Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Blautia hansenii

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5003 KiB  
Article
Oral Fecal Microbiota Transplantation in Dogs with Tylosin-Responsive Enteropathy—A Proof-of-Concept Study
by Mohsen Hanifeh, Elisa Scarsella, Connie A. Rojas, Holly H. Ganz, Mirja Huhtinen, Tarmo Laine and Thomas Spillmann
Vet. Sci. 2024, 11(9), 439; https://doi.org/10.3390/vetsci11090439 - 18 Sep 2024
Cited by 1 | Viewed by 4402
Abstract
A clinical trial was conducted to evaluate the effect of fecal microbiota transplantation (FMT) on the canine chronic enteropathy clinical activity index (CCECAI), fecal consistency, and microbiome of dogs with tylosin-responsive enteropathy (TRE). The trial consisted of four phases: (1) screening with discontinuation [...] Read more.
A clinical trial was conducted to evaluate the effect of fecal microbiota transplantation (FMT) on the canine chronic enteropathy clinical activity index (CCECAI), fecal consistency, and microbiome of dogs with tylosin-responsive enteropathy (TRE). The trial consisted of four phases: (1) screening with discontinuation of tylosin for 4 weeks, (2) inclusion with re-introduction of tylosin for 3–7 days, (3) treatment with FMT/placebo for 4 weeks, and (4) post-treatment with follow-up for 4 weeks after treatment cessation. The study found that the treatment efficacy of FMT (71.4%) was slightly higher than that of placebo (50%), but this difference was not statistically significant due to underpowering. The most abundant bacterial species detected in the fecal microbiomes of dogs with TRE before FMT or placebo treatment were Blautia hansenii, Ruminococcus gnavus, Escherichia coli, Clostridium dakarense, Clostridium perfringens, Bacteroides vulgatus, and Faecalimonas umbilicata. After FMT, the microbiomes exhibited increases in Clostridium dakarense, Clostridium paraputrificum, and Butyricicoccus pullicaecorum. The microbiome alpha diversity of TRE dogs was lower when on tylosin treatment compared to healthy dogs, but it increased after treatment in both the FMT and placebo groups. Comparisons with the stool donor showed that, on average, 30.4% of donor strains were engrafted in FMT recipients, with the most common strains being several Blautia sp., Ruminococcus gnavus, unclassified Lachnoclostridium, Collinsella intestinalis, and Fournierella massiliensis. Full article
(This article belongs to the Special Issue Small Animal Gastrointestinal Diseases: Challenges and Advances)
Show Figures

Figure 1

20 pages, 3481 KiB  
Review
The Ambiguous Correlation of Blautia with Obesity: A Systematic Review
by Warren Chanda, He Jiang and Shuang-Jiang Liu
Microorganisms 2024, 12(9), 1768; https://doi.org/10.3390/microorganisms12091768 - 26 Aug 2024
Cited by 7 | Viewed by 4359
Abstract
Obesity is a complex and multifactorial disease with global epidemic proportions, posing significant health and economic challenges. Whilst diet and lifestyle are well-established contributors to the pathogenesis, the gut microbiota’s role in obesity development is increasingly recognized. Blautia, as one of the [...] Read more.
Obesity is a complex and multifactorial disease with global epidemic proportions, posing significant health and economic challenges. Whilst diet and lifestyle are well-established contributors to the pathogenesis, the gut microbiota’s role in obesity development is increasingly recognized. Blautia, as one of the major intestinal bacteria of the Firmicutes phylum, is reported with both potential probiotic properties and causal factors for obesity in different studies, making its role controversial. To summarize the current understanding of the Blautia–obesity correlation and to evaluate the evidence from animal and clinical studies, we used “Blautia” AND “obesity” as keywords searching through PubMed and SpringerLink databases for research articles. After removing duplicates and inadequate articles using the exclusion criteria, we observed different results between studies supporting and opposing the beneficial role of Blautia in obesity at the genus level. Additionally, several studies showed probiotic effectiveness at the species level for Blautia coccoides, B. wexlerae, B. hansenii, B. producta, and B. luti. Therefore, the current evidence does not demonstrate Blautia’s direct involvement as a pathogenic microbe in obesity development or progression, which informs future research and therapeutic strategies targeting the gut Blautia in obesity management. Full article
(This article belongs to the Special Issue Gut Microbiome in Homeostasis and Disease, 2nd Edition)
Show Figures

Figure 1

14 pages, 3276 KiB  
Article
Mouse Model of Anti-Obesity Effects of Blautia hansenii on Diet-Induced Obesity
by Masaki Shibata, Naoki Ozato, Harutoshi Tsuda, Kenta Mori, Keita Kinoshita, Mitsuhiro Katashima, Yoshihisa Katsuragi, Shigeyuki Nakaji and Hayato Maeda
Curr. Issues Mol. Biol. 2023, 45(9), 7147-7160; https://doi.org/10.3390/cimb45090452 - 26 Aug 2023
Cited by 12 | Viewed by 4580
Abstract
Reportedly, a relationship exists between intestinal microflora and obesity-related lifestyle diseases. Blautia spp. a major intestinal microbiota, accounts for 3–11% of human intestinal microflora. Epidemiological reports have described that people with more visceral fat have less Blautia hansenii in their intestinal tract irrespective of [...] Read more.
Reportedly, a relationship exists between intestinal microflora and obesity-related lifestyle diseases. Blautia spp. a major intestinal microbiota, accounts for 3–11% of human intestinal microflora. Epidemiological reports have described that people with more visceral fat have less Blautia hansenii in their intestinal tract irrespective of age or gender. However, the effect of oral administration of heat-sterilized Blautia hansenii on obesity has not been clarified. Therefore, the aim of this study was to evaluate the effects of dietary Blautia hansenii administration on obesity in high-fat-diet-induced obesity in a mouse model. Heat-sterilized cells of Blautia hansenii were used. C57BL/6J mice (normal mice, n = 7) were fed with each experimental diet for nine weeks. Diets for experimentation were: normal-fat (NF) diets, high-fat (HF) diets, and high-fat + Blautia hansenii (HF + Blautia) diets. The HF + Blautia group was administered about 1 × 109 (CFU/mouse/day) of Blautia hansenii. During the periods of experimentation, body weight, food intake, water consumption, and fecal weight were recorded, and glucose tolerance tests were performed. Subsequently, the white adipose tissue (WAT) weight and serum components were measured. Short-chain fatty acid contents in the feces and cecum were analyzed. Furthermore, changes in the intestinal microflora were analyzed using meta-genomics analysis. Results showed that the total weight of WAT in the HF + Blautia group was significantly lower (13.2%) than that of the HF group. Moreover, the HF + Blautia group exhibited better glucose tolerance than the HF group. Productivity of short-chain fatty acids in the intestinal tract was at a significantly (p < 0.05) low level in the HF group; on the other hand, it recovered in the HF + Blautia group. Furthermore, there was a higher ratio of Blautia (p < 0.05) in the intestinal tracts of the HF + Blautia group than in the HF group. These results suggest that Blautia hansenii administration suppresses obesity induced by a high-fat diet. Full article
(This article belongs to the Special Issue Metabolic Interactions Between the Gut Microbiome and Organism)
Show Figures

Figure 1

11 pages, 1633 KiB  
Article
Potential Prebiotic Effect of Cava Lees: Changes in Gut Microbiota
by Alba Martín-Garcia, Javier Gonzalez-Linares, Montserrat Riu-Aumatell and Elvira López-Tamames
Fermentation 2022, 8(11), 657; https://doi.org/10.3390/fermentation8110657 - 20 Nov 2022
Cited by 2 | Viewed by 2427
Abstract
Lees are a winery by-product with a fiber-rich composition that could have a potential prebiotic effect on gut microbiota. Prebiotics cannot be digested by humans but can be used by bacteria found in the large intestine. To evaluate the potential prebiotic effect of [...] Read more.
Lees are a winery by-product with a fiber-rich composition that could have a potential prebiotic effect on gut microbiota. Prebiotics cannot be digested by humans but can be used by bacteria found in the large intestine. To evaluate the potential prebiotic effect of lees, they were administered to Wistar rats for 14 days. Feces were collected daily, and DNA was extracted and analyzed by shot gun sequencing. The supplementation with lees did not affect weight, food intake, or water consumption of the studied rats. It was found that lees promoted the increase of relative abundance of probiotic bacteria belonging to the Lactobacillaceae family, as well as other potentially probiotic species such as Blautia hansenii, Roseburia intestinalis, and Ruminococcus obeum. Moreover, lees supplementation also reduced the abundance of certain pathogenic bacteria. In conclusion, lees can improve the presence of beneficial bacteria in the gastrointestinal tract and can be re-valorized as a new ingredient in food formulation. Full article
(This article belongs to the Special Issue Nutrition and Health of Fermented Foods)
Show Figures

Figure 1

16 pages, 1140 KiB  
Article
Two Blautia Species Associated with Visceral Fat Accumulation: A One-Year Longitudinal Study
by Naoki Ozato, Tohru Yamaguchi, Kenta Mori, Mitsuhiro Katashima, Mika Kumagai, Koichi Murashita, Yoshihisa Katsuragi, Yoshinori Tamada, Masanori Kakuta, Seiya Imoto, Kazushige Ihara and Shigeyuki Nakaji
Biology 2022, 11(2), 318; https://doi.org/10.3390/biology11020318 - 16 Feb 2022
Cited by 31 | Viewed by 5966
Abstract
Intestinal microflora has been associated with obesity. While visceral fat is more strongly associated with cardiovascular disorder, a complication linked to obesity, than the body mass index (BMI), the association between intestinal microflora and obesity (as defined in terms of BMI) has been [...] Read more.
Intestinal microflora has been associated with obesity. While visceral fat is more strongly associated with cardiovascular disorder, a complication linked to obesity, than the body mass index (BMI), the association between intestinal microflora and obesity (as defined in terms of BMI) has been studied widely. However, the link between visceral fat area (VFA) and intestinal microflora has been little studied. In this study, we investigate the association between intestinal microflora and VFA and BMI using a longitudinal study on Japanese subjects with different VFA statuses (N = 767). Principal component analysis of the changes in intestinal microflora composition over the one-year study period revealed the different associations between intestinal microflora and VFA and BMI. As determined by 16S rRNA amplicon sequencing, changes in the abundance ratio of two microbial genera—Blautia and Flavonifractor—were significantly associated with VFA changes and changes in the abundance ratio of four different microbial genera were significantly associated with BMI changes, suggesting that the associated intestinal microbes are different. Furthermore, as determined by metagenomic shotgun sequences, changes in the abundance ratios of two Blautia species—Blautia hansenii and Blautia producta—were significantly and negatively associated with VFA changes. Our findings might be used to develop a new treatment for visceral fat. Full article
(This article belongs to the Special Issue Gut Microbiome in Health and Disease)
Show Figures

Figure 1

10 pages, 549 KiB  
Proceeding Paper
Aging Effects on Gut Microbiota in SAMP8 Mice
by Lluïsa Miró, Miquel Moretó, Concepció Amat, Javier Polo and Anna Pérez-Bosque
Proceedings 2020, 61(1), 25; https://doi.org/10.3390/IECN2020-06995 - 30 Oct 2020
Cited by 4 | Viewed by 1597
Abstract
We have studied the effects of aging on the fecal microbiota composition in the senescence-accelerated prone mice SAMP8 strain. We compared animals two, four, and six months old. Feces were collected at the end of each period and a genomic study was carried [...] Read more.
We have studied the effects of aging on the fecal microbiota composition in the senescence-accelerated prone mice SAMP8 strain. We compared animals two, four, and six months old. Feces were collected at the end of each period and a genomic study was carried out on fecal DNA using the Illumina MiSeq analyzer. The Shannon diversity index showed similar values along this period and the number of species was neither affected by aging. The phylum Verrucobacteria went up with age, showing a seven-fold increase at six months, compared to two-month old mice. At the family level, changes observed between two and six months of age involved significant increases in Bacteroidaceae (q < 0.001) and strong reductions in Lactobacillaceae (q < 0.0001) and Prevotellaceae (q < 0.05); at the genus level, there was a significant reduction in probiotic Lactobacillus. At the species level, we observed an age-related reduction in Lactobacillus hayakitensis, a species involved in mucosal immune homeostasis, and in Blautia hansenii, which provides protection against Clostridium difficile infection. Interestingly, aging increases Parabacteroides goldsteiini, which is involved in the regulation of the TLR4 pathway. These results support the view that aging results in the proliferation of bacterial species that are associated with the immune deterioration of the gut mucosa. Full article
Show Figures

Figure 1

Back to TopTop