Clinically Applicable Quantitative Magnetic Resonance Morphologic Measurements of Grey Matter Changes in the Human Brain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Data Acquisition and Processing
2.3. Statistical Analysis
3. Results
3.1. Healthy Ageing Human
3.2. Patients with Amyotrophic Lateral Sclerosis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef]
- Scheltens, P.; Blennow, K.; Breteler, M.M.B.; De Strooper, B.; Frisoni, G.B.; Salloway, S.; Van Der Flier, W.M. Alzheimer’s disease. Lancet 2016, 388, 505–517. [Google Scholar] [CrossRef]
- Kiernan, M.C.; Vucic, S.; Cheah, B.C.; Turner, M.R.; Eisen, A.; Hardiman, O.; Burrell, J.R.; Zoing, M. Amyotrophic lateral sclerosis. Lancet 2011, 377, 942–955. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, Y. Recent Research Progress in and Future Perspective on Treatment of Parkinson’s Disease. Integr. Med. Int. 2014, 1, 67–79. [Google Scholar] [CrossRef]
- Desai, A.K.; Grossberg, G.T. Diagnosis and treatment of Alzheimer’s disease. Neurology 2005, 64, S34–S39. [Google Scholar] [CrossRef] [PubMed]
- Traynor, B.J.; Bruijn, L.; Conwit, R.; Beal, F.; O’Neill, G.; Fagan, S.C.; Cudkowicz, M.E. Neuroprotective agents for clinical trials in ALS: A systematic assessment. Neurology 2006, 67, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Aoki, M.; Tsuji, S.; Itoyama, Y.; Sobue, G.; Togo, M.; Hamada, C.; Tanaka, M.; Akimoto, M.; Nakamura, K.; et al. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: A randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2017, 16, 505–512. [Google Scholar] [CrossRef]
- Adler, C.H.; Beach, T.G.; Hentz, J.G.; Shill, H.A.; Caviness, J.N.; Driver-Dunckley, E.; Sabbagh, M.N.; Sue, L.I.; Jacobson, S.A.; Belden, C.M.; et al. Low clinical diagnostic accuracy of early vs advanced Parkinson disease: Clinicopathologic study. Neurology 2014, 83, 406–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludolph, A.C.; Drory, V.; Hardiman, O.; Nakano, I.; Ravits, J.; Robberecht, W.; Shefner, J.M.; WFN Research Group On ALS/MND. A revision of the El Escorial criteria-2015. Amyotroph. Lateral Scler. Front. Degener. 2015, 16, 291–292. [Google Scholar] [CrossRef]
- Turner, M.R.; Kiernan, M.C.; Leigh, P.N.; Talbot, K. Biomarkers in amyotrophic lateral sclerosis. Lancet Neurol. 2009, 8, 94–109. [Google Scholar] [CrossRef]
- Moreno-Jiménez, E.P.; Flor-García, M.; Terreros-Roncal, J.; Rábano, A.; Cafini, F.; Pallas-Bazarra, N.; Ávila, J.; Llorens-Martin, M. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat. Med. 2019, 25, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Mak, E.; Su, L.; Williams, G.B.; Firbank, M.J.; Lawson, R.A.; Yarnall, A.J.; Duncan, G.W.; Owen, A.M.; Khoo, T.K.; Brooks, D.J.; et al. Baseline and longitudinal grey matter changes in newly diagnosed Parkinson’s disease: ICICLE-PD study. Brain 2015, 138, 2974–2986. [Google Scholar] [CrossRef] [PubMed]
- Verstraete, E.; Veldink, J.H.; Hendrikse, J.; Schelhaas, H.J.; Heuvel, M.P.V.D.; Berg, L.H.V.D. Structural MRI reveals cortical thinning in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2011, 83, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Walhout, R.; Westeneng, H.-J.; Verstraete, E.; Hendrikse, J.; Veldink, J.H.; Heuvel, M.P.V.D.; Berg, L.H.V.D. Cortical thickness in ALS: Towards a marker for upper motor neuron involvement. J. Neurol. Neurosurg. Psychiatry 2014. [Google Scholar] [CrossRef] [PubMed]
- Donatelli, G.; Retico, A.; Ienco, E.C.; Cecchi, P.; Costagli, M.; Frosini, D.; Biagi, L.; Tosetti, M.; Siciliano, G.; Cosottini, M. Semiautomated Evaluation of the Primary Motor Cortex in Patients with Amyotrophic Lateral Sclerosis at 3T. Am. J. Neuroradiol. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mezzapesa, D.M.; D’Errico, E.; Tortelli, R.; Distaso, E.; Cortese, R.; Tursi, M.; Federico, F.; Zoccolella, S.; Logroscino, G.; Dicuonzo, F.; et al. Cortical Thinning and Clinical Heterogeneity in Amyotrophic Lateral Sclerosis. PLoS ONE 2013, 8, e80748. [Google Scholar] [CrossRef] [Green Version]
- Schuster, C.; Kasper, E.; Machts, J.; Bittner, D.; Kaufmann, J.; Benecke, R.; Teipel, S.; Vielhaber, S.; Prudlo, J. Focal thinning of the motor cortex mirrors clinical features of amyotrophic lateral sclerosis and their phenotypes: A neuroimaging study. J. Neurol. 2013, 260, 2856–2864. [Google Scholar] [CrossRef]
- Schuster, C.; Kasper, E.; Machts, J.; Bittner, D.; Kaufmann, J.; Benecke, R.; Teipel, S.; Vielhaber, S.; Prudlo, J. Longitudinal course of cortical thickness decline in amyotrophic lateral sclerosis. J. Neurol. 2014, 261, 1871–1880. [Google Scholar] [CrossRef]
- Brooks, B.R.; Miller, R.G.; Swash, M.; Munsat, T.L. El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 2000, 1, 293–299. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Tavares, V.; Prata, D.; Ferreira, H.A. Comparing SPM12 and CAT12 segmentation pipelines: A brain tissue volume-based age and Alzheimer’s disease study. J. Neurosci. Methods 2020, 334, 108565. [Google Scholar] [CrossRef] [PubMed]
- Farokhian, F.; Beheshti, I.; Sone, D.; Matsuda, H. Comparing CAT12 and VBM8 for Detecting Brain Morphological Abnormalities in Temporal Lobe Epilepsy. Front. Neurol. 2017, 8, 428. [Google Scholar] [CrossRef] [PubMed]
- Fellhauer, I.; Zöllner, F.G.; Schröder, J.; Degen, C.; Kong, L.; Essig, M.; Thomann, P.A.; Schad, L.R. Comparison of automated brain segmentation using a brain phantom and patients with early Alzheimer’s dementia or mild cognitive impairment. Psychiatry Res. Neuroimaging 2015, 233, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Righart, R.; Schmidt, P.; Dahnke, R.; Biberacher, V.; Beer, A.; Buck, D.; Hemmer, B.; Kirschke, J.S.; Zimmer, C.; Gaser, C.; et al. Volume versus surface-based cortical thickness measurements: A comparative study with healthy controls and multiple sclerosis patients. PLoS ONE 2017, 12, e0179590. [Google Scholar] [CrossRef] [Green Version]
- Seiger, R.; Ganger, S.; Kranz, G.S.; Hahn, A.; Lanzenberger, R. Cortical Thickness Estimations of FreeSurfer and the CAT12 Toolbox in Patients with Alzheimer’s Disease and Healthy Controls. J. Neuroimaging 2018, 28, 515–523. [Google Scholar] [CrossRef]
- Dahnke, R.; Yotter, R.A.; Gaser, C. Cortical thickness and central surface estimation. NeuroImage 2013, 65, 336–348. [Google Scholar] [CrossRef]
- Desikan, R.S.; Ségonne, F.; Fischl, B.; Quinn, B.T.; Dickerson, B.C.; Blacker, D.; Buckner, R.L.; Dale, A.M.; Maguire, R.P.; Hyman, B.T.; et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 2006, 31, 968–980. [Google Scholar] [CrossRef]
- Thambisetty, M.; Wan, J.; Carass, A.; An, Y.; Prince, J.L.; Resnick, S.M. Longitudinal changes in cortical thickness associated with normal aging. NeuroImage 2010, 52, 1215–1223. [Google Scholar] [CrossRef] [Green Version]
- Buckner, R.L.; Head, D.; Parker, J.; Fotenos, A.F.; Marcus, D.; Morris, J.C.; Snyder, A.Z. A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: Reliability and validation against manual measurement of total intracranial volume. NeuroImage 2004, 23, 724–738. [Google Scholar] [CrossRef]
- Caviness, V.S.; Lange, N.T.; Makris, N.; Herbert, M.R.; Kennedy, D.N. MRI-based brain volumetrics: Emergence of a developmental brain science. Brain Dev. 1999, 21, 289–295. [Google Scholar] [CrossRef]
- Glickman, M.E.; Rao, S.R.; Schultz, M.R. False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J. Clin. Epidemiol. 2014, 67, 850–857. [Google Scholar] [CrossRef]
- Lockhart, S.N.; DeCarli, C. Structural Imaging Measures of Brain Aging. Neuropsychol. Rev. 2014, 24, 271–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irwin, K.; Sexton, C.; Daniel, T.; Lawlor, B.; Naci, L. Healthy Aging and Dementia: Two Roads Diverging in Midlife? Front. Aging Neurosci. 2018, 10, 275. [Google Scholar] [CrossRef] [Green Version]
- Potvin, O.; Dieumegarde, L.; Duchesne, S. Normative morphometric data for cerebral cortical areas over the lifetime of the adult human brain. NeuroImage 2017, 156, 315–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, F.; Liu, Y.; Yuan, Z.; Gao, X.; He, Y.; Liu, X.; Cui, D.; Qi, R.; Chen, T.; Qiu, J. Age-related changes in cortical and subcortical structures of healthy adult brains: A surface-based morphometry study. J. Magn. Reson. Imaging 2019, 49, 152–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potvin, O.; Mouiha, A.; Dieumegarde, L.; Duchesne, S. Normative data for subcortical regional volumes over the lifetime of the adult human brain. NeuroImage 2016, 137, 9–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fjell, A.M.; Westlye, L.T.; Amlien, I.; Espeseth, T.; Reinvang, I.; Raz, N.; Agartz, I.; Salat, D.H.; Greve, D.N.; Fischl, B.; et al. High Consistency of Regional Cortical Thinning in Aging across Multiple Samples. Cereb. Cortex 2009, 19, 2001–2012. [Google Scholar] [CrossRef] [Green Version]
- Mezzapesa, D.M.; Ceccarelli, A.; Dicuonzo, F.; Carella, A.; De Caro, M.F.; Lopez, M.; Samarelli, V.; Livrea, P.; Simone, I.L. Whole-brain and regional brain atrophy in amyotrophic lateral sclerosis. Am. J. Neuroradiol. 2007, 28, 255–259. [Google Scholar]
- Bede, P.; Bokde, A.L.; Byrne, S.; Elamin, M.; McLaughlin, R.L.; Kenna, K.; Fagan, A.J.; Pender, N.; Bradley, D.G.; Hardiman, O. Multiparametric MRI study of ALS stratified for the C9orf72 genotype. Neurology 2013, 81, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Westeneng, H.-J.; Verstraete, E.; Walhout, R.; Schmidt, R.; Hendrikse, J.; Veldink, J.H.; Heuvel, M.P.V.D.; Berg, L.H.V.D. Subcortical structures in amyotrophic lateral sclerosis. Neurobiol. Aging 2015, 36, 1075–1082. [Google Scholar] [CrossRef]
- Abdulla, S.; Machts, J.; Kaufmann, J.; Patrick, K.; Kollewe, K.; Dengler, R.; Heinze, H.-J.; Petri, S.; Vielhaber, S.; Nestor, P.J. Hippocampal degeneration in patients with amyotrophic lateral sclerosis. Neurobiol. Aging 2014, 35, 2639–2645. [Google Scholar] [CrossRef] [PubMed]
- Bede, P.; Omer, T.; Finegan, E.; Chipika, R.H.; Iyer, P.M.; Doherty, M.A.; Vajda, A.; Pender, N.; McLaughlin, R.L.; Hutchinson, S.; et al. Connectivity-based characterisation of subcortical grey matter pathology in frontotemporal dementia and ALS: A multimodal neuroimaging study. Brain Imaging Behav. 2018, 12, 1696–1707. [Google Scholar] [CrossRef] [PubMed]
ROIs | Left Hemisphere (N = 120) | Right Hemisphere (N = 120) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r | p | Intercept | Slope | Variation α | r | p | Intercept | Slope | Variation α | |||||
Mean | SE | Mean (×10−2) | SE (×10−2) | % Per Decade | Mean | SE | Mean (×10−2) | SE (×10−2) | % Per Decade | |||||
Frontal | ||||||||||||||
Caudal anterior cingulate | −0.292 * | 0.0012 | 2.991 | 0.090 | −0.643 | 0.194 | −2.206 | −0.242 * | 0.0077 | 2.767 | 0.068 | −0.399 | 0.147 | −1.457 |
Caudal middle frontal | −0.448 ** | 0.0000 | 2.945 | 0.037 | −0.432 | 0.080 | −1.483 | −0.428 ** | 0.0000 | 3.001 | 0.040 | −0.438 | 0.085 | −1.475 |
Lateral orbitofrontal | −0.441 ** | 0.0000 | 3.277 | 0.043 | −0.497 | 0.093 | −1.535 | −0.444 ** | 0.0000 | 3.145 | 0.039 | −0.448 | 0.083 | −1.439 |
Medial orbitofrontal | −0.343 ** | 0.0001 | 2.751 | 0.039 | −0.332 | 0.084 | −1.213 | −0.393 ** | 0.0000 | 2.761 | 0.035 | −0.346 | 0.075 | −1.261 |
Paracentral | −0.479 ** | 0.0000 | 2.664 | 0.037 | −0.467 | 0.079 | −1.783 | −0.452 ** | 0.0000 | 2.694 | 0.036 | −0.431 | 0.078 | −1.622 |
Pars opercularis | −0.496 ** | 0.0000 | 3.147 | 0.039 | −0.524 | 0.084 | −1.691 | −0.346 ** | 0.0001 | 3.090 | 0.046 | −0.396 | 0.099 | −1.291 |
Pars orbitalis | −0.417 ** | 0.0000 | 3.393 | 0.050 | −0.542 | 0.109 | −1.620 | −0.398 ** | 0.0000 | 3.328 | 0.048 | −0.492 | 0.104 | −1.495 |
Pars triangularis | −0.464 ** | 0.0000 | 3.106 | 0.042 | −0.521 | 0.091 | −1.704 | −0.516 ** | 0.0000 | 3.091 | 0.040 | −0.566 | 0.086 | −1.866 |
Precentral | −0.631 ** | 0.0000 | 2.912 | 0.037 | −0.700 | 0.079 | −2.481 | −0.505 ** | 0.0000 | 2.892 | 0.037 | −0.507 | 0.080 | −1.784 |
Rostral anterior cingulate | −0.311 ** | 0.0005 | 3.091 | 0.056 | −0.430 | 0.121 | −1.404 | −0.21 6* | 0.0176 | 3.035 | 0.066 | −0.343 | 0.142 | −1.134 |
Rostral middle frontal | −0.448 ** | 0.0000 | 2.878 | 0.031 | −0.363 | 0.067 | −1.270 | −0.510 ** | 0.0000 | 2.915 | 0.030 | −0.417 | 0.065 | −1.445 |
Superior frontal | −0.583 ** | 0.0000 | 3.223 | 0.035 | −0.588 | 0.075 | −1.859 | −0.576 ** | 0.0000 | 3.263 | 0.036 | −0.598 | 0.078 | −1.868 |
Frontal pole | −0.228 * | 0.0123 | 3.169 | 0.070 | −0.385 | 0.151 | −1.222 | −0.157 | 0.0856 | |||||
Occipital | ||||||||||||||
Cuneus | −0.377 ** | 0.0000 | 2.213 | 0.037 | −0.352 | 0.080 | −1.613 | −0.319 ** | 0.0004 | 2.191 | 0.042 | −0.328 | 0.090 | −1.515 |
Lateral occipital | −0.265 * | 0.0035 | 2.462 | 0.041 | −0.266 | 0.089 | −1.083 | −0.205 * | 0.0250 | 2.378 | 0.043 | −0.210 | 0.093 | −0.882 |
Lingual | −0.545 ** | 0.0000 | 2.359 | 0.032 | −0.488 | 0.069 | −2.120 | −0.459 ** | 0.0000 | 2.296 | 0.034 | −0.414 | 0.074 | −1.837 |
Pericalcarine | −0.488 ** | 0.0000 | 2.048 | 0.040 | −0.526 | 0.087 | −2.661 | −0.397 ** | 0.0000 | 2.017 | 0.041 | −0.412 | 0.088 | −2.091 |
Parietal | ||||||||||||||
Inferior parietal | −0.309 ** | 0.0006 | 2.771 | 0.035 | −0.266 | 0.075 | −0.960 | −0.294 * | 0.0011 | 2.761 | 0.037 | −0.265 | 0.079 | −0.960 |
Isthmus cingulate | −0.233 * | 0.0103 | 2.572 | 0.061 | −0.344 | 0.132 | −1.348 | −0.224 * | 0.0138 | 2.721 | 0.056 | −0.300 | 0.120 | −1.106 |
Postcentral | −0.594 ** | 0.0000 | 2.504 | 0.033 | −0.573 | 0.071 | −2.356 | −0.518 ** | 0.0000 | 2.589 | 0.034 | −0.489 | 0.074 | −1.927 |
Posterior cingulate | −0.409 ** | 0.0000 | 2.658 | 0.040 | −0.415 | 0.085 | −1.582 | −0.393 ** | 0.0000 | 2.599 | 0.032 | −0.316 | 0.068 | −1.223 |
Precuneus | −0.279 * | 0.0020 | 2.654 | 0.039 | −0.262 | 0.083 | −0.988 | −0.324 ** | 0.0003 | 2.654 | 0.034 | −0.275 | 0.074 | −1.038 |
Superior parietal | −0.328 ** | 0.0003 | 2.445 | 0.028 | −0.225 | 0.060 | −0.920 | −0.332 ** | 0.0002 | 2.493 | 0.031 | −0.254 | 0.067 | −1.020 |
Supramarginal | −0.462 ** | 0.0000 | 2.856 | 0.038 | −0.458 | 0.081 | −1.626 | −0.374 ** | 0.0000 | 2.898 | 0.038 | −0.355 | 0.081 | −1.232 |
Temporal | ||||||||||||||
Banks sts | −0.317 ** | 0.0004 | 2.905 | 0.048 | −0.378 | 0.104 | −1.311 | −0.166 | 0.0702 | |||||
Entorhinal | −0.305 * | 0.0007 | 4.462 | 0.120 | −0.901 | 0.259 | −2.066 | −0.203 * | 0.0259 | 4.231 | 0.134 | −0.651 | 0.288 | −1.558 |
Fusiform | −0.425 ** | 0.0000 | 3.098 | 0.046 | −0.504 | 0.099 | −1.651 | −0.500 ** | 0.0000 | 3.133 | 0.039 | −0.528 | 0.084 | −1.712 |
Inferior temporal | −0.346 ** | 0.0001 | 3.272 | 0.045 | −0.392 | 0.098 | −1.204 | −0.344 ** | 0.0001 | 3.269 | 0.043 | −0.368 | 0.092 | −1.130 |
Middle temporal | −0.532 ** | 0.0000 | 3.526 | 0.042 | −0.623 | 0.091 | −1.798 | −0.476 ** | 0.0000 | 3.492 | 0.043 | −0.542 | 0.092 | −1.572 |
Parahippocampal | −0.325 ** | 0.0003 | 2.927 | 0.050 | −0.403 | 0.108 | −1.390 | −0.234 * | 0.0100 | 2.880 | 0.064 | −0.360 | 0.138 | −1.258 |
Superior temporal | −0.511 ** | 0.0000 | 3.309 | 0.046 | −0.639 | 0.099 | −1.972 | −0.447 ** | 0.0000 | 3.374 | 0.053 | −0.615 | 0.113 | −1.857 |
Temporal pole | −0.264 * | 0.0035 | 4.474 | 0.109 | −0.702 | 0.236 | −1.590 | −0.027 | 0.7686 | |||||
Transverse temporal | −0.609 ** | 0.0000 | 2.840 | 0.055 | −0.992 | 0.119 | −3.694 | −0.615 ** | 0.0000 | 2.931 | 0.058 | −1.053 | 0.124 | −3.809 |
Insula | −0.055 | 0.5500 | −0.125 | 0.1727 |
ROIs | N | r | p | Intercept | Slope | Variation α | ||
---|---|---|---|---|---|---|---|---|
Mean | SE | Mean (×10−2) | SE (×10−2) | % per decade | ||||
L_Accumbens area | 120 | −0.531 ** | 0.0000 | 0.328 | 0.009 | −0.126 | 0.018 | −4.101 |
R_Accumbens area | 120 | −0.484 ** | 0.0000 | 0.340 | 0.008 | −0.103 | 0.017 | −3.176 |
L_Amygdala | 120 | −0.227 * | 0.0126 | 0.712 | 0.018 | −0.099 | 0.039 | −1.397 |
R_Amygdala | 120 | −0.324 ** | 0.0003 | 0.652 | 0.016 | −0.130 | 0.035 | −2.038 |
L_Caudate | 120 | −0.530 ** | 0.0000 | 2.267 | 0.055 | −0.809 | 0.119 | −3.780 |
R_Caudate | 120 | −0.530 ** | 0.0000 | 2.220 | 0.057 | −0.840 | 0.124 | −4.029 |
L_Hippocampus | 120 | −0.390 ** | 0.0000 | 2.447 | 0.051 | −0.503 | 0.109 | −2.105 |
R_Hippocampus | 120 | −0.427 ** | 0.0000 | 2.613 | 0.059 | −0.653 | 0.127 | −2.585 |
L_Pallidum | 120 | 0.092 | 0.3154 | |||||
R_Pallidum | 120 | 0.151 | 0.0991 | |||||
L_Putamen | 120 | −0.452 ** | 0.0000 | 2.854 | 0.066 | −0.783 | 0.142 | −2.853 |
R_Putamen | 120 | −0.405 ** | 0.0000 | 2.689 | 0.062 | −0.643 | 0.134 | −2.467 |
Female_L_thalamus proper | 61 | −0.198 | 0.1267 | |||||
Female_R_thalamus proper | 61 | −0.210 | 0.1046 | |||||
Male_L_thalamus proper | 59 | −0.184 | 0.1632 | |||||
Male_R_thalamus proper | 59 | −0.321 * | 0.0131 | 3.862 | 0.102 | −0.576 | 0.225 | −1.509 |
ALS Patients | Age- and Sex-Matched Health Controls | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Number | Sex | Age (Years) | Time between First Symptom and MRI (Months) | MoCA | Onset | Medication | Diagnosis According to Revised El Escorial Criteria | Sex | Age (Years) | DemTect |
1 | female | 58 | 5 | 28 | spinal | No medication | Probable ALS | female | 59 | 14 |
2 | male | 39 | 6.5 | 28 | spinal | No medication | Probable ALS | male | 40 | 18 |
3 | male | 57 | 51 | 29 | spinal | No medication | Probable ALS | male | 55 | 18 |
4 | female | 56 | 16 | 30 | spinal | Cymbalta, Tamsulosin | Definite ALS | female | 57 | 18 |
5 | female | 40 | 22 | 30 | spinal | Citalopram, L-Thyroxin | Definite ALS | female | 42 | 18 |
6 | male | 51 | Unknown | Unknown | spinal | Unknown | Definite ALS | male | 52 | 18 |
7 | male | 54 | 6 | 22 | spinal | No medication | Definite ALS | male | 52 | 17 |
8 | male | 56 | 14 | 28 | spinal | Metformin, Enalapril, Bisoprolol | Definite ALS | male | 58 | 17 |
9 | male | 54 | Unknown | Unknown | bulbar | Unknown | Definite ALS (with pseudobulbar paralysis) | male | 54 | 18 |
10 | male | 53 | 18 | 23 | spinal | No medication | Possible ALS | male | 52 | 18 |
11 | male | 59 | Unknown | Unknown | spinal | Unknown | Definite ALS (with motor neuron disease) | male | 60 | 18 |
ROIs | Left Hemisphere | Right Hemisphere | ||||||
---|---|---|---|---|---|---|---|---|
ALS Patients (n = 11) | Age- and Sex-Matched HCs (n = 11) | p (Wilcoxon Test) | Rel. Diff (%) # | ALS Patients (n = 11) | Age- and Sex-Matched HCs (n = 11) | p (Wilcoxon Test) | Rel. Diff (%) # | |
rCTh (mm) | ||||||||
Frontal | ||||||||
Caudal anterior cingulate | 2.40 ± 0.39 | 2.61 ± 0.22 | 0.175 | 2.34 ± 0.26 | 2.52 ± 0.15 | 0.067 | ||
Caudal middle frontal | 2.62 ± 0.13 | 2.64 ± 0.12 | 0.331 | 2.71 ± 0.16 | 2.67 ± 0.10 | 0.520 | ||
Lateral orbitofrontal | 2.88 ± 0.14 | 2.95 ± 0.15 | 0.278 | 2.81 ± 0.11 | 2.88 ± 0.10 | 0.123 | ||
Medial orbitofrontal | 2.41 ± 0.12 | 2.56 ± 0.10 | 0.007 * | −5.859 | 2.43 ± 0.14 | 2.55 ± 0.08 | 0.083 | |
Paracentral | 2.33 ± 0.19 | 2.41 ± 0.23 | 0.123 | 2.36 ± 0.17 | 2.48 ± 0.14 | 0.019 * | −4.839 | |
Pars opercularis | 2.73 ± 0.11 | 2.78 ± 0.08 | 0.206 | 2.75 ± 0.13 | 2.83 ± 0.13 | 0.147 | ||
Pars orbitalis | 3.01 ± 0.16 | 3.05 ± 0.14 | 0.638 | 2.95 ± 0.15 | 3.03 ± 0.10 | 0.240 | ||
Pars triangularis | 2.72 ± 0.12 | 2.76 ± 0.15 | 0.520 | 2.68 ± 0.10 | 2.73 ± 0.15 | 0.831 | ||
Precentral | 2.42 ± 0.13 | 2.51 ± 0.11 | 0.032 * | −3.054 | 2.49 ± 0.15 | 2.60 ± 0.08 | 0.042 * | −4.231 |
Rostral anterior cingulate | 2.66 ± 0.20 | 2.77 ± 0.22 | 0.240 | 2.68 ± 0.27 | 2.79 ± 0.19 | 0.577 | ||
Rostral middle frontal | 2.59 ± 0.10 | 2.63 ± 0.08 | 0.365 | 2.61 ± 0.11 | 2.65 ± 0.06 | 0.413 | ||
Superior frontal | 2.77 ± 0.15 | 2.85 ± 0.11 | 0.102 | 2.82 ± 0.17 | 2.89 ± 0.12 | 0.240 | ||
Frontal pole | 2.91 ± 0.25 | 2.88 ± 0.19 | 0.700 | 2.98 ± 0.21 | 3.06 ± 0.21 | 0.520 | ||
Occipital | ||||||||
Cuneus | 1.89 ± 0.13 | 1.97 ± 0.15 | 0.123 | 1.89 ± 0.13 | 1.96 ± 0.16 | 0.465 | ||
Lateral occipital | 2.21 ± 0.14 | 2.28 ± 0.09 | 0.278 | 2.15 ± 0.13 | 2.24 ± 0.09 | 0.175 | ||
Lingual | 1.97 ± 0.11 | 2.07 ± 0.10 | 0.123 | 1.97 ± 0.17 | 2.07 ± 0.09 | 0.320 | ||
Pericalcarine | 1.66 ± 0.11 | 1.72 ± 0.17 | 0.365 | 1.68 ± 0.14 | 1.78 ± 0.16 | 0.147 | ||
Parietal | ||||||||
Inferior parietal | 2.56 ± 0.15 | 2.55 ± 0.10 | 1.000 | 2.51 ± 0.13 | 2.54 ± 0.09 | 0.311 | ||
Isthmus cingulate | 2.26 ± 0.19 | 2.30 ± 0.21 | 0.898 | 2.10 ± 0.23 | 2.47 ± 0.20 | 0.638 | ||
Postcentral | 2.12 ± 0.14 | 2.16 ± 0.08 | 0.365 | 2.21 ± 0.13 | 2.29 ± 0.09 | 0.175 | ||
Posterior cingulate | 2.30 ± 0.14 | 2.42 ± 0.17 | 0.102 | 2.34 ± 0.12 | 2.43 ± 0.13 | 0.042 * | −3.704 | |
Precuneus | 2.35 ± 0.15 | 2.44 ± 0.11 | 0.147 | 2.31 ± 0.20 | 2.43 ± 0.13 | 0.102 | ||
Superior parietal | 2.26 ± 0.14 | 2.26 ± 0.09 | 0.966 | 2.26 ± 0.14 | 2.31 ± 0.09 | 0.206 | ||
Supramarginal | 2.51 ± 0.13 | 2.52 ± 0.08 | 0.966 | 2.62 ± 0.13 | 2.62 ± 0.12 | 0.898 | ||
Temporal | ||||||||
Banks sts | 2.60 ± 0.13 | 2.62 ± 0.13 | 0.520 | 2.63 ± 0.14 | 2.66 ± 0.15 | 1.000 | ||
Entorhinal | 4.04 ± 0.36 | 4.10 ± 0.25 | 0.966 | 3.89 ± 0.44 | 4.08 ± 0.22 | 0.520 | ||
Fusiform | 2.53 ± 0.16 | 2.76 ± 0.12 | 0.001 ** | −8.333 | 2.56 ± 0.18 | 2.85 ± 0.14 | 0.002 ** | −10.175 |
Inferior temporal | 2.79 ± 0.15 | 3.00 ± 0.11 | 0.007 ** | −7.000 | 2.84 ± 0.14 | 3.04 ± 0.15 | 0.003 ** | −6.579 |
Middle temporal | 3.07 ± 0.13 | 3.16 ± 0.13 | 0.019 ** | −2.848 | 3.11 ± 0.21 | 3.18 ± 0.12 | 0.175 | |
Parahippocampal | 2.52 ± 0.13 | 2.69 ± 0.20 | 0.019 ** | −6.320 | 2.54 ± 0.17 | 2.64 ± 0.17 | 0.240 | |
Superior temporal | 2.79 ± 0.18 | 2.97 ± 0.15 | 0.014 ** | −6.061 | 2.87 ± 0.24 | 3.07 ± 0.13 | 0.042 * | −6.515 |
Temporal pole | 3.72 ± 0.33 | 4.14 ± 0.36 | 0.032 * | −10.145 | 3.91 ± 0.41 | 4.20 ± 0.37 | 0.175 | |
Transverse temporal | 2.11 ± 0.22 | 2.27 ± 0.21 | 0.067 | 2.23 ± 0.22 | 2.32 ± 0.20 | 0.365 | ||
Insula | 3.23 ± 0.20 | 3.43 ± 0.10 | 0.054 | 3.26 ± 0.26 | 3.55 ± 0.15 | 0.014 ** | −8.169 | |
relative SGMV § | ||||||||
Accumbens | 0.25 ± 0.04 | 0.27 ± 0.03 | 0.413 | 0.27 ± 0.04 | 0.29 ± 0.02 | 0.638 | ||
Amygdala | 0.61 ± 0.07 | 0.67 ± 0.05 | 0.054 | 0.53 ± 0.06 | 0.60 ± 0.05 | 0.102 | ||
Caudate | 1.75 ± 0.23 | 1.76 ± 0.17 | 0.966 | 1.68 ± 0.24 | 1.72 ± 0.18 | 0.831 | ||
Hippocampus | 2.14 ± 0.25 | 2.23 ± 0.15 | 0.520 | 2.18 ± 0.26 | 2.30 ± 0.19 | 0.638 | ||
Pallidum | 0.18 ± 0.07 | 0.14 ± 0.03 | 0.320 | 0.18 ± 0.06 | 0.13 ± 0.04 | 0.147 | ||
Putamen | 2.23 ± 0.26 | 2.47 ± 0.20 | 0.083 | 2.21 ± 0.30 | 2.33 ± 0.16 | 0.240 | ||
Thalamus proper | 3.50 ± 0.45 | 3.71 ± 0.32 | 0.240 | 3.32 ± 0.53 | 3.58 ± 0.31 | 0.240 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, T.; Kobeleva, X.; Bronzlik, P.; Nösel, P.; Dadak, M.; Lanfermann, H.; Petri, S.; Ding, X.-Q. Clinically Applicable Quantitative Magnetic Resonance Morphologic Measurements of Grey Matter Changes in the Human Brain. Brain Sci. 2021, 11, 55. https://doi.org/10.3390/brainsci11010055
Fu T, Kobeleva X, Bronzlik P, Nösel P, Dadak M, Lanfermann H, Petri S, Ding X-Q. Clinically Applicable Quantitative Magnetic Resonance Morphologic Measurements of Grey Matter Changes in the Human Brain. Brain Sciences. 2021; 11(1):55. https://doi.org/10.3390/brainsci11010055
Chicago/Turabian StyleFu, Tong, Xenia Kobeleva, Paul Bronzlik, Patrick Nösel, Mete Dadak, Heinrich Lanfermann, Susanne Petri, and Xiao-Qi Ding. 2021. "Clinically Applicable Quantitative Magnetic Resonance Morphologic Measurements of Grey Matter Changes in the Human Brain" Brain Sciences 11, no. 1: 55. https://doi.org/10.3390/brainsci11010055
APA StyleFu, T., Kobeleva, X., Bronzlik, P., Nösel, P., Dadak, M., Lanfermann, H., Petri, S., & Ding, X.-Q. (2021). Clinically Applicable Quantitative Magnetic Resonance Morphologic Measurements of Grey Matter Changes in the Human Brain. Brain Sciences, 11(1), 55. https://doi.org/10.3390/brainsci11010055