Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Brookhart-type catalyst

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2177 KB  
Article
Nickel-Catalyzed Ethylene Copolymerization with Vinylalkoxysilanes: A Computational Study
by Zhihui Song, Rong Gao, Changjiang Wu, Qingqiang Gou, Gang Zheng, Junjie Liu, Shifang Yang and Huasheng Feng
Polymers 2024, 16(6), 762; https://doi.org/10.3390/polym16060762 - 10 Mar 2024
Cited by 2 | Viewed by 2372
Abstract
Since the discovery of α-diimine catalysts in 1995, an extensive series of Brookhart-type complexes have shown their excellence in catalyzing ethylene polymerizations with remarkable activity and a high molecular weight. However, although this class of palladium complexes has proven proficiency in catalyzing ethylene [...] Read more.
Since the discovery of α-diimine catalysts in 1995, an extensive series of Brookhart-type complexes have shown their excellence in catalyzing ethylene polymerizations with remarkable activity and a high molecular weight. However, although this class of palladium complexes has proven proficiency in catalyzing ethylene copolymerization with various polar monomers, the α-diimine nickel catalysts have generally exhibited a much worse performance in these copolymerizations compared to their palladium counterparts. Recently, Brookhart et al. reported a notable exception, demonstrating that α-diimine nickel catalysts could catalyze the ethylene copolymerization with some vinylalkoxysilanes effectively, producing functionalized polyethylene incorporating trialkoxysilane (-Si(OR)3) groups. This breakthrough is significant since Pd-catalyzed copolymerizations are commercially less usable due to the high cost of palladium. Thus, the utilization of Ni, given its abundance in raw materials and cost-effectiveness, is a landmark in ethylene/polar vinyl monomer copolymerization. Inspired by these findings, we used density functional theory (DFT) calculations to investigate the mechanistic study of ethylene copolymerization with vinyltrimethoxysilane (VTMoS) catalyzed by Brookhart-type nickel catalysts, aiming to elucidate the molecular-level understanding of this unique reaction. Initially, the nickel complexes and cationic active species were optimized through DFT calculations. Subsequently, we explored the mechanisms including the chain initiation, chain propagation, and chain termination of ethylene homopolymerization and copolymerization catalyzed by Brookhart-type complexes. Finally, we conducted an energetic analysis of both the in-chain and chain-end of silane enchainment. It was found that chain initiation is the dominant step in the ethylene homopolymerization catalyzed by the α-diimine Ni complex. The 1,2- and 2,1-insertion of vinylalkoxysilane exhibit similar barriers, explaining the fact that both five-membered and four-membered chelates were identified experimentally. After the VTMoS insertion, the barriers of ethylene reinsertion become higher, indicating that this step is the rate-determining step, which could be attributed to the steric hindrance between the incoming ethylene and the bulky silane substrate. We have also reported the energetic analysis of the distribution of polar substrates. The dominant pathway of chain-end -Si(OR)3 incorporation is suggested as chain-walking → ring-opening → ethylene insertion, and the preference of chain-end -Si(OR)3 incorporation is primarily attributed to the steric repulsion between the pre-inserted silane group and the incoming ethylene molecule, reducing the likelihood of in-chain incorporation. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

13 pages, 2269 KB  
Article
New Ni(II)-Ni(II) Dinuclear Complex, a Resting State of the (α-diimine)NiBr2/AlMe3 Catalyst System for Ethylene Polymerization
by Igor E. Soshnikov, Nina V. Semikolenova, Anna A. Bryliakova, Artem A. Antonov, Konstantin P. Bryliakov and Evgenii P. Talsi
Catalysts 2023, 13(2), 333; https://doi.org/10.3390/catal13020333 - 2 Feb 2023
Cited by 1 | Viewed by 3102
Abstract
A novel room-temperature stable diamagnetic nickel complex 2 was detected upon activation of Brookhart-type ethylene polymerization pre-catalyst LNiBr2 (1, L = 1,4-bis-2,4,6-trimethylphenyl-2,3-dimethyl-1,4-diazabuta-1,3-diene) with AlMe3. Using in situ 1H, 2H, and 13C NMR spectroscopy, as well [...] Read more.
A novel room-temperature stable diamagnetic nickel complex 2 was detected upon activation of Brookhart-type ethylene polymerization pre-catalyst LNiBr2 (1, L = 1,4-bis-2,4,6-trimethylphenyl-2,3-dimethyl-1,4-diazabuta-1,3-diene) with AlMe3. Using in situ 1H, 2H, and 13C NMR spectroscopy, as well as DFT calculations, this species has been identified as an antiferromagnetically coupled homodinuclear complex [LNiII(μ-Me)(μ-CH2)NiIIL]+Br. Its behavior in the reaction solution is characteristic of the resting state of nickel catalyzed ethylene polymerization. Full article
(This article belongs to the Special Issue Mechanism/Kinetic Modeling Study of Catalytic Reactions)
Show Figures

Graphical abstract

10 pages, 3256 KB  
Article
Multivariate Linear Regression Models to Predict Monomer Poisoning Effect in Ethylene/Polar Monomer Copolymerization Catalyzed by Late Transition Metals
by Wei Zhao, Zhihao Liu, Yanan Zhao, Yi Luo and Shengbao He
Inorganics 2022, 10(2), 26; https://doi.org/10.3390/inorganics10020026 - 21 Feb 2022
Cited by 7 | Viewed by 3204
Abstract
This study combined density functional theory (DFT) calculations and multivariate linear regression (MLR) to analyze the monomer poisoning effect in ethylene/polar monomer copolymerization catalyzed by the Brookhart-type catalysts. The calculation results showed that the poisoning effect of polar monomers with relatively electron-deficient functional [...] Read more.
This study combined density functional theory (DFT) calculations and multivariate linear regression (MLR) to analyze the monomer poisoning effect in ethylene/polar monomer copolymerization catalyzed by the Brookhart-type catalysts. The calculation results showed that the poisoning effect of polar monomers with relatively electron-deficient functional groups is weaker, such as ethers, and halogens. On the contrary, polar monomers with electron-rich functional groups (carbonyl, carboxyl, and acyl groups) exert a stronger poisoning effect. In addition, three descriptors that significantly affect the poisoning effect have been proposed on the basis of the multiple linear regression model, viz., the chemical shift of the vinyl carbon atom and heteroatom of polar monomer as well as the metal-X distance in the σ-coordination structure. It is expected that these models could guide the development of efficient catalytic copolymerization system in this field. Full article
(This article belongs to the Special Issue Cornerstones in Contemporary Inorganic Chemistry)
Show Figures

Figure 1

Back to TopTop