Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = Bifidobacterium longum subsp. longum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2784 KiB  
Article
Methylated CpG ODNs from Bifidobacterium longum subsp. infantis Modulate Treg Induction and Suppress Allergic Response in a Murine Model
by Dongmei Li, Idalia Cruz, Samantha N. Peltak, Patricia L. Foley and Joseph A. Bellanti
Int. J. Mol. Sci. 2025, 26(14), 6755; https://doi.org/10.3390/ijms26146755 - 14 Jul 2025
Viewed by 312
Abstract
In our previous studies, methylated CpG oligodeoxynucleotides (ODN) derived from Bifidobacterium longum subsp. infantis have demonstrated immunomodulatory effects through the induction of regulatory T cells (Tregs). To define the structural determinants underlying this effect, we synthesized four CpG ODNs varying in methylation degree, [...] Read more.
In our previous studies, methylated CpG oligodeoxynucleotides (ODN) derived from Bifidobacterium longum subsp. infantis have demonstrated immunomodulatory effects through the induction of regulatory T cells (Tregs). To define the structural determinants underlying this effect, we synthesized four CpG ODNs varying in methylation degree, CpG motif placement, and backbone length. These include (1) ODN-A (2m-V1), a 20-nucleotide CpG oligodeoxynucleotide incorporating two 5-methylcytosines at positions 4 and 12 within centrally placed CpG motifs; (2) ODN-B (um-V2), a 20-nucleotide CpG oligodeoxynucleotide with a backbone structure identical to ODN-A but unmethylated; (3) ODN-C (2m’-V3), a 20-nucleotide CpG oligodeoxynucleotide with a backbone structure identical to ODN-A, but with two 5-methylcytosines shifted to positions 7 and 15; (4) ODN-D (3m-V4), a 27-nucleotide CpG oligodeoxynucleotide with an extended backbone structure, this time with three 5-methylcytosines at positions 3, 11, and 19. Using a murine model of an OVA-induced allergy, we show that methylated ODN-A (2m-V1) and ODN-D (3m-V4) markedly reduce serum anti-OVA IgE, clinical symptoms, eosinophilic infiltration, and Th2/Th17 responses, while promoting splenic Treg expansion and IL-10 production. In contrast, unmethylated ODN-B (um-V2) and a positionally altered methylated ODN-C (2m’-V3) both failed to suppress allergic inflammation, and, in contrast, enhanced the Th2/Th17 response and induced robust in vitro Toll-like receptors TLR7/8/9 expression in native splenocytes. These findings suggest that both methylation and motif architecture critically influence the immunologic profile of CpG ODNs. Our results provide mechanistic insights into CpG ODN structure/function relationships and support the therapeutic potential of select methylated sequences for restoring immune tolerance in allergic diseases. Full article
Show Figures

Figure 1

10 pages, 1272 KiB  
Communication
Antibiotic Resistance in Bifidobacterium animalis subsp. lactis and Bifidobacterium longum: Definition of Sensitivity/Resistance Profiles at the Species Level
by Mario Terlizzi, Barbara Speranza, Milena Sinigaglia, Maria Rosaria Corbo and Antonio Bevilacqua
Microorganisms 2025, 13(7), 1647; https://doi.org/10.3390/microorganisms13071647 - 11 Jul 2025
Viewed by 365
Abstract
Antimicrobial resistance is a threat to probiotic microorganisms due to their potential role in harboring and transmitting resistance genes. This study focuses on two Bifidobacterium species (B. animalis subsp. lactis and B. longum) by analyzing 657 Minimal Inhibitory Concentration (MIC) values [...] Read more.
Antimicrobial resistance is a threat to probiotic microorganisms due to their potential role in harboring and transmitting resistance genes. This study focuses on two Bifidobacterium species (B. animalis subsp. lactis and B. longum) by analyzing 657 Minimal Inhibitory Concentration (MIC) values extracted from research articles indexed in Scopus, PubMed, and Web of Science, published since 2014, and considering 17 different antibiotics. MIC values were used for descriptive statistical analysis (boxplots and violin plots) to evaluate both inter- and intraspecies distributions. The results showed an overall increase in MIC values compared to historical data, with B. longum exhibiting high resistance to tetracyclines and streptomycin—approximately 25% to 50% of the strains had MIC values > EFSA cut-offs. The violin plots revealed the presence of resistant subpopulations, particularly within B. longum. These findings support the relevance of longitudinal MIC analysis as a tool for detecting early shifts in antimicrobial susceptibility and highlight the importance of data-driven approaches for microbiological risk assessment in probiotic applications. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

21 pages, 1587 KiB  
Review
Microbiota—A Rescuing Modulator in Children Struggling with Functional Constipation
by Nicoleta Ana Tomșa, Lorena Elena Meliț, Teodora Popescu, Karina Najjar, Anca Meda Văsieșiu, Adrian Vlad Pop and Reka Borka-Balas
Microorganisms 2025, 13(7), 1504; https://doi.org/10.3390/microorganisms13071504 - 27 Jun 2025
Viewed by 594
Abstract
Constipation affects around 30% of children and in 95% of cases is functional (FC), a consequence of alterations in digestive tract peristalsis, modulated by the immune and nervous systems, bile acid metabolism, and the gut microbiota. The aim of this review was to [...] Read more.
Constipation affects around 30% of children and in 95% of cases is functional (FC), a consequence of alterations in digestive tract peristalsis, modulated by the immune and nervous systems, bile acid metabolism, and the gut microbiota. The aim of this review was to assess the role of gut microbiota and the use of probiotics in children with constipation. The current treatment involves education, toilet training, and oral laxatives, effective in only 50% of patients. In chronic FC, the composition of the microbiota is altered, with increased abundance of Bacteroidetes, Enterobacteriaceae, and Firmicutes and decreases in Prevotella, Bifidobacteria, Faecalibacterium prausnitzii, and Clostridium leptum. Probiotics replenish lacking beneficial resident bacteria, downregulate mucosal inflammation, or produce short-chain fatty acids (SCFAs). Probiotics like Bifidobacterium breve and Bifidobacterium longum increase the defecation frequency and decrease the episodes of both fecal incontinence and abdominal pain. Bifidobacterium animalis subsp. lactis XLTG11 improves the gut microbiota by upregulating SCFA genes and downregulating those related to methane metabolism. Lactobacilli produce organic acids that stimulate bowel peristalsis and augment fecal bolus moisture. The heterogeneity of the current studies involving pediatric subjects thus far hinders the use of probiotics as a standard in the management of children with constipation. Full article
(This article belongs to the Special Issue Microbiota and Gastrointestinal Diseases)
Show Figures

Figure 1

12 pages, 995 KiB  
Article
Safety and Tolerance of Bifidobacterium longum subsp. Infantis YLGB-1496 in Toddlers with Respiratory Symptoms
by Pin Li, Mageswaran Uma Mageswary, Fahisham Taib, Thai Hau Koo, Azianey Yusof, Intan Juliana Abd Hamid, Hua Jiang, Min-Tze Liong, Adli Ali and Yumei Zhang
Nutrients 2025, 17(13), 2127; https://doi.org/10.3390/nu17132127 - 26 Jun 2025
Viewed by 519
Abstract
Objective: The aim of this study was to examine the safety and tolerance of Bifidobacterium longum subsp. infantis YLGB-1496 (B. infantis YLGB-1496) in toddlers with respiratory illness. Methods: In this randomized controlled trial, 120 toddlers with respiratory illness were randomly assigned [...] Read more.
Objective: The aim of this study was to examine the safety and tolerance of Bifidobacterium longum subsp. infantis YLGB-1496 (B. infantis YLGB-1496) in toddlers with respiratory illness. Methods: In this randomized controlled trial, 120 toddlers with respiratory illness were randomly assigned to the probiotic (YLGB-1496) or control group for a 12-week intervention. Follow-up examinations were conducted at baseline (week 0) and at weeks 6 and 12 of the intervention. Toddlers’ height and weight were measured by trained personnel, and defecation characteristics and gastrointestinal symptoms were recorded by parents or guardians. Stool samples were collected to determine the fecal pH, fecal calprotectin (FC) concentration, and fecal α1-antitrypsin (AAT) concentration. Results: A total of 115 toddlers completed the 12-week intervention (58 in the YLGB-1496 group and 57 in the control group). The height-for-age Z score (HAZ) in the YLGB-1496 group was significantly greater than that in the control group (p = 0.006). The weight-for-age Z score (WAZ) in the YLGB-1496 group increased between weeks 6 and 12, whereas the WAZ in the control group continuously decreased during the intervention. No differences in the frequency or consistency of defecation between the groups were observed. Toddlers in the YLGB-1496 group had lower incidences of poor appetite, nausea, vomiting, stomachache, lower abdominal pain, diarrhea, and dehydration (p < 0.05) but higher fecal AAT concentrations (p = 0.008) than did those in the control group. No differences in the fecal pH or FC concentration were observed between the groups. Conclusions: B. infantis YLGB-1496 demonstrated excellent safety and tolerability in toddlers and effectively reduced the gastrointestinal discomfort associated with respiratory illnesses. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

24 pages, 2904 KiB  
Article
Early Inoculation of a Multi-Species Probiotic in Piglets–Impacts on the Gut Microbiome and Immune Responses
by Lea Hübertz Birch Hansen, Charlotte Lauridsen, Bea Nielsen, Lisbeth Jørgensen, Anna Schönherz and Nuria Canibe
Microorganisms 2025, 13(6), 1292; https://doi.org/10.3390/microorganisms13061292 - 31 May 2025
Viewed by 778
Abstract
Intestinal diseases in nursery pigs harm health and performance and drive antimicrobial resistance. This study evaluated whether early probiotic inoculation helps piglets to cope with weaning-related gut challenges. The probiotic, containing Lacticaseibacillus rhamnosus, Enterococcus lactis, Bifidobacterium longum subsp. infantis, and [...] Read more.
Intestinal diseases in nursery pigs harm health and performance and drive antimicrobial resistance. This study evaluated whether early probiotic inoculation helps piglets to cope with weaning-related gut challenges. The probiotic, containing Lacticaseibacillus rhamnosus, Enterococcus lactis, Bifidobacterium longum subsp. infantis, and Bifidobacterium breve, was given orally to newborn piglets daily until day 4 and then every other day until weaning at day 28 (at 4 × 109 CFU/dose). The control piglets received a placebo. The results showed that the probiotic pigs had reduced fecal alpha-diversity on day 7 but greater Shannon diversity on day 28 (feces) and day 23 (intestinal contents) compared to those of the control pigs. Beta-diversity analysis showed microbial differences between the groups on day 35. Most zOTUs (zero-radius operational taxonomic units) found to significantly differentiate the two treatment groups were found pre weaning. Bifidobacterium breve, Ligilactobacillus salivarius, as well as Clostridium ramosum were significantly more abundant in the feces of the probiotic pigs more than once. The probiotic pigs had higher expression levels of mucin 2 (MUC2); solute carrier family 5, member 8 (SLC5A8); and interleukin 8 (IL-8) post weaning. In the early post-weaning period, the probiotic pigs had less diarrhea as well as lower cadaverine levels in digesta than the control pigs. In conclusion, early probiotic inoculation may induce lasting immunomodulation via microbial antigen changes, enhancing resilience during challenges, like weaning. Notably, the effects persisted beyond weaning and probiotic cessation. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

16 pages, 2816 KiB  
Article
Zinc-Enriched Bifidobacterium longum subsp. longum CCFM1195 Alleviates Cutibacterium acnes-Induced Skin Lesions in Mice by Mitigating Inflammatory Responses and Oxidative Stress
by Xiangyue Gu, Botao Wang, Tianmeng Zhang, Qiuxiang Zhang, Bingyong Mao, Xin Tang, Jianxin Zhao and Shumao Cui
Nutrients 2025, 17(11), 1803; https://doi.org/10.3390/nu17111803 - 26 May 2025
Viewed by 842
Abstract
Background: Acne vulgaris, a prevalent inflammatory skin disorder, stems from factors like Cutibacterium acnes overgrowth, inflammation dysregulation, and immune dysfunction. Clinically, acne severity inversely correlates with serum zinc (Zn) levels, and oral Zn supplementation shows efficacy. Lactic acid bacteria are capable of converting [...] Read more.
Background: Acne vulgaris, a prevalent inflammatory skin disorder, stems from factors like Cutibacterium acnes overgrowth, inflammation dysregulation, and immune dysfunction. Clinically, acne severity inversely correlates with serum zinc (Zn) levels, and oral Zn supplementation shows efficacy. Lactic acid bacteria are capable of converting inorganic Zn into organic forms via biological transformation, potentially generating Zn-enriched bacteria as superior Zn delivery vehicles. Methods: In this study, a Zn-deficient acne mouse model was established through dietary Zn restriction combined with intradermal C. acnes injection. The therapeutic effects of orally administered Zn-containing supplements, including Zn-enriched Bifidobacterium longum subsp. longum CCFM1195 (Zn-CCFM1195), were systematically evaluated through multiple parameters: histopathological evaluation of skin lesions, cutaneous inflammatory and oxidative stress markers, serum Zn concentration, and gene expression levels of pathway-associated proteins. Results: Induction of C. acnes led to decreased serum Zn levels (14.98 μmol/L in Control vs. 9.71 μmol/L in Model) and skin metallothionein content, causing Zn imbalance. Zn deficiency caused increased levels of lesion elevation (9.23 in Model vs. 10.53 in Zn-deficient Model), IL-17A, TNF-α, and MMP9 in skin, thereby exacerbating the inflammatory response in C. acnes-induced mice. Zn supplementation alleviated inflammatory responses and oxidative stress in Zn-deficient acne-like mice. Notably, inactivated Zn-CCFM1195 exhibited superior efficacy to ZnSO4, significantly reducing lesion diameter and decreasing cutaneous levels of IL-1β, IL-17A, and MDA while enhancing GSH-Px activity. Similarly, viable Zn-CCFM1195 treatment significantly decreased IL-17A and enhanced GSH-Px activity compared with ZnSO4 treatment. Furthermore, Zn supplementation downregulated the expression of TLR2, IκBα, and IKKβ, which may exert its anti-acne effect by regulating related pathways. Conclusions: Zn deficiency exacerbates skin inflammation, whereas Zn supplementation, particularly with Zn-CCFM1195, alleviates acne vulgaris through anti-inflammatory and antioxidant effects. Full article
Show Figures

Figure 1

17 pages, 1818 KiB  
Article
Therapeutic Potential of Bifidobacterium longum subsp. infantis B8762 on Gut and Respiratory Health in Infant
by Rocky Vester Richmond, Uma Mageswary, Adli Ali, Fahisham Taib, Thai Hau Koo, Azianey Yusof, Intan Juliana Abd Hamid, Feiyan Zhao, Nik Norashikin Nik Abd Rahman, Taufiq Hidayat Hasan, Heping Zhang and Min-Tze Liong
Int. J. Mol. Sci. 2025, 26(3), 1323; https://doi.org/10.3390/ijms26031323 - 4 Feb 2025
Viewed by 2173
Abstract
Respiratory tract and gastrointestinal infections in pediatric populations are major public health concerns. Addressing these challenges necessitates effective preventative and therapeutic strategies. This study assessed the efficacy of the probiotic Bifidobacterium longum subsp. infantis B8762 (0.5 × 1010 CFU) in reducing the [...] Read more.
Respiratory tract and gastrointestinal infections in pediatric populations are major public health concerns. Addressing these challenges necessitates effective preventative and therapeutic strategies. This study assessed the efficacy of the probiotic Bifidobacterium longum subsp. infantis B8762 (0.5 × 1010 CFU) in reducing the duration and frequency of these infections in young children. In a randomized trial, 115 eligible children were assigned to either the probiotic (n = 57; 3.51 ± 0.48 months old) or placebo (n = 58; 2.78 ± 0.51 months old) group, with daily consumption for 4 weeks. The probiotic group demonstrated a lower duration of infections than the placebo group (p < 0.05). The probiotic group also showed fewer clinical visits due to respiratory and gastrointestinal problems as compared to the placebo group (p = 0.009 & p = 0.004, respectively). Oral swab samples revealed that the placebo group had higher levels of pro-inflammatory cytokine TNF-α after 4 weeks (p = 0.033), while the probiotic group demonstrated a balanced cytokine response, indicating modulation of the immune system. Genomic analysis showed that B8762 harbors various genes for the synthesis of proteins and vitamins crucial for the gut health of children. Both the clinical and genomic findings suggested that B8762 offered a therapeutic effect on gut and respiratory health in children, highlighting its potential in managing common pediatric infections. Full article
Show Figures

Figure 1

24 pages, 2140 KiB  
Systematic Review
Bifidobacterium infantis and Bifidobacterium breve Improve Symptomatology and Neuronal Damage in Neurodegenerative Disease: A Systematic Review
by Manuel Reiriz, Ana Isabel Beltrán-Velasco, Víctor Echeverry-Alzate, Esther Martínez-Miguel, Silvia Gómez-Senent, Sara Uceda and Vicente Javier Clemente-Suárez
Nutrients 2025, 17(3), 391; https://doi.org/10.3390/nu17030391 - 22 Jan 2025
Cited by 3 | Viewed by 4758
Abstract
Background/Objectives: This systematic review focused on collecting the most significant findings on the impact of the administration of Bifidobacterium infantis (or Bifidobacterium longum subps. infantis) and Bifidobacterium breve, alone, in conjunction, or in combination with other strains, in the treatment of [...] Read more.
Background/Objectives: This systematic review focused on collecting the most significant findings on the impact of the administration of Bifidobacterium infantis (or Bifidobacterium longum subps. infantis) and Bifidobacterium breve, alone, in conjunction, or in combination with other strains, in the treatment of neurodegenerative diseases including Alzheimer’s disease (AD) and Parkinson’s disease (PD). These diseases are characterized by the progressive degeneration of neurons, resulting in a broad spectrum of clinical manifestations. AD is typified by a progressive decline in cognitive abilities, while PD is marked by motor symptoms associated with the loss of dopamine (DA). Methods: Five different databases, ScienceDirect, Scopus, Wiley, PubMed, and Web of Science (WoS), were reviewed and the studies were screened for inclusion by the following criteria: (i) studies that specifically evaluated the use of Bifidobacterium infantis, Bifidobacterium longum subsp. infantis, or Bifidobacterium breve as a therapeutic intervention, either in human or animal models, in the context of neurodegenerative diseases; (ii) the studies were required to address one or more of the pathologies examined in this article, and the pathologies included, but were not limited to, neurodegeneration, Alzheimer’s disease, Parkinson’s disease, and oxidative stress; (iii) the full text was accessible online; and (iv) the article was written in English. Results: The data suggest that these probiotics have neuroprotective effects that may delay disease progression. Conclusions: This study provides updated insights into the use of these Bifidobacterium strains in neurodegenerative diseases like AD and PD, with the main limitation being the limited number of clinical trials available. Full article
Show Figures

Figure 1

13 pages, 2800 KiB  
Article
The Effect of the Combination of Two Postbiotics on Anxiety-like Behavior in Animal Models
by Vanesa Robles, Ferran Balaguer, Miren Maicas, Juan Manuel Martínez-Vázquez, Patricia Martorell, Marta Tortajada, Daniel Ramón and David G. Valcarce
Cells 2024, 13(23), 2006; https://doi.org/10.3390/cells13232006 - 5 Dec 2024
Cited by 1 | Viewed by 2629
Abstract
With increasing evidence showing the connections between the microbiome, neurophysiology, and behavior, our research endeavors to investigate whether the consumption of a combination of two postbiotics with antioxidant effects can affect behavior regulation in model species. Here, we worked with a combination (1:1 [...] Read more.
With increasing evidence showing the connections between the microbiome, neurophysiology, and behavior, our research endeavors to investigate whether the consumption of a combination of two postbiotics with antioxidant effects can affect behavior regulation in model species. Here, we worked with a combination (1:1 ratio) of heat-treated Bifidobacterium longum subsp. longum ES1 (CECT7347) and Lacticaseibacillus rhamnosus BPL15 (CECT8361) as a dietary supplement. To examine the potential benefit of using this formulation to alleviate anxiety-like behavior, we employed two model species, Caenorhabditis elegans and adult Danio rerio. In C. elegans, the postbiotic supplementation reduced the anxiety-related behavior analyzed by means of the octanol avoidance test. In zebrafish, the novel tank test indicated a different swimming pattern 2 and 4 months after the animals were fed with the postbiotic combination. While fish did not exhibit any variance in their locomotion parameters such as pace and speed, they showed a statistically significant preference to spend more time in the upper zone of the water tank, a behavior that is correlated with a lower anxiety-like behavior in these species. Our aim with this study is to present evidence that can be used to develop whole-cell postbiotic-based novel and innovative dietary supplements for anxiety-related conditions. Full article
Show Figures

Graphical abstract

11 pages, 490 KiB  
Article
The Impact of Probiotics on Clinical Symptoms and Peripheral Cytokines Levels in Parkinson’s Disease: Preliminary In Vivo Data
by Luca Magistrelli, Elena Contaldi, Annalisa Visciglia, Giovanni Deusebio, Marco Pane and Angela Amoruso
Brain Sci. 2024, 14(11), 1147; https://doi.org/10.3390/brainsci14111147 - 15 Nov 2024
Viewed by 1884
Abstract
Introduction. Previous studies have shown that probiotics have positive effects on both motor and non-motor symptoms in Parkinson’s disease (PD). Additionally, in preclinical settings, probiotics have demonstrated the ability to counteract neuronal loss and alpha-synuclein aggregation, important pathological hallmarks of PD. Notably, preliminary [...] Read more.
Introduction. Previous studies have shown that probiotics have positive effects on both motor and non-motor symptoms in Parkinson’s disease (PD). Additionally, in preclinical settings, probiotics have demonstrated the ability to counteract neuronal loss and alpha-synuclein aggregation, important pathological hallmarks of PD. Notably, preliminary in vitro studies have revealed the immunomodulatory properties of probiotics. This study aims to evaluate the impact of probiotics on symptoms and peripheral cytokines levels in PD patients compared to placebo. Methods. Patients were enrolled and blindly randomized to receive either active probiotics (comprising Bifidobacterium animalis subsp. lactis BS01 LMG P-21384, Bifidobacterium longum BL03 DSM 16603, Bifidobacterium adolescentis BA02 DSM 18351, Fructo-oligosaccharides and Maltodextrin-Group A) or placebo (Maltodextrin-Group B). Clinical evaluations and plasma levels cytokines (TNF-α, IFN-γ, IL-6, and TGF-β) were also assessed at enrollment and after 12 weeks. Anti-parkinsonian therapy remained stable throughout the study. Results. Forty PD patients were recruited. After 12 weeks, Group A showed significant improvement in motor symptoms (UPDRS III: 13.89 ± 4.08 vs. 12.74 ± 4.57, p = 0.028) and non-motor symptoms (NMSS: 34.32 ± 21.41 vs. 30.11 ± 19.89, p = 0.041), with notable improvement in the gastrointestinal sub-item (3.79 ± 4.14 vs. 1.89 ± 2.54, p = 0.021). A reduction of IFN-γ levels was observed in both groups, but group A also showed a significant decrease in IL-6 and a slight increase in the anti-inflammatory cytokine TGF-β. Conclusions. Our data suggest that probiotics may modulate peripheral cytokines levels and improve clinical symptoms in PD patients. Probiotics may, therefore, represent a valuable adjunctive therapy to conventional anti-parkinsonian drugs. Full article
Show Figures

Figure 1

19 pages, 5197 KiB  
Article
Fermented Soymilk with Probiotic Lactobacilli and Bifidobacterium Strains Ameliorates Dextran-Sulfate-Sodium-Induced Colitis in Rats
by Ashwag Jaman Al Zahrani, Amal Bakr Shori and Effat Al-Judaibi
Nutrients 2024, 16(20), 3478; https://doi.org/10.3390/nu16203478 - 14 Oct 2024
Cited by 2 | Viewed by 2768
Abstract
Background: Current treatments for inflammatory bowel disease (IBD) are relatively futile and the extended use of drugs may reduce effectiveness. Several probiotic strains have shown promise in relieving/treating IBD symptoms. Objectives: The current study investigated the impact of fermented soymilk with [...] Read more.
Background: Current treatments for inflammatory bowel disease (IBD) are relatively futile and the extended use of drugs may reduce effectiveness. Several probiotic strains have shown promise in relieving/treating IBD symptoms. Objectives: The current study investigated the impact of fermented soymilk with a mixture of probiotic starter cultures containing Lactobacillus rhamnosus, L. casei, L. plantarum, L. acidophilus, Bifidobacterium longum, and B. animalis subsp. lactis in rats with dextran sulfate sodium (DSS)-induced colitis compared to control. Methods: Rats were randomly assigned to five groups (5 rats/group; n = 25): G1: negative normal control; G2: positive control (DSS); G3: DSS with sulfasalazine (DSS-Z); G4: DSS with soymilk (DSS-SM), and G5: DSS with fermented soymilk (DSS-FSM). Parameters monitored included the following: the disease activity index (DAI), macroscopic and histological assessments of colitis, and a fecal microbial analysis performed to assess the severity of inflammation and ulceration. Results: The DSS-FSM rats group exhibited lower DAI scores (p < 0.05) than other treated groups during the induction period. A macroscopical examination revealed no ulceration or swelling in the intestinal mucosa of rats in the DSS-FSM-treated group, resembling the findings in the negative control group. In the positive control (DSS group), the colon tissue showed increased inflammation (p < 0.05), whereas those in the DSS-SM- and DSS-FSM-treated rats groups did not show significant macroscopic scores of colitis. The positive DSS control and DSS-Z groups had crypt erosion and ulceration areas, severe crypt damage, and epithelial surface erosion, which were absent in the negative control and DSS-FSM groups. The counts of Lactobacillus spp. and Bifidobacterium spp. remained stable in both G1 and G5 over 4 weeks. The consumption of fermented soymilk with a mixture of probiotics could minimize the severity of DSS-induced colitis in rats. Conclusion, it was found that fermented soymilk containing Lactobacilli and Bifidobacterium might be an effective vehicle for reducing the severity of DSS-induced colitis in rats. Full article
(This article belongs to the Topic Advances in Animal-Derived Non-Cow Milk and Milk Products)
Show Figures

Figure 1

13 pages, 1256 KiB  
Article
Comparative Study of Prebiotics for Infants Using a Fecal Culture System: Insights into Responders and Non-Responders
by Shijir (Xijier) Mingat, Tatsuya Ehara, Hirohiko Nakamura and Kazuhiro Miyaji
Nutrients 2024, 16(19), 3347; https://doi.org/10.3390/nu16193347 - 2 Oct 2024
Viewed by 1501
Abstract
Background: The gut microbiota of breast-fed infants is dominated by infant-type human-residential bifidobacteria (HRB) that contribute to infant health; thus, it is crucial to develop infant formulas that promote the establishment of a gut microbiota enriched with infant-type HRB, closely resembling that of [...] Read more.
Background: The gut microbiota of breast-fed infants is dominated by infant-type human-residential bifidobacteria (HRB) that contribute to infant health; thus, it is crucial to develop infant formulas that promote the establishment of a gut microbiota enriched with infant-type HRB, closely resembling that of breastfed infants. Methods: We compared various non-digestible prebiotic oligosaccharides and their combinations using a fecal culture system to explore which candidates could promote the growth of all infant-type HRB and rarely yield non-responders. The analysis included lactulose (LAC), raffinose (RAF), galactooligosaccharides (GOS), and short- and long-chain fructooligosaccharides. Fecal samples were collected from seven infants aged 1.5–10.2 months and cultured with each oligosaccharide individually or their combinations. Results: No single oligosaccharide effectively promoted the growth of all infant-type HRB, although GOS promoted the growth of HRB other than Bifidobacterium longum subsp. longum. Only the LAC/RAF/GOS group evenly and effectively promoted the growth of all infant-type HRB. Accordingly, acetate production was higher in fecal cultures supplemented with GOS or LAC/RAF/GOS than in the other cultures, suggesting that it is a superior combination for all infant-type HRB and rarely yields non-responders. Conclusions: This study can aid in developing infant formulas that help align the gut microbiota of formula-fed infants with that of breastfed infants. Full article
(This article belongs to the Section Pediatric Nutrition)
Show Figures

Figure 1

28 pages, 1538 KiB  
Article
A Novel Bifidobacterium longum Subsp. longum T1 Strain from Cow’s Milk: Homeostatic and Antibacterial Activity against ESBL-Producing Escherichia coli
by Andrey V. Machulin, Vyacheslav M. Abramov, Igor V. Kosarev, Evgenia I. Deryusheva, Tatiana V. Priputnevich, Alexander N. Panin, Ashot M. Manoyan, Irina O. Chikileva, Tatiana N. Abashina, Dmitriy A. Blumenkrants, Olga E. Ivanova, Tigran T. Papazyan, Ilia N. Nikonov, Nataliya E. Suzina, Vyacheslav G. Melnikov, Valentin S. Khlebnikov, Vadim K. Sakulin, Vladimir A. Samoilenko, Alexey B. Gordeev, Gennady T. Sukhikh, Vladimir N. Uversky and Andrey V. Karlyshevadd Show full author list remove Hide full author list
Antibiotics 2024, 13(10), 924; https://doi.org/10.3390/antibiotics13100924 - 27 Sep 2024
Viewed by 2437
Abstract
Background/Objectives: The global emergence of antibiotic-resistant zooanthroponotic Escherichia coli strains, producing extended-spectrum beta-lactamases (ESBL-E) and persisting in the intestines of farm animals, has now led to the development of a pandemic of extra-intestinal infectious diseases in humans. The search for innovative probiotic microorganisms [...] Read more.
Background/Objectives: The global emergence of antibiotic-resistant zooanthroponotic Escherichia coli strains, producing extended-spectrum beta-lactamases (ESBL-E) and persisting in the intestines of farm animals, has now led to the development of a pandemic of extra-intestinal infectious diseases in humans. The search for innovative probiotic microorganisms that eliminate ESBL-E from the intestines of humans and animals is relevant. Previously, we received three isolates of bifidobacteria: from milk of a calved cow (BLLT1), feces of a newborn calf (BLLT2) and feces of a three-year-old child who received fresh milk from this calved cow (BLLT3). Our goal was to evaluate the genetic identity of BLLT1, BLLT2, BLLT3 isolates using genomic DNA fingerprinting (GDF), to study the tolerance, adhesion, homeostatic and antibacterial activity of BLLT1 against ESBL-E. Methods: We used a complex of microbiological, molecular biological, and immunological methods, including next generation sequencing (NGS). Results: GDF showed that DNA fragments of BLLT2 and BLLT3 isolates were identical in number and size to DNA fragments of BLLT1. These data show for the first time the possibility of natural horizontal transmission of BLLT1 through with the milk of a calved cow into the intestines of a calf and the intestines of a child. BLLT1 was resistant to gastric and intestinal stresses and exhibited high adhesive activity to calf, pig, chicken, and human enterocytes. This indicates the unique ability of BLLT1 to inhabit the intestines of animals and humans. We are the first to show that BLLT1 has antibacterial activity against ESBL-E strains that persist in humans and animals. BLLT1 produced 145 ± 8 mM of acetic acid, which reduced the pH of the nutrient medium from 6.8 to 5.2. This had an antibacterial effect on ESBL-E. The genome of BLLT1 contains ABC-type carbohydrate transporter gene clusters responsible for the synthesis of acetic acid with its antibacterial activity against ESBL-E. BLLT1 inhibited TLR4 mRNA expression induced by ESBL-E in HT-29 enterocytes, and protected the enterocyte monolayers used in this study as a bio-model of the intestinal barrier. BLLT1 increased intestinal alkaline phosphatase (IAP) as one of the main molecular factors providing intestinal homeostasis. Conclusions: BLLT1 shows promise for the creation of innovative functional nutritional products for humans and feed additives for farm animals that will reduce the spread of ESBL-E strains in the food chain. Full article
Show Figures

Figure 1

24 pages, 17371 KiB  
Article
Study on the Combined Effects of Bromelain (Ananas comosus) Enzyme Treatment and Bacteria Cultures on the Physicochemical Properties and Oxidative Stability of Horse Meat
by Duman Orynbekov, Kumarbek Amirkhanov, Zhanar Kalibekkyzy, Farida Smolnikova, Bakhytkul Assenova, Almagul Nurgazezova, Gulnur Nurymkhan, Amirzhan Kassenov, Sholpan Baytukenova and Zhanibek Yessimbekov
Processes 2024, 12(8), 1766; https://doi.org/10.3390/pr12081766 - 21 Aug 2024
Cited by 3 | Viewed by 2382
Abstract
This study investigates the impact of bromelain, a plant enzyme, on the physicochemical and sensory properties of horse meat, as well as the effects of different bacterial cultures (Lactococcus lactis, Lactococcus lactis subsp. lactis biovar diacetylactis, Lactobacillus acidophilus, and [...] Read more.
This study investigates the impact of bromelain, a plant enzyme, on the physicochemical and sensory properties of horse meat, as well as the effects of different bacterial cultures (Lactococcus lactis, Lactococcus lactis subsp. lactis biovar diacetylactis, Lactobacillus acidophilus, and Bifidobacterium longum) on the inhibition of lipid oxidation and control of pH during chilled storage. Horse meat (longissimus dorsi) samples (n = 14) were treated with bromelain in two forms (powder and aqueous solution) and with three methods: immersion in enzyme solution, spreading enzyme powder on meat, and syringing enzyme solution into the meat. After fermentation, a part of the meat samples (n = 6) was treated with different bacteria compositions at a 5% weight ratio and stored at 0–2 °C for 6 days. Injecting 3–5% bromelain solutions was most effective at tenderizing the meat, reducing shear force by up to 56% after 8 h. This injection also maximized the water-holding capacity (78–81%) and minimized cooking losses (21–26%), compared to 38% for the control meat sample without treatment. Syringing with 3% bromelain yielded the highest sensory scores across the tenderness, flavor, and overall palatability parameters. The combination of L. acidophilus, Lc. lactis, and B. longum at a ratio of 1.5:1.5:2 was highly effective in reducing oxidative spoilage and optimizing pH levels, thereby ensuring extended meat storability. This study demonstrates that bromelain treatment is an effective method for improving the tenderness, WHC, and sensory properties of horse meat. The LAB combination showed efficient acid formation, crucial for enhancing meat preservation. Full article
Show Figures

Figure 1

14 pages, 2173 KiB  
Review
A Probiotic Bacterium with Activity against the Most Frequent Bacteria and Viruses Causing Pediatric Diarrhea: Bifidobacterium longum subsp. infantis CECT 7210 (B. infantis IM1®)
by José Antonio Moreno-Muñoz, Jesús Delgado Ojeda and Jesús Jiménez López
Microorganisms 2024, 12(6), 1183; https://doi.org/10.3390/microorganisms12061183 - 11 Jun 2024
Cited by 4 | Viewed by 2163
Abstract
The second leading cause of death in children under five years old is diarrheal disease. Probiotics, specifically bifidobacteria, have been associated with a reduction in the number of diarrhea episodes and their severity in babies. In this paper, we summarize the preclinical and [...] Read more.
The second leading cause of death in children under five years old is diarrheal disease. Probiotics, specifically bifidobacteria, have been associated with a reduction in the number of diarrhea episodes and their severity in babies. In this paper, we summarize the preclinical and clinical evidence of the efficacy of B. longum subsp. infantis IM1® against various gastrointestinal pathogens using in vitro models, animal models, and clinical studies carried out in our laboratory. The preclinical data demonstrate that IM1® effectively inhibits rotavirus replication (by up to 36.05%) in MA-104 and HT-29 cells and from infection (up to 48.50%) through the production of an 11-amino-acid peptide. IM1® displays the capability to displace pathogens from enterocytes, particularly Cronobacter sakazakii and Salmonella enterica, and to reduce the adhesion to the HT29 cells of C. sakazakii and Shigella sonnei. In animal models, the IM1® strain exhibits in vivo protection against rotavirus and improves the clinical symptomatology of bacterial gastroenteritis. A clinical study involving infants under 3 months of age revealed that IM1® reduced episodes of diarrhea, proving to be safe, well tolerated, and associated with a lower prevalence of constipation. B. infantis IM1® emerges as an effective probiotic, diminishing episodes of diarrhea caused by gastrointestinal pathogens. Full article
(This article belongs to the Special Issue Dialogue of Probiotics with the Host 2.0)
Show Figures

Figure 1

Back to TopTop