Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = CO2-plume geothermal (CPG)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1975 KiB  
Proceeding Paper
Sensitivity of CO2 Flow in Production/Injection Wells in CPG (CO2 Plume Geothermal) Systems
by Sofianos Panagiotis Fotias and Vassilis Gaganis
Mater. Proc. 2023, 15(1), 95; https://doi.org/10.3390/materproc2023015095 - 19 Mar 2025
Viewed by 466
Abstract
Geothermal energy is typically produced from underground reservoirs using water as the working fluid to transfer heat energy to surface and eventually to the delivery point. CO2 has been proposed as an alternative working fluid due to its improved mobility, density and [...] Read more.
Geothermal energy is typically produced from underground reservoirs using water as the working fluid to transfer heat energy to surface and eventually to the delivery point. CO2 has been proposed as an alternative working fluid due to its improved mobility, density and its supercritical phase state, leading thus to so-called CPG (CO2 Plume Geothermal) systems. As a positive side effect, the injected CO2 mass circulation in the reservoir can be considered a CO2 storage mechanism, which, depending on the size of the porous medium, may account for few millions of CO2 tons. Moreover, the thermosiphon effect, owned to the significant change of fluid density between the injection (cold) and the production wells (hot) as well as to its change along the wells, significantly reduces the need for pumping, hence the operating costs. In this work, we setup a mathematical model that fully describes flow in the production/injection wells doublet as well as in the geothermal reservoir. Subsequently, the model is used to evaluate the sensitivity of the beneficial effects of circulating CO2 rather than water. Parameters such as reservoir properties, injection temperature and thermal effects, are tweaked to demonstrate the sensitivity of each one to the system performance. The results can be utilized as a guideline to the design of such systems and to the emphasis needed to be paid by the engineers. Full article
Show Figures

Figure 1

27 pages, 3303 KiB  
Review
Geothermal Solutions for Urban Energy Challenges: A Focus on CO2 Plume Geothermal Systems
by George Antoneas and Irene Koronaki
Energies 2024, 17(2), 294; https://doi.org/10.3390/en17020294 - 6 Jan 2024
Cited by 7 | Viewed by 2767
Abstract
The utilization of geological formations, distinguished by natural porosity and permeability and protected by low-permeability caprock, has emerged as an effective strategy for carbon dioxide (CO2) storage. This method significantly contributes to mitigating anthropogenic greenhouse gas emissions and addressing the challenges [...] Read more.
The utilization of geological formations, distinguished by natural porosity and permeability and protected by low-permeability caprock, has emerged as an effective strategy for carbon dioxide (CO2) storage. This method significantly contributes to mitigating anthropogenic greenhouse gas emissions and addressing the challenges of climate change. Recent research has unveiled the potential of CO2 to enhance geothermal heat energy extraction in geothermal reservoirs by acting as a subsurface heat exchange fluid. This review paper explores the viability of CO2 in augmenting geothermal heat energy extraction, comparing it to conventional water-based geothermal systems. Special emphasis is placed on CO2 plume geothermal (CPG) systems, characterized by rapid deployment and long-term utilization of geothermal energy resources. With the overarching objective of establishing net-zero energy communities, the analysis of such systems offers a comprehensive understanding of their features, providing a fresh perspective on extracted energy within the context of energy supply in integrated, sustainable energy in built systems. Notably, these systems demonstrate efficacy in meeting the power requirements of an energy community, spanning both distinct heating and electricity needs. However, the key challenge lies in selecting suitable locations. This scientific review aims to comprehend the characteristics of CPG under specific temperature and pressure conditions while optimizing subsurface permeability. This insight is pivotal for identifying future locations for CPG operations with the intent of powering small energy communities. Full article
(This article belongs to the Special Issue Thermal Assessment of Building Energy Systems: A Review approach)
Show Figures

Figure 1

7 pages, 1222 KiB  
Proceeding Paper
Optimizing Geothermal Energy Extraction in CO2 Plume Geothermal Systems
by Sofianos Panagiotis Fotias, Spyridon Bellas and Vassilis Gaganis
Mater. Proc. 2023, 15(1), 52; https://doi.org/10.3390/materproc2023015052 - 24 Nov 2023
Cited by 1 | Viewed by 1871
Abstract
CPG (CO2 Plume Geothermal) has recently emerged as a promising technology to combine the extraction of geothermal energy with underground CO2 storage, thus achieving double positive results. The idea is to inject CO2 in its supercritical form to create a [...] Read more.
CPG (CO2 Plume Geothermal) has recently emerged as a promising technology to combine the extraction of geothermal energy with underground CO2 storage, thus achieving double positive results. The idea is to inject CO2 in its supercritical form to create a plume and replace the reservoir brine, which is continuously circulated to transfer heat from the reservoir to surface facilities. Apart from the positive aspects of this technology, including the reduced energy to inject and lift the working fluid as well as its enhanced mobility in the reservoir and reduced environmental footprint, there are also negative issues that must be handled by adequately studying the geological field/reservoir and appropriately designing the production system. In this work, we present a finite volume numerical simulation that can study a geothermal reservoir from its geological origin to the dynamic simulation of CO2 injection and estimate the geothermal energy extraction. It is shown that the system performance is strongly related to the selected schedule, and optimizing it in conjunction with the related cost is of the utmost importance for the Final Investment Decision to be taken and for the viability of such multipurpose projects under a sustainable future. Full article
Show Figures

Figure 1

21 pages, 6212 KiB  
Article
Sensitivity of Reservoir and Operational Parameters on the Energy Extraction Performance of Combined CO2-EGR–CPG Systems
by Justin Ezekiel, Diya Kumbhat, Anozie Ebigbo, Benjamin M. Adams and Martin O. Saar
Energies 2021, 14(19), 6122; https://doi.org/10.3390/en14196122 - 26 Sep 2021
Cited by 18 | Viewed by 3158
Abstract
There is a potential for synergy effects in utilizing CO2 for both enhanced gas recovery (EGR) and geothermal energy extraction (CO2-plume geothermal, CPG) from natural gas reservoirs. In this study, we carried out reservoir simulations using TOUGH2 to evaluate the [...] Read more.
There is a potential for synergy effects in utilizing CO2 for both enhanced gas recovery (EGR) and geothermal energy extraction (CO2-plume geothermal, CPG) from natural gas reservoirs. In this study, we carried out reservoir simulations using TOUGH2 to evaluate the sensitivity of natural gas recovery, pressure buildup, and geothermal power generation performance of the combined CO2-EGR–CPG system to key reservoir and operational parameters. The reservoir parameters included horizontal permeability, permeability anisotropy, reservoir temperature, and pore-size-distribution index; while the operational parameters included wellbore diameter and ambient surface temperature. Using an example of a natural gas reservoir model, we also investigated the effects of different strategies of transitioning from the CO2-EGR stage to the CPG stage on the energy-recovery performance metrics and on the two-phase fluid-flow regime in the production well. The simulation results showed that overlapping the CO2-EGR and CPG stages, and having a relatively brief period of CO2 injection, but no production (which we called the CO2-plume establishment stage) achieved the best overall energy (natural gas and geothermal) recovery performance. Permeability anisotropy and reservoir temperature were the parameters that the natural gas recovery performance of the combined system was most sensitive to. The geothermal power generation performance was most sensitive to the reservoir temperature and the production wellbore diameter. The results of this study pave the way for future CPG-based geothermal power-generation optimization studies. For a CO2-EGR–CPG project, the results can be a guide in terms of the required accuracy of the reservoir parameters during exploration and data acquisition. Full article
(This article belongs to the Special Issue Energy Efficiency, Low Carbon Resources and Renewable Technology)
Show Figures

Figure 1

Back to TopTop