), 199; https://doi.org/10.3390/hydrology12080199 - 31 Jul 2025
Viewed by 218
Abstract
Frequency analysis is essential for designing hydraulic structures and managing water resources, as it helps assess hydrological extremes. However, changes in river basins can impact their accuracy, complicating the link between discharge and return periods. This study aims to comprehensively assess the probability [...] Read more.
Frequency analysis is essential for designing hydraulic structures and managing water resources, as it helps assess hydrological extremes. However, changes in river basins can impact their accuracy, complicating the link between discharge and return periods. This study aims to comprehensively assess the probability characteristics of long-term M-day maximum/minimum discharges in the Carpathian region of Slovakia. We analyze the long-term data from 26 gauging stations covering 90 years of observation. Slovak rivers show considerable intra-annual variability, especially between the summer–autumn (SA) and winter–spring (WS) seasons. To allow consistent comparisons, we apply a uniform methodology to estimate T-year daily maximum and minimum specific discharges over durations of 1 and 7 days for both seasons. Our findings indicate that 1-day maximum specific discharges are generally higher during the SA season compared to the WS season. The 7-day minimum specific discharges are lower during the WS season compared to the SA season. Slovakia’s diverse orographic and climatic conditions cause significant spatial variability in extreme discharges. However, the estimated T-year 7-day minimum and 1-day maximum specific discharges, based on the mean specific discharge and the altitude of the water gauge, exhibit certain nonlinear dependences. These relationships could support the indirect estimation of T-year M-day discharges in regions with similar runoff characteristics. Full article
(This article belongs to the Section Water Resources and Risk Management)
Show Figures

Figure 1

29 pages, 11834 KiB  
Article
Sedimentary Characteristics and Reservoir Quality of Shallow-Water Delta in Arid Lacustrine Basins: The Upper Jurassic Qigu Formation in the Yongjin Area, Junggar Basin, China
by Lin Wang, Qiqi Lyu, Yibo Chen, Xinshou Xu and Xinying Zhou
Appl. Sci. 2025, 15(15), 8458; https://doi.org/10.3390/app15158458 (registering DOI) - 30 Jul 2025
Viewed by 106
Abstract
The lacustrine to deltaic depositional systems of the Upper Jurassic Qigu Formation in the Yongjin area constitute a significant petroleum reservoir in the central Junggar Basin, China. Based on core observations, petrology analyses, paleoenvironment indicators and modern sedimentary analyses, sequence stratigraphy, lithofacies associations, [...] Read more.
The lacustrine to deltaic depositional systems of the Upper Jurassic Qigu Formation in the Yongjin area constitute a significant petroleum reservoir in the central Junggar Basin, China. Based on core observations, petrology analyses, paleoenvironment indicators and modern sedimentary analyses, sequence stratigraphy, lithofacies associations, sedimentary environment, evolution, and models were investigated. The Qigu Formation can be divided into a third-order sequence consisting of a lowstand systems tract (LST) and a transgressive systems tract (TST), which is further subdivided into six fourth-order sequences. Thirteen lithofacies and five lithofacies associations were identified, corresponding to shallow-water delta-front deposits. The paleoenvironment of the Qigu Formation is generally characterized by an arid freshwater environment, with a dysoxic to oxic environment. During the LST depositional period (SQ1–SQ3), the water depth was relatively shallow with abundant sediment supply, resulting in a widespread distribution of channel and mouth bar deposits. During the TST depositional period (SQ4–SQ6), the rapid rise in base level, combined with reduced sediment supply, resulted in swift delta retrogradation and widespread lacustrine sedimentation. Combined with modern sedimentary analysis, the shallow-water delta in the study area primarily comprises a composite system of single main channels and distributary channel-mouth bar complexes. The channel-bar complex eventually forms radially distributed bar assemblages with lateral incision and stacking. The distributary channel could incise a mouth bar deeply or shallowly, typically forming architectural patterns of going over or in the mouth bar. Reservoir test data suggest that the mouth bar sandstones are favorable targets for lithological reservoir exploration in shallow-water deltas. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

21 pages, 2593 KiB  
Article
Climate Change Impacts on Grey Water Footprint of Agricultural Total Nitrogen in the Yangtze River Basin Based on SSP–InVEST Coupling
by Na Li, Hongliang Wu and Feng Yan
Agronomy 2025, 15(8), 1844; https://doi.org/10.3390/agronomy15081844 - 30 Jul 2025
Viewed by 206
Abstract
With climate change, the spatial and temporal patterns of precipitation are altered to a certain degree, which potentially affects the grey water footprint (GWF) of total nitrogen (TN) in agriculture, thereby threatening water security in the Yangtze River Basin (YRB), the largest river [...] Read more.
With climate change, the spatial and temporal patterns of precipitation are altered to a certain degree, which potentially affects the grey water footprint (GWF) of total nitrogen (TN) in agriculture, thereby threatening water security in the Yangtze River Basin (YRB), the largest river in China. The current study constructs an assessment framework for climate change impacts on the GWF of agricultural TN by coupling Shared Socioeconomic Pathways (SSPs) with the InVEST model. The framework consists of four components: (i) data collection and processing, (ii) simulating the two critical indicators (LTN and W) in the GWF model based on the InVEST model, (iii) calculating the GWF and GWF index (GI) of TN, and (iv) calculating climate change impact index on GWF of agricultural TN (CI) under two SSPs. It is applied to the YRB, and the results show the following: (i) GWFs are 959.7 and 961.4 billion m3 under the SSP1-2.6 and SSP5-8.5 climate scenarios in 2030, respectively, which are both lower than that in 2020 (1067.1 billion m3). (ii) The GI values for TN in 2030 under SSP1-2.6 and SSP5-8.5 remain at “High” grade, with the values of 0.95 and 1.03, respectively. Regionally, the water pollution level of Taihu Lake is the highest, while that of Wujiang River is the lowest. (iii) The CI values of the YRB in 2030 under SSP1-2.6 and SSP5-8.5 scenarios are 0.507 and 0.527, respectively. And the CI values of the five regions in the YRB are greater than 0, indicating that the negative effects of climate change on GWFs increase. (iv) Compared with 2020, LTN and W in YRB in 2030 under the two SSPs decrease, while the GI of TN in YRB rises from SSP1-2.6 to SSP5-8.5. The assessment framework can provide strategic recommendations for sustainable water resource management in the YRB and other regions globally under climate change. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

15 pages, 2006 KiB  
Article
Hydrological Responses to Territorial Spatial Change in the Xitiaoxi River Basin: A Simulation Study Using the SWAT Model Driven by China Meteorological Assimilation Driving Datasets
by Dongyan Kong, Huiguang Chen and Kongsen Wu
Water 2025, 17(15), 2267; https://doi.org/10.3390/w17152267 - 30 Jul 2025
Viewed by 244
Abstract
The use of the Soil and Water Assessment Tool (SWAT) model driven by China Meteorological Assimilation Driving Datasets (CMADS) for runoff simulation research is of great significance for regional flood prevention and control. Therefore, from the perspective of production-living-ecological space, this article combined [...] Read more.
The use of the Soil and Water Assessment Tool (SWAT) model driven by China Meteorological Assimilation Driving Datasets (CMADS) for runoff simulation research is of great significance for regional flood prevention and control. Therefore, from the perspective of production-living-ecological space, this article combined multi-source data such as DEM, soil texture and land use type, in order to construct scenarios of territorial spatial change (TSC) across distinct periods. Based on the CMADS-L40 data and the SWAT model, it simulated the runoff dynamics in the Xitiaoxi River Basin, and analyzed the hydrological response characteristics under different TSCs. The results showed that The SWAT model, driven by CMADS-L40 data, demonstrated robust performance in monthly runoff simulation. The coefficient of determination (R2), Nash–Sutcliffe efficiency coefficient (NSE), and the absolute value of percentage bias (|PBIAS|) during the calibration and validation period all met the accuracy requirements of the model, which validated the applicability of CMADS-L40 data and the SWAT model for runoff simulation at the watershed scale. Changes in territorial spatial patterns are closely correlated with runoff variation. Changes in agricultural production space and forest ecological space show statistically significant negative correlation with runoff change, while industrial production space change exhibits a significant positive correlation with runoff change. The expansion of production space, particularly industrial production space, leads to increased runoff, whereas the enlargement of agricultural production space and forest ecological space can reduce runoff. This article contributes to highlighting the role of land use policy in hydrological regulation, providing a scientific basis for optimizing territorial spatial planning to mitigate flood risks and protect water resources. Full article
(This article belongs to the Topic Natural Hazards and Disaster Risks Reduction, 2nd Edition)
Show Figures

Figure 1

26 pages, 8897 KiB  
Article
Numerical Study of Wave-Induced Longshore Current Generation Zones on a Circular Sandy Sloping Topography
by Mohammad Shaiful Islam, Tomoaki Nakamura, Yong-Hwan Cho and Norimi Mizutani
Water 2025, 17(15), 2263; https://doi.org/10.3390/w17152263 - 29 Jul 2025
Viewed by 261
Abstract
Wave deformation and sediment transport nearest the shoreside are among the main reasons for sand erosion and beach profile changes. In particular, identifying the areas of incident-wave breaking and longshore current generation parallel to the shoreline is important for understanding the morphological changes [...] Read more.
Wave deformation and sediment transport nearest the shoreside are among the main reasons for sand erosion and beach profile changes. In particular, identifying the areas of incident-wave breaking and longshore current generation parallel to the shoreline is important for understanding the morphological changes of coastal beaches. In this study, a two-phase incompressible flow model along with a sandy sloping topography was employed to investigate the wave deformation and longshore current generation areas in a circular wave basin model. The finite volume method (FVM) was implemented to discretize the governing equations in cylindrical coordinates, the volume-of-fluid method (VOF) was adopted to differentiate the air–water interfaces in the control cells, and the zonal embedded grid technique was employed for grid generation in the cylindrical computational domain. The water surface elevations and velocity profiles were measured in different wave conditions, and the measurements showed that the maximum water levels per wave were high and varied between cases, as well as between cross-sections in a single case. Additionally, the mean water levels were lower in the adjacent positions of the approximated wave-breaking zones. The wave-breaking positions varied between cross-sections in a single case, with the incident-wave height, mean water level, and wave-breaking position measurements indicating the influence of downstream flow variation in each cross-section on the sloping topography. The cross-shore velocity profiles became relatively stable over time, while the longshore velocity profiles predominantly moved in the alongshore direction, with smaller fluctuations, particularly during the same time period and in measurement positions near the wave-breaking zone. The computed velocity profiles also varied between cross-sections, and for the velocity profiles along the cross-shore and longshore directions nearest the wave-breaking areas where the downstream flow had minimal influence, it was presumed that there was longshore-current generation in the sloping topography nearest the shoreside. The computed results were compared with the experimental results and we observed similar characteristics for wave profiles in the same wave period case in both models. In the future, further investigations can be conducted using the presented circular wave basin model to investigate the oblique wave deformation and longshore current generation in different sloping and wave conditions. Full article
(This article belongs to the Special Issue Numerical Modeling of Hydrodynamics and Sediment Transport)
Show Figures

Figure 1

22 pages, 11338 KiB  
Article
Genesis of Clastic Reservoirs in the First Member of Yaojia Formation, Northern Songliao Basin
by Junhui Li, Qiang Zheng, Yu Cai, Huaye Liu, Tianxin Hu and Haiguang Wu
Minerals 2025, 15(8), 795; https://doi.org/10.3390/min15080795 - 29 Jul 2025
Viewed by 186
Abstract
This study focuses on the clastic reservoir in the first member of Yaojia Formation within Qijia-Gulong Sag, Songliao Basin. The results indicate that the reservoir in the study area develops within a shallow-water delta sedimentary system. The dominant sedimentary microfacies comprise underwater distributary [...] Read more.
This study focuses on the clastic reservoir in the first member of Yaojia Formation within Qijia-Gulong Sag, Songliao Basin. The results indicate that the reservoir in the study area develops within a shallow-water delta sedimentary system. The dominant sedimentary microfacies comprise underwater distributary channels, mouth bars, and sheet sands. Among these, the underwater distributary channel microfacies exhibits primary porosity ranging from 15.97% to 17.71%, showing the optimal reservoir quality, whereas the sheet sand microfacies has a porosity of only 7.45% to 12.08%, indicating inferior physical properties. During diagenesis, compaction notably decreases primary porosity via particle rearrangement and elastic deformation, while calcite cementation and quartz overgrowth further occlude pore throats. Although dissolution can generate secondary porosity (locally up to 40%), the precipitation of clay minerals tends to block pore throats, leading to “ineffective porosity” (permeability generally < 5 mD) and overall low-porosity and low-permeability characteristics. Carbon–oxygen isotope analysis reveals a deficiency in organic acid supply in the study area, restricting the intensity of dissolution alteration. Reservoir quality evolution is dominantly governed by the combined controls of sedimentary microfacies and diagenesis. This study emphasizes that, within shallow-water delta sedimentary settings, the material composition of sedimentary microfacies and the dynamic equilibrium of diagenetic processes jointly govern reservoir property variations. This insight provides critical theoretical support for understanding diagenetic evolution mechanisms in clastic reservoirs and enabling precise prediction of high-quality reservoir distribution. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

21 pages, 2491 KiB  
Article
A Systematic Evaluation of the New European Wind Atlas and the Copernicus European Regional Reanalysis Wind Datasets in the Mediterranean Sea
by Takvor Soukissian, Vasilis Apostolou and Natalia-Elona Koutri
J. Mar. Sci. Eng. 2025, 13(8), 1445; https://doi.org/10.3390/jmse13081445 - 29 Jul 2025
Viewed by 574
Abstract
The Copernicus European Regional Reanalysis (CERRA) was released in August 2022, providing a continental atmospheric reanalysis, and, in addition, the New European Wind Atlas (NEWA) is a recently released hindcast product that can be used to create a high temporal and spatial resolution [...] Read more.
The Copernicus European Regional Reanalysis (CERRA) was released in August 2022, providing a continental atmospheric reanalysis, and, in addition, the New European Wind Atlas (NEWA) is a recently released hindcast product that can be used to create a high temporal and spatial resolution wind resource atlas of Europe. In order to demonstrate the suitability of the NEWA and CERRA wind datasets for offshore wind energy applications, the accuracy of these datasets was assessed for the Mediterranean Sea, a basin with a high potential for the development of offshore wind projects. Long-term in situ measurements from 13 offshore locations along the basin were used in order to assess the performance of the CERRA and NEWA wind speed datasets in the hourly and seasonal time scales by using a variety of different evaluation tools. The results revealed that the CERRA dataset outperforms NEWA and is a reliable source for offshore wind energy assessment studies in the examined areas, although special attention should be paid to extreme value analysis of the wind speed. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

23 pages, 2779 KiB  
Article
Seismic Response Analysis of a Six-Story Building in Sofia Using Accelerograms from the 2012 Mw5.6 Pernik Earthquake
by Lyubka Pashova, Emil Oynakov, Ivanka Paskaleva and Radan Ivanov
Appl. Sci. 2025, 15(15), 8385; https://doi.org/10.3390/app15158385 - 28 Jul 2025
Viewed by 285
Abstract
On 22 May 2012, a magnitude Mw 5.6 earthquake struck the Pernik region of western Bulgaria, causing structural damage in nearby cities, including Sofia. This study assesses the seismic response of a six-story reinforced concrete building in central Sofia, utilizing real accelerogram data [...] Read more.
On 22 May 2012, a magnitude Mw 5.6 earthquake struck the Pernik region of western Bulgaria, causing structural damage in nearby cities, including Sofia. This study assesses the seismic response of a six-story reinforced concrete building in central Sofia, utilizing real accelerogram data recorded at the basement (SGL1) and sixth floor (SGL2) levels during the earthquake. Using the Kanai–Yoshizawa (KY) model, the study estimates inter-story motion and assesses amplification effects across the structure. Analysis of peak ground acceleration (PGA), velocity (PGV), displacement (PGD), and spectral ratios reveals significant dynamic amplification of peak ground acceleration and displacement on the sixth floor, indicating flexible and dynamic behavior, as well as potential resonance effects. The analysis combines three spectral techniques—Horizontal-to-Vertical Spectral Ratio (H/V), Floor Spectral Ratio (FSR), and the Random Decrement Method (RDM)—to determine the building’s dynamic characteristics, including natural frequency and damping ratio. The results indicate a dominant vibration frequency of approximately 2.2 Hz and damping ratios ranging from 3.6% to 6.5%, which is consistent with the typical damping ratios of mid-rise concrete buildings. The findings underscore the significance of soil–structure interaction (SSI), particularly in sedimentary basins like the Sofia Graben, where localized geological effects influence seismic amplification. By integrating accelerometric data with advanced spectral techniques, this research can enhance ongoing site-specific monitoring and seismic design practices, contributing to the refinement of earthquake engineering methodologies for mitigating seismic risk in earthquake-prone urban areas. Full article
(This article belongs to the Special Issue Seismic-Resistant Materials, Devices and Structures)
Show Figures

Figure 1

24 pages, 10078 KiB  
Article
Satellite Hyperspectral Mapping of Farmland Soil Organic Carbon in Yuncheng Basin Along the Yellow River, China
by Haixia Jin, Rutian Bi, Huiwen Tian, Hongfen Zhu and Yingqiang Jing
Agronomy 2025, 15(8), 1827; https://doi.org/10.3390/agronomy15081827 - 28 Jul 2025
Viewed by 293
Abstract
This study combined field survey data with Gaofen 5 (GF-5) satellite hyperspectral images of the Yuncheng Basin (China), considering 15 environmental variables. Random forest (RF) was used to select the optimal satellite hyperspectral model, sequentially introducing natural and farmland management factors into the [...] Read more.
This study combined field survey data with Gaofen 5 (GF-5) satellite hyperspectral images of the Yuncheng Basin (China), considering 15 environmental variables. Random forest (RF) was used to select the optimal satellite hyperspectral model, sequentially introducing natural and farmland management factors into the model to analyze the spatial distribution of farmland soil organic carbon (SOC). Furthermore, RF factorial experiments determined the contributions of farmland management, climate, vegetation, soil, and topography to the SOC. Structural equation modeling (SEM) elucidated the driving mechanisms of SOC variations. Integrating satellite hyperspectral data and environmental variables improved the prediction accuracy and SOC-mapping precision of the model. The integration of natural variables significantly improved the RF model performance (R2 = 0.78). The prediction accuracy enhanced with the introduction of crop phenology (R2 = 0.81) and farmland management factors (R2 = 0.87). The model that incorporated all 15 variables demonstrated the highest prediction accuracy (R2 = 0.89) and greatest spatial SOC variability, with minimal uncertainty. Farmland management activities exerted the strongest influence on SOC (0.38). The proposed method can support future investigations on soil carbon sequestration processes in river basins worldwide. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

17 pages, 36180 KiB  
Article
Geomorphological Features and Formation Process of Abyssal Hills and Oceanic Core Complexes Linked to the Magma Supply in the Parece Vela Basin, Philippine Sea: Insights from Multibeam Bathymetry Analysis
by Xiaoxiao Ding, Junjiang Zhu, Yuhan Jiao, Xinran Li, Zhengyuan Liu, Xiang Ao, Yihuan Huang and Sanzhong Li
J. Mar. Sci. Eng. 2025, 13(8), 1426; https://doi.org/10.3390/jmse13081426 - 26 Jul 2025
Viewed by 291
Abstract
Based on the new high-resolution multibeam bathymetry data collected by the “Dongfanghong 3” vessel in 2023 in the Parece Vela Basin (PVB) and previous magnetic anomaly data, we systematically analyze the seafloor topographical changes of abyssal hills and oceanic core complexes (OCCs) in [...] Read more.
Based on the new high-resolution multibeam bathymetry data collected by the “Dongfanghong 3” vessel in 2023 in the Parece Vela Basin (PVB) and previous magnetic anomaly data, we systematically analyze the seafloor topographical changes of abyssal hills and oceanic core complexes (OCCs) in the “Chaotic Terrain” region, and the revised seafloor spreading model is constructed in the PVB. Using detailed analysis of the seafloor topography, we identify typical geomorphological features associated with seafloor spreading, such as regularly aligned abyssal hills and OCCs in the PVB. The direction variations of seafloor spreading in the PVB are closely related to mid-ocean ridge rotation and propagation. The formation of OCCs in the “Chaotic Terrain” can be explained by links to the continuous and persistent activity of detachment faults and dynamic adjustments controlled by variations of deep magma supply in the different segments in the PVB. We use 2D discrete Fourier image analysis of the seafloor topography to calculate the aspect ratio (AR) values of abyssal hills in the western part of the PVB. The AR value variations reveal a distinct imbalance in magma supply across various regions during the basin spreading process. Compared to the “Chaotic Terrain” area, the region with abyssal hills indicates a higher magma supply and greater linearity on seafloor topography. AR values fluctuated between 2.1 and 1.7 of abyssal hills in the western segment, while in the “Chaotic Terrain”, they dropped to 1.3 due to the lower magma supply. After the formation of the OCC-1, AR values increased to 1.9 in the eastern segment, and this shows the increase in magma supply. Based on changes in seafloor topography and variations in magma supply across different segments of the PVB, we propose that the seafloor spreading process in the magnetic anomaly linear strip 9-6A of the PVB mainly underwent four formation stages: ridge rotation, rift propagation, magma-poor supply, and the maturation period of OCCs. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

13 pages, 6786 KiB  
Article
Hydropower Microgeneration in Detention Basins: A Case Study of Santa Lúcia Basin in Brazil
by Azuri Sofia Gally Koroll, Rodrigo Perdigão Gomes Bezerra, André Ferreira Rodrigues, Bruno Melo Brentan, Joaquín Izquierdo and Gustavo Meirelles
Water 2025, 17(15), 2219; https://doi.org/10.3390/w17152219 - 24 Jul 2025
Viewed by 421
Abstract
Flood control infrastructure is essential for the development of cities and the population’s well-being. The goal is to protect human and economic resources by reducing the inundation area and controlling the flood level and peak discharges. Detention basins can do this by storing [...] Read more.
Flood control infrastructure is essential for the development of cities and the population’s well-being. The goal is to protect human and economic resources by reducing the inundation area and controlling the flood level and peak discharges. Detention basins can do this by storing a large volume of water to be released after the peak discharge. By doing this, a large amount of energy is stored, which can be recovered via micro-hydropower. In addition, as the release flow is controlled and almost constant, Pumps as Turbines (PAT) could be a feasible and economic option in these cases. Thus, this study investigates the feasibility of micro-hydropower (MHP) in urban detention basins, using the Santa Lúcia detention basin in Belo Horizonte as a case study. The methodology involved hydrological modeling, hydraulic analysis, and economic and environmental assessment. The results demonstrated that PAT selection has a crucial role in the feasibility of the MHP, and exploiting rainfall with lower intensities but higher frequencies is more attractive. Using multiple PATs with different operating points also showed promising results in improving energy production. In addition to the economic benefits, the MHP in the detention basin produces minimal environmental impact and, as it exploits a wasted energy source, it also reduces the carbon footprint in the urban water cycle. Full article
(This article belongs to the Special Issue Research Status of Operation and Management of Hydropower Station)
Show Figures

Figure 1

16 pages, 2308 KiB  
Article
Reconstructing of Satellite-Derived CO2 Using Multiple Environmental Variables—A Case Study in the Provinces of Huai River Basin, China
by Yuxin Zhu, Ying Zhang, Linping Zhu and Jinzong Zhang
Atmosphere 2025, 16(8), 903; https://doi.org/10.3390/atmos16080903 - 24 Jul 2025
Viewed by 212
Abstract
The introduction of the ”dual carbon” target has increased the need for products that can accurately measure carbon dioxide levels, reflecting the rising demand. Due to challenges in achieving the required spatiotemporal resolution, accuracy, and spatial continuity with current carbon dioxide concentration products, [...] Read more.
The introduction of the ”dual carbon” target has increased the need for products that can accurately measure carbon dioxide levels, reflecting the rising demand. Due to challenges in achieving the required spatiotemporal resolution, accuracy, and spatial continuity with current carbon dioxide concentration products, it is essential to explore methods for obtaining carbon dioxide concentration products with completeness in space and time. Based on the 2018 OCO-2 carbon dioxide products and environmental variables such as vegetation coverage (FVC, LAI), net primary productivity (NPP), relative humidity (RH), evapotranspiration (ET), temperature (T) and wind (U, V), this study constructed a multiple regression model to obtain the spatial continuous carbon dioxide concentration products in the provinces of Huai River Basin. Using indicators such as correlation coefficient, root mean square error (RMSE), local variance, and percentage of valid pixels, the performance of model was validated. The validation results are shown as follows: (1) Among the selected environmental variables, the primary factors affecting the spatiotemporal distribution of carbon dioxide concentration are ET, LAI, FVC, NPP, T, U, and RH. (2) Compared with the OCO-2 carbon dioxide products, the percentage of valid pixels of the reconstructed carbon dioxide concentration data increased from less than 1% to over 90%. (3) The local variance in reconstructed data was significantly larger than that of original OCO-2 CO2 products. (4) The average monthly RMSE is 2.69. Therefore, according to the model developed in this study, we can obtain a carbon dioxide concentration dataset that is spatially complete, meets precision requirements, and is rich in local detail information, which can better reflect the spatial pattern of carbon dioxide concentration and can be used to examine the carbon cycle between the terrestrial environment, biosphere, and atmosphere. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

20 pages, 11438 KiB  
Article
Investigating Chaotic Techniques and Wave Profiles with Parametric Effects in a Fourth-Order Nonlinear Fractional Dynamical Equation
by Jan Muhammad, Ali H. Tedjani, Ejaz Hussain and Usman Younas
Fractal Fract. 2025, 9(8), 487; https://doi.org/10.3390/fractalfract9080487 - 24 Jul 2025
Viewed by 282
Abstract
In this article, we investigate the fractional soliton solutions as well as the chaotic analysis of the fourth-order nonlinear Ablowitz–Kaup–Newell–Segur wave equation. This model is considered an intriguing high-order nonlinear partial differential equation that integrates additional spatial and dispersive effects to extend the [...] Read more.
In this article, we investigate the fractional soliton solutions as well as the chaotic analysis of the fourth-order nonlinear Ablowitz–Kaup–Newell–Segur wave equation. This model is considered an intriguing high-order nonlinear partial differential equation that integrates additional spatial and dispersive effects to extend the concepts to more intricate wave dynamics, relevant in engineering and science for understanding complex phenomena. To examine the solitary wave solutions of the proposed model, we employ sophisticated analytical techniques, including the generalized projective Riccati equation method, the new improved generalized exponential rational function method, and the modified F-expansion method, along with mathematical simulations, to obtain a deeper insight into wave propagation. To explore desirable soliton solutions, the nonlinear partial differential equation is converted into its respective ordinary differential equations by wave transforms utilizing β-fractional derivatives. Further, the solutions in the forms of bright, dark, singular, combined, and complex solitons are secured. Various physical parameter values and arrangements are employed to investigate the soliton solutions of the system. Variations in parameter values result in specific behaviors of the solutions, which we illustrate via various types of visualizations. Additionally, a key aspect of this research involves analyzing the chaotic behavior of the governing model. A perturbed version of the system is derived and then analyzed using chaos detection techniques such as power spectrum analysis, Poincaré return maps, and basin attractor visualization. The study of nonlinear dynamics reveals the system’s sensitivity to initial conditions and its dependence on time-decay effects. This indicates that the system exhibits chaotic behavior under perturbations, where even minor variations in the starting conditions can lead to drastically different outcomes as time progresses. Such behavior underscores the complexity and unpredictability inherent in the system, highlighting the importance of understanding its chaotic dynamics. This study evaluates the effectiveness of currently employed methodologies and elucidates the specific behaviors of the system’s nonlinear dynamics, thus providing new insights into the field of high-dimensional nonlinear scientific wave phenomena. The results demonstrate the effectiveness and versatility of the approach used to address complex nonlinear partial differential equations. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

Back to TopTop