Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = CAT12 toolbox

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 648 KB  
Article
Associations Between Trail-Making Test Black and White Performance and Gray Matter Volume in Community-Dwelling Cognitively Healthy Adults Aged 40 to 80 Years
by Chanda Simfukwe, Seong Soo A. An and Young Chul Youn
J. Clin. Med. 2025, 14(12), 4041; https://doi.org/10.3390/jcm14124041 - 7 Jun 2025
Viewed by 1030
Abstract
Background/Objective: The Trail Making Test (TMT) is a widely used neuropsychological tool to assess processing speed (Part A) and executive function (Part B). However, the neuroanatomical substrates underlying its Black & White variant (TMT-B&W) and the influence of demographic factors remain poorly understood. [...] Read more.
Background/Objective: The Trail Making Test (TMT) is a widely used neuropsychological tool to assess processing speed (Part A) and executive function (Part B). However, the neuroanatomical substrates underlying its Black & White variant (TMT-B&W) and the influence of demographic factors remain poorly understood. This study aimed to identify gray matter (GM) correlates of TMT-B&W performance across unadjusted and covariate-adjusted models in cognitively healthy adults. Methods: In this cross-sectional study, 87 participants (40–80 years) underwent structural magnetic resonance imaging (MRI) and completed TMT-B&W. Whole-brain voxel-based morphometry (VBM) was conducted using FreeSurfer for preprocessing and Computational Anatomy Toolbox (CAT12)/Statistical Parametric Mapping (SPM12) for analysis. Two voxel-wise regression models (unadjusted and adjusted for age, education, gender, and total intracranial volume (TICV)) assessed GM associations with TMT-B&W-A-B performance. Statistical thresholds were voxel-level p < 0.001 (uncorrected) and cluster-level Family-Wise Error (FWE) correction (p < 0.001). Results: In unadjusted models, TMT-B&W-A performance correlated with GM reductions in the right orbitofrontal cortex (T = 42.64, equivk = 515.60, representing peak voxel level T-statistic and cluster size in voxels), while TMT-B&W-B linked to the right insular cortex (T = 50.65, equivk = 515.50). After adjustment, both tasks converged on the left thalamus (TMT-A: T = 8.05, equivk = 594; TMT-B: T = 8.11, equivk = 621), with TMT-B&W-B showing a denser thalamic cluster. Demographic covariates attenuated cortical associations, revealing thalamic integration as a shared mechanism. Conclusions: The thalamus emerges as a critical hub for TMT-B&W performance when accounting for demographic variation, while distinct cortical regions mediate task-specific demands in unadjusted models. These findings support the TMT-B&W as a practical, low-cost neurobehavioral marker of brain integrity in older populations. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

14 pages, 4201 KB  
Article
Heritability of Subcortical Grey Matter Structures
by David Strelnikov, Amirreza Alijanpourotaghsara, Marton Piroska, Laszlo Szalontai, Bianka Forgo, Zsofia Jokkel, Alíz Persely, Anita Hernyes, Lajos Rudolf Kozak, Adam Szabo, Pal Maurovich-Horvat, David Laszlo Tarnoki and Adam Domonkos Tarnoki
Medicina 2022, 58(11), 1687; https://doi.org/10.3390/medicina58111687 - 21 Nov 2022
Cited by 5 | Viewed by 4972
Abstract
Background and Objectives: Subcortical grey matter structures play essential roles in cognitive, affective, social, and motoric functions in humans. Their volume changes with age, and decreased volumes have been linked with many neuropsychiatric disorders. The aim of our study was to examine [...] Read more.
Background and Objectives: Subcortical grey matter structures play essential roles in cognitive, affective, social, and motoric functions in humans. Their volume changes with age, and decreased volumes have been linked with many neuropsychiatric disorders. The aim of our study was to examine the heritability of six subcortical brain volumes (the amygdala, caudate nucleus, pallidum, putamen, thalamus, and nucleus accumbens) and four general brain volumes (the total intra-cranial volume and the grey matter, white matter, and cerebrospinal fluid (CSF) volume) in twins. Materials and Methods: A total of 118 healthy adult twins from the Hungarian Twin Registry (86 monozygotic and 32 dizygotic; median age 50 ± 27 years) underwent brain magnetic resonance imaging. Two automated volumetry pipelines, Computational Anatomy Toolbox 12 (CAT12) and volBrain, were used to calculate the subcortical and general brain volumes from three-dimensional T1-weighted images. Age- and sex-adjusted monozygotic and dizygotic intra-pair correlations were calculated, and the univariate ACE model was applied. Pearson’s correlation test was used to compare the results obtained by the two pipelines. Results: The age- and sex-adjusted heritability estimates, using CAT12 for the amygdala, caudate nucleus, pallidum, putamen, and nucleus accumbens, were between 0.75 and 0.95. The thalamus volume was more strongly influenced by common environmental factors (C = 0.45−0.73). The heritability estimates, using volBrain, were between 0.69 and 0.92 for the nucleus accumbens, pallidum, putamen, right amygdala, and caudate nucleus. The left amygdala and thalamus were more strongly influenced by common environmental factors (C = 0.72−0.85). A strong correlation between CAT12 and volBrain (r = 0.74−0.94) was obtained for all volumes. Conclusions: The majority of examined subcortical volumes appeared to be strongly heritable. The thalamus was more strongly influenced by common environmental factors when investigated with both segmentation methods. Our results underline the importance of identifying the relevant genes responsible for variations in the subcortical structure volume and associated diseases. Full article
(This article belongs to the Special Issue Twin Studies and Imaging)
Show Figures

Figure 1

14 pages, 2551 KB  
Article
Surface-Based Cortical Measures in Multimodal Association Brain Regions Predict Chess Expertise
by Nicolò Trevisan, Assia Jaillard, Giulia Cattarinussi, Prisca De Roni and Fabio Sambataro
Brain Sci. 2022, 12(11), 1592; https://doi.org/10.3390/brainsci12111592 - 21 Nov 2022
Cited by 6 | Viewed by 3023
Abstract
The complex structure of the brain supports high-order cognition, which is crucial for mastering chess. Surface-based measures, including the fractional dimension (FD) and gyrification index (GI), may be more sensitive in detecting cortical changes relative to volumetric indexes. For this reason, structural magnetic [...] Read more.
The complex structure of the brain supports high-order cognition, which is crucial for mastering chess. Surface-based measures, including the fractional dimension (FD) and gyrification index (GI), may be more sensitive in detecting cortical changes relative to volumetric indexes. For this reason, structural magnetic resonance imaging data from 29 chess experts and 29 novice participants were analyzed using the CAT12 toolbox. FD and GI for each brain region were compared between the groups. A multivariate model was used to identify surface-based brain measures that can predict chess expertise. In chess experts, FD is increased in the left frontal operculum (p < 0.01), and this change correlates with the starting age of chess practice (ρ = −0.54, p < 0.01). FD is decreased in the right superior parietal lobule (p < 0.01). Chess expertise is predicted by the FD in a network of fronto-parieto-temporal regions and is associated with GI changes in the middle cingulate gyrus (p < 0.01) and the superior temporal sulcus (p < 0.01). Our findings add to the evidence that chess expertise is based on the complex properties of the brain surface of a network of transmodal association areas important for flexible high-level cognitive functions. Interestingly, these changes are associated with long-lasting practice, suggesting that neuroplastic effects develop over time. Full article
Show Figures

Figure 1

12 pages, 690 KB  
Article
Unraveling the Protective Effects of Cognitive Reserve on Cognition and Brain: A Cross-Sectional Study
by Dorota Szcześniak, Marta Lenart-Bugla, Błażej Misiak, Anna Zimny, Marek Sąsiadek, Katarzyna Połtyn-Zaradna, Katarzyna Zatońska, Tomasz Zatoński, Andrzej Szuba, Eric E. Smith, Salim Yusuf and Joanna Rymaszewska
Int. J. Environ. Res. Public Health 2022, 19(19), 12228; https://doi.org/10.3390/ijerph191912228 - 27 Sep 2022
Cited by 2 | Viewed by 3499
Abstract
This study aimed to investigate the hypothesis that brain maintenance expressed in white matter hyperintensities and brain reserves, defined as gray and white matter volumes, mediate the association between cognitive reserve (CR) and cognitive performance. A cross-sectional population-based observational study was conducted, and [...] Read more.
This study aimed to investigate the hypothesis that brain maintenance expressed in white matter hyperintensities and brain reserves, defined as gray and white matter volumes, mediate the association between cognitive reserve (CR) and cognitive performance. A cross-sectional population-based observational study was conducted, and the final study sample consisted of 763 participants (282 men and 481 women) with a mean age of 61.11 years (±9.0). Data from different categories were collected from study participants, such as demographic, lifestyle, medical, and psycho-social characteristics. All participants underwent a detailed psychometric evaluation (MoCA and DSST) followed by a brain MRI. Volumetric measurements of the total gray matter (GMvol), total white matter (WMvol), and white matter hyperintensities (WMHvol) were performed using the Computational Anatomy Toolbox 12 (CAT12) and Statistical Parametric Maps 12 (SPM12) based on 3D T1-weighted sequence. Significant direct and indirect effects of cognitive reserve on cognitive functioning were measured with both scales—the MoCA and DSST. In each mediation model, the volumes of WMH and GM were significant mediators for the association between cognitive reserve and cognitive performance. This study confirms the importance of strengthening the cognitive reserve in the course of life through potentially modifiable effects on both cognition and the brain. Full article
(This article belongs to the Topic Healthy, Safe and Active Aging)
Show Figures

Figure 1

17 pages, 4008 KB  
Article
Compounding Effects of Fluvial Flooding and Storm Tides on Coastal Flooding Risk in the Coastal-Estuarine Region of Southeastern China
by Weiwei Lu, Lihua Tang, Dawen Yang, Heng Wu and Zhiwu Liu
Atmosphere 2022, 13(2), 238; https://doi.org/10.3390/atmos13020238 - 30 Jan 2022
Cited by 18 | Viewed by 3633
Abstract
In coastal areas of southeastern China, multiple flood drivers such as river flow, precipitation and coastal water level can lead to compound flooding which is often much greater than flooding simulated by one flood driver in isolation. Bivariate probability distributions accounting for compound [...] Read more.
In coastal areas of southeastern China, multiple flood drivers such as river flow, precipitation and coastal water level can lead to compound flooding which is often much greater than flooding simulated by one flood driver in isolation. Bivariate probability distributions accounting for compound flooding from river discharge and sea level were constructed based on MvCAT (Multivariate Copula Analysis Toolbox) combined with goodness of fit tests in 15 coastal-estuarine regions of Southeastern China. Flood typing-based bivariate probability distributions considering multiple flood-generating mechanisms were also built. Our results indicated that the performance of flood typing-based bivariate distribution was not significantly better than the bivariate probability distribution in coastal-estuarine regions based on the Mann–Whitney U test; the compounding effects of river discharge and sea level had limited impact on bivariate return periods, but had greater impact on coastal flooding risk in terms of design values. Ignoring compounding effects of river discharge and sea level leads to significant underestimation of design values. The results suggest that the compounding effect of river discharge and sea level should be considered when calculating design values in coastal flood risk assessment. Full article
(This article belongs to the Special Issue Hydrological Responses under Climate Changes)
Show Figures

Figure 1

16 pages, 4034 KB  
Article
Clinically Applicable Quantitative Magnetic Resonance Morphologic Measurements of Grey Matter Changes in the Human Brain
by Tong Fu, Xenia Kobeleva, Paul Bronzlik, Patrick Nösel, Mete Dadak, Heinrich Lanfermann, Susanne Petri and Xiao-Qi Ding
Brain Sci. 2021, 11(1), 55; https://doi.org/10.3390/brainsci11010055 - 5 Jan 2021
Cited by 3 | Viewed by 2696
Abstract
(1) Purpose: Quantitative magnetic resonance imaging (qMRI) measurements can be used to sensitively estimate brain morphological alterations and may support clinical diagnosis of neurodegenerative diseases (ND). We aimed to establish a normative reference database for a clinical applicable quantitative MR morphologic measurement on [...] Read more.
(1) Purpose: Quantitative magnetic resonance imaging (qMRI) measurements can be used to sensitively estimate brain morphological alterations and may support clinical diagnosis of neurodegenerative diseases (ND). We aimed to establish a normative reference database for a clinical applicable quantitative MR morphologic measurement on neurodegenerative changes in patients; (2) Methods: Healthy subjects (HCs, n = 120) with an evenly distribution between 21 to 70 years and amyotrophic lateral sclerosis (ALS) patients (n = 11, mean age = 52.45 ± 6.80 years), as an example of ND patients, underwent magnetic resonance imaging (MRI) examinations under routine diagnostic conditions. Regional cortical thickness (rCTh) in 68 regions of interest (ROIs) and subcortical grey matter volume (SGMV) in 14 ROIs were determined from all subjects by using Computational Anatomy Toolbox. Those derived from HCs were analyzed to determine age-related differences and subsequently used as reference to estimate ALS-related alterations; (3) Results: In HCs, the rCTh (in 49/68 regions) and the SGMV (in 9/14 regions) in elderly subjects were less than those in younger subjects and exhibited negative linear correlations to age (p < 0.0007 for rCTh and p < 0.004 for SGMV). In comparison to age- and sex-matched HCs, the ALS patients revealed significant decreases of rCTh in eight ROIs, majorly located in frontal and temporal lobes; (4) Conclusion: The present study proves an overall grey matter decline with normal ageing as reported previously. The provided reference may be used for detection of grey matter alterations in neurodegenerative diseases that are not apparent in standard MR scans, indicating the potential of using qMRI as an add-on diagnostic tool in a clinical setting. Full article
(This article belongs to the Section Neurotechnology and Neuroimaging)
Show Figures

Figure 1

16 pages, 3417 KB  
Article
Cross-Frequency Power-Power Coupling Analysis: A Useful Cross-Frequency Measure to Classify ICA-Decomposed EEG
by Nattapong Thammasan and Makoto Miyakoshi
Sensors 2020, 20(24), 7040; https://doi.org/10.3390/s20247040 - 9 Dec 2020
Cited by 15 | Viewed by 6550
Abstract
Magneto-/Electro-encephalography (M/EEG) commonly uses (fast) Fourier transformation to compute power spectral density (PSD). However, the resulting PSD plot lacks temporal information, making interpretation sometimes equivocal. For example, consider two different PSDs: a central parietal EEG PSD with twin peaks at 10 Hz and [...] Read more.
Magneto-/Electro-encephalography (M/EEG) commonly uses (fast) Fourier transformation to compute power spectral density (PSD). However, the resulting PSD plot lacks temporal information, making interpretation sometimes equivocal. For example, consider two different PSDs: a central parietal EEG PSD with twin peaks at 10 Hz and 20 Hz and a central parietal PSD with twin peaks at 10 Hz and 50 Hz. We can assume the first PSD shows a mu rhythm and the second harmonic; however, the latter PSD likely shows an alpha peak and an independent line noise. Without prior knowledge, however, the PSD alone cannot distinguish between the two cases. To address this limitation of PSD, we propose using cross-frequency power–power coupling (PPC) as a post-processing of independent component (IC) analysis (ICA) to distinguish brain components from muscle and environmental artifact sources. We conclude that post-ICA PPC analysis could serve as a new data-driven EEG classifier in M/EEG studies. For the reader’s convenience, we offer a brief literature overview on the disparate use of PPC. The proposed cross-frequency power–power coupling analysis toolbox (PowPowCAT) is a free, open-source toolbox, which works as an EEGLAB extension. Full article
Show Figures

Figure 1

11 pages, 4709 KB  
Article
Mutated Channelrhodopsins with Increased Sodium and Calcium Permeability
by Xiaodong Duan, Georg Nagel and Shiqiang Gao
Appl. Sci. 2019, 9(4), 664; https://doi.org/10.3390/app9040664 - 15 Feb 2019
Cited by 27 | Viewed by 7338
Abstract
(1) Background: After the discovery and application of Chlamydomonas reinhardtii channelrhodopsins, the optogenetic toolbox has been greatly expanded with engineered and newly discovered natural channelrhodopsins. However, channelrhodopsins of higher Ca2+ conductance or more specific ion permeability are in demand. (2) Methods: In [...] Read more.
(1) Background: After the discovery and application of Chlamydomonas reinhardtii channelrhodopsins, the optogenetic toolbox has been greatly expanded with engineered and newly discovered natural channelrhodopsins. However, channelrhodopsins of higher Ca2+ conductance or more specific ion permeability are in demand. (2) Methods: In this study, we mutated the conserved aspartate of the transmembrane helix 4 (TM4) within Chronos and PsChR and compared them with published ChR2 aspartate mutants. (3) Results: We found that the ChR2 D156H mutant (XXM) showed enhanced Na+ and Ca2+ conductance, which was not noticed before, while the D156C mutation (XXL) influenced the Na+ and Ca2+ conductance only slightly. The aspartate to histidine and cysteine mutations of Chronos and PsChR also influenced their photocurrent, ion permeability, kinetics, and light sensitivity. Most interestingly, PsChR D139H showed a much-improved photocurrent, compared to wild type, and even higher Na+ selectivity to H+ than XXM. PsChR D139H also showed a strongly enhanced Ca2+ conductance, more than two-fold that of the CatCh. (4) Conclusions: We found that mutating the aspartate of the TM4 influences the ion selectivity of channelrhodopsins. With the large photocurrent and enhanced Na+ selectivity and Ca2+ conductance, XXM and PsChR D139H are promising powerful optogenetic tools, especially for Ca2+ manipulation. Full article
(This article belongs to the Special Issue The Advances and Applications of Optogenetics)
Show Figures

Figure 1

Back to TopTop