Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = BmArgRS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 6712 KiB  
Article
Allogeneic Mesenchymal Stromal Cells as a Global Pediatric Prospective Approach in the Treatment of Respiratory Failure Associated with Surfactant Protein C Dysfunction
by Gloria Pelizzo, Maria Antonietta Avanzini, Stefania Croce, Anna Mandelli, Elisa Lenta, Andrea Farolfi, Chiara Valsecchi, Salvatore Zirpoli, Giulia Lanfranchi, Eleonora Durante, Elena Zoia, Gianvincenzo Zuccotti and Valeria Calcaterra
Children 2023, 10(1), 162; https://doi.org/10.3390/children10010162 - 14 Jan 2023
Cited by 2 | Viewed by 2178
Abstract
Mesenchymal stromal cells (MSCs) have been proposed as a new therapeutic strategy to treat congenital and acquired respiratory system diseases. We describe a case report of an 18-month-old male patient with progressive chronic respiratory failure, associated with mutations of the surfactant protein C [...] Read more.
Mesenchymal stromal cells (MSCs) have been proposed as a new therapeutic strategy to treat congenital and acquired respiratory system diseases. We describe a case report of an 18-month-old male patient with progressive chronic respiratory failure, associated with mutations of the surfactant protein C gene (SFTPC) due to c.289G > T variant p.Gly97Ser (rs927644577) and c.176A > G variant (p.His59Arg), submitted to repeated intravenous infusions of allogeneic bone marrow (BM) MSCs. The clinical condition of the patient was monitored. Immunologic studies before and during MSC treatment were performed. No adverse events related to the MSC infusions were recorded. Throughout the MSC treatment period, the patient showed a growth recovery. Starting the second infusion, the patient experienced an improvement in his respiratory condition, with progressive adaptation to mechanical ventilation. After the third infusion, five hours/die of spontaneous breathing was shown, and after infusion IV, spontaneous ventilation for 24/24 h was recorded. A gradual decrease of lymphocytes and cell subpopulations was observed. No variations in the in vitro T cell response to PHA were determined by MSC treatment as well as for the in vitro B cell response. A decrease in IFN-γ, TNF-α, and IL-10 levels was also detected. Even though we cannot exclude an improvement of pulmonary function due to the physiological maturation, the well-known action of MSCs in the repair of lung tissue, together with the sequence of events observed in our patient, may support the therapeutic role of MSCs in this clinical condition. However, further investigations are necessary to confirm the result and long-term follow-up will be mandatory to confirm the benefits on the pulmonary condition. Full article
(This article belongs to the Special Issue Lung Function, Respiratory and Asthma Disease in Children)
Show Figures

Figure 1

9 pages, 2134 KiB  
Article
Destruxin A Interacts with Aminoacyl tRNA Synthases in Bombyx mori
by Jingjing Wang, Alexander Berestetskiy and Qiongbo Hu
J. Fungi 2021, 7(8), 593; https://doi.org/10.3390/jof7080593 - 23 Jul 2021
Cited by 5 | Viewed by 2097
Abstract
Destruxin A (DA), a hexa-cyclodepsipeptidic mycotoxin produced by the entomopathogenic fungus Metarhizium anisopliae, exhibits insecticidal activities in a wide range of pests and is known as an innate immunity inhibitor. However, its mechanism of action requires further investigation. In this research, the [...] Read more.
Destruxin A (DA), a hexa-cyclodepsipeptidic mycotoxin produced by the entomopathogenic fungus Metarhizium anisopliae, exhibits insecticidal activities in a wide range of pests and is known as an innate immunity inhibitor. However, its mechanism of action requires further investigation. In this research, the interactions of DA with the six aminoacyl tRNA synthetases (ARSs) of Bombyx mori, BmAlaRS, BmCysRS, BmMetRS, BmValRS, BmIleRS, and BmGluProRS, were analyzed. The six ARSs were expressed and purified. The BLI (biolayer interferometry) results indicated that DA binds these ARSs with the affinity indices (KD) of 10−4 to 10−5 M. The molecular docking suggested a similar interaction mode of DA with ARSs, whereby DA settled into a pocket through hydrogen bonds with Asn, Arg, His, Lys, and Tyr of ARSs. Furthermore, DA treatments decreased the contents of soluble protein and free amino acids in Bm12 cells, which suggested that DA impedes protein synthesis. Lastly, the ARSs in Bm12 cells were all downregulated by DA stress. This study sheds light on exploring and answering the molecular target of DA against target insects. Full article
Show Figures

Figure 1

10 pages, 24186 KiB  
Article
Interactions of Destruxin A with Silkworms’ Arginine tRNA Synthetase and Lamin-C Proteins
by Jingjing Wang, Qunfang Weng, Fei Yin and Qiongbo Hu
Toxins 2020, 12(2), 137; https://doi.org/10.3390/toxins12020137 - 22 Feb 2020
Cited by 13 | Viewed by 3789
Abstract
Destruxin A (DA), a cyclodepsipeptidic mycotoxin produced by entomopathogenic fungus Metarhizium anisopliae, has good insecticidal activity and potential to be a new pesticide. However, the mechanism of action is still obscure. Our previous experiments showed that DA was involved in regulation of [...] Read more.
Destruxin A (DA), a cyclodepsipeptidic mycotoxin produced by entomopathogenic fungus Metarhizium anisopliae, has good insecticidal activity and potential to be a new pesticide. However, the mechanism of action is still obscure. Our previous experiments showed that DA was involved in regulation of transcription and protein synthesis and suggested that silkworms’ arginine tRNA synthetase (BmArgRS), Lamin-C Proteins (BmLamin-C) and ATP-dependent RNA helicase PRP1 (BmPRP1) were candidates of DA-binding proteins. In this study, we employed bio-layer interferometry (BLI), circular dichroism (CD), cellular thermal shift assay (CETSA), and other technologies to verify the interaction of DA with above three proteins in vitro and in vivo. The results of BLI indicated that BmArgRS and BmLamin-C were binding-protein of DA with KD value 5.53 × 10−5 and 8.64 × 10−5 M, but not BmPRP1. These interactions were also verified by CD and CETSA tests. In addition, docking model and mutants assay in vitro showed that BmArgRS interacts with DA at the pocket including Lys228, His231, Asp434 and Gln437 in its enzyme active catalysis region, while BmLamin-C binds to DA at His524 and Lys528 in the tail domain. This study might provide new insight and evidence in illustrating molecular mechanism of DA in breaking insect. Full article
(This article belongs to the Special Issue Mycotoxins Study: Toxicology, Identification and Control)
Show Figures

Figure 1

Back to TopTop