Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = Bell inequality violation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 1575 KiB  
Article
Entropy Accumulation Under Post-Quantum Cryptographic Assumptions
by Ilya Merkulov and Rotem Arnon
Entropy 2025, 27(8), 772; https://doi.org/10.3390/e27080772 - 22 Jul 2025
Viewed by 264
Abstract
In device-independent (DI) quantum protocols, security statements are agnostic to the internal workings of the quantum devices—they rely solely on classical interactions with the devices and specific assumptions. Traditionally, such protocols are set in a non-local scenario, where two non-communicating devices exhibit Bell [...] Read more.
In device-independent (DI) quantum protocols, security statements are agnostic to the internal workings of the quantum devices—they rely solely on classical interactions with the devices and specific assumptions. Traditionally, such protocols are set in a non-local scenario, where two non-communicating devices exhibit Bell inequality violations. Recently, a new class of DI protocols has emerged that requires only a single device. In this setting, the assumption of no communication is replaced by a computational one: the device cannot solve certain post-quantum cryptographic problems. Protocols developed in this single-device computational setting—such as for randomness certification—have relied on ad hoc techniques, making their guarantees difficult to compare and generalize. In this work, we introduce a modular proof framework inspired by techniques from the non-local DI literature. Our approach combines tools from quantum information theory, including entropic uncertainty relations and the entropy accumulation theorem, to yield both conceptual clarity and quantitative security guarantees. This framework provides a foundation for systematically analyzing DI protocols in the single-device setting under computational assumptions. It enables the design and security proof of future protocols for DI randomness generation, expansion, amplification, and key distribution, grounded in post-quantum cryptographic hardness. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

13 pages, 893 KiB  
Article
Semi-Device-Independent Randomness Expansion Using n→1 Parity-Oblivious Quantum Random Access Codes
by Xunan Wang, Xu Chen, Mengke Xu, Wanglei Mi and Xiao Chen
Entropy 2025, 27(7), 696; https://doi.org/10.3390/e27070696 - 28 Jun 2025
Viewed by 281
Abstract
Quantum mechanics enables the generation of genuine randomness through its intrinsic indeterminacy. In device-independent (DI) and semi-device-independent (SDI) frameworks, randomness generation protocols can further ensure that the output remains secure and unaffected by internal device imperfections, with certification grounded in violations of generalized [...] Read more.
Quantum mechanics enables the generation of genuine randomness through its intrinsic indeterminacy. In device-independent (DI) and semi-device-independent (SDI) frameworks, randomness generation protocols can further ensure that the output remains secure and unaffected by internal device imperfections, with certification grounded in violations of generalized Bell inequalities. In this work, we propose an SDI randomness expansion protocol using n1 parity-oblivious quantum random access code (PO-QRAC), where the presence of true quantum randomness is certified through the violation of a two-dimensional quantum witness. For various values of n, we derive the corresponding maximal expected success probabilities. Notably, for n=4, the expected success probability obtained under our protocol exceeds the upper bound reported in prior work. Furthermore, we establish an analytic relationship between the certifiable min-entropy and the quantum witness value, and demonstrate that, for a fixed witness value, PO-QRAC–based protocols certify more randomness than those based on standard QRACs. Among all configurations satisfying the parity-obliviousness constraint, the protocol based on the 31 PO-QRAC achieves optimal randomness expansion performance. Full article
(This article belongs to the Special Issue Quantum Probability and Randomness V)
Show Figures

Figure 1

24 pages, 338 KiB  
Article
Bell’s Inequalities and Entanglement in Corpora of Italian Language
by Diederik Aerts, Suzette Geriente, Roberto Leporini and Sandro Sozzo
Entropy 2025, 27(7), 656; https://doi.org/10.3390/e27070656 - 20 Jun 2025
Viewed by 227
Abstract
We analyse the results of three information retrieval tests on conceptual combinations that we have recently performed using corpora of Italian language. Each test has the form of a ‘Bell-type test’ and was aimed at identifying ‘quantum entanglement’ in the combination, or composition, [...] Read more.
We analyse the results of three information retrieval tests on conceptual combinations that we have recently performed using corpora of Italian language. Each test has the form of a ‘Bell-type test’ and was aimed at identifying ‘quantum entanglement’ in the combination, or composition, of two concepts. In the first two tests, we studied the Italian translation of the combination The Animal Acts, while in the third test, we studied the Italian translation of the combination The Animal eats the Food. We found a significant violation of Bell’s inequalities in all tests. Empirical patterns confirm the results obtained with corpora of English language, which indicates the existence of deep structures in concept formation that are language independent. The systematic violation of Bell’s inequalities suggests the presence of entanglement, and indeed, we elaborate here a ‘quantum model in Hilbert space’ for the collected data. This investigation supports our theoretical hypothesis about entanglement as a phenomenon of ‘contextual updating’, independent of the nature, micro-physical or conceptual-linguistic, of the entities involved. Finally, these findings allow us to further clarify the mutual relationships between entanglement, Cirel’son’s bound, and no-signalling in Bell-type situations. Full article
(This article belongs to the Section Multidisciplinary Applications)
21 pages, 350 KiB  
Article
Time-like Extra Dimensions: Quantum Nonlocality, Spin, and Tsirelson Bound
by Mohammad Furquan, Tejinder P. Singh and P Samuel Wesley
Universe 2025, 11(5), 137; https://doi.org/10.3390/universe11050137 - 27 Apr 2025
Viewed by 1749
Abstract
The E8E8 octonionic theory of unification suggests that our universe is six-dimensional and that the two extra dimensions are time-like. These time-like extra dimensions, in principle, offer an explanation of the quantum nonlocality puzzle, also known as the EPR [...] Read more.
The E8E8 octonionic theory of unification suggests that our universe is six-dimensional and that the two extra dimensions are time-like. These time-like extra dimensions, in principle, offer an explanation of the quantum nonlocality puzzle, also known as the EPR paradox. Quantum systems access all six dimensions, whereas classical systems such as detectors experience only four dimensions. Therefore, correlated quantum events that are time-like separated in 6D can appear to be space-like separated and, hence, nonlocal, when projected to 4D. Our lack of awareness of the extra time-like dimensions creates the illusion of nonlocality, whereas, in reality, the communication obeys special relativity and is local. Bell inequalities continue to be violated because quantum correlations continue to hold. In principle, this idea can be tested experimentally. We develop our analysis after first constructing the Dirac equation in 6D using quaternions and using the equation to derive spin matrices in 6D and then in 4D. We also show that the Tsirelson bound of the CHSH inequality can in principle be violated in 6D. Full article
Show Figures

Figure 1

15 pages, 726 KiB  
Article
W-Class States—Identification and Quantification of Bell-CHSH Inequalities’ Violation
by Joanna K. Kalaga, Wiesław Leoński and Jan Peřina
Entropy 2024, 26(12), 1107; https://doi.org/10.3390/e26121107 - 18 Dec 2024
Cited by 1 | Viewed by 1215
Abstract
We discuss a family of W-class states describing three-qubit systems. For such systems, we analyze the relations between the entanglement measures and the nonlocality parameter for a two-mode mixed state related to the two-qubit subsystem. We find the conditions determining the boundary values [...] Read more.
We discuss a family of W-class states describing three-qubit systems. For such systems, we analyze the relations between the entanglement measures and the nonlocality parameter for a two-mode mixed state related to the two-qubit subsystem. We find the conditions determining the boundary values of the negativity, parameterized by concurrence, for violating the Bell-CHSH inequality. Additionally, we derive the value ranges of the mixedness measure, parameterized by concurrence and negativity for the qubit–qubit mixed state, guaranteeing the violation and non-violation of the Bell-CHSH inequality. Full article
(This article belongs to the Special Issue Entropy in Classical and Quantum Information Theory with Applications)
Show Figures

Figure 1

14 pages, 2349 KiB  
Article
Violation of Leggett–Garg Inequality in Perceiving Cup-like Objects and Cognitive Contextuality
by Likan Zhan, Andrei Khrennikov and Yingce Zhu
Entropy 2024, 26(11), 950; https://doi.org/10.3390/e26110950 - 5 Nov 2024
Viewed by 1007
Abstract
This paper is devoted to an experimental investigation of cognitive contextuality inspired by quantum contextuality research. This contextuality is related to, but not identical to context-sensitivity which is well-studied in cognitive psychology and decision making. This paper is a part of quantum-like modeling, [...] Read more.
This paper is devoted to an experimental investigation of cognitive contextuality inspired by quantum contextuality research. This contextuality is related to, but not identical to context-sensitivity which is well-studied in cognitive psychology and decision making. This paper is a part of quantum-like modeling, i.e., exploring the methodology of quantum theory outside of physics. We examined the bistable perception of cup-like objects, which strongly depends on experimental contexts. Our experimental data confirmed the existence of cognitive hysteresis, the important role of memory, and the non-commutative structure of cognitive observables. In physics, quantum contextuality is assessed using Bell-CHSH inequalities, and their violation is incorrectly believed to imply the nonlocality of Nature. The violation of Bell-type inequalities in cognitive and social science strongly indicates that the metaphysical implications of these inequalities are quite limited. In our experiments, modified Leggett–Garg inequalities were also significantly violated, but this only means that experimental data from experiments performed in different contexts cannot be modeled by a unique set of noncontextual, jointly distributed random variables. In our experiments, we know the empirical probability distributions measured in different contexts; thus, we can obtain much more detailed and reliable information about contextuality in human cognition by performing nonparametric compatibility tests. Full article
Show Figures

Figure 1

6 pages, 243 KiB  
Article
Spin Helicity and the Disproof of Bell’s Theorem
by Bryan Sanctuary
Quantum Rep. 2024, 6(3), 436-441; https://doi.org/10.3390/quantum6030028 - 21 Aug 2024
Viewed by 1591
Abstract
Under the quaternion group, Q8, spin helicity emerges as a crucial element of the reality of spin and is complementary to its polarization. We show that the correlation in EPR coincidence experiments is conserved upon separation from a singlet state and [...] Read more.
Under the quaternion group, Q8, spin helicity emerges as a crucial element of the reality of spin and is complementary to its polarization. We show that the correlation in EPR coincidence experiments is conserved upon separation from a singlet state and distributed between its polarization and coherence. Including helicity accounts for the violation of Bell’s Inequalities without non-locality, and disproves Bell’s Theorem by a counterexample. Full article
(This article belongs to the Special Issue 100 Years of Quantum Mechanics)
13 pages, 338 KiB  
Review
Entanglement and Bell Inequality Violation in Bϕϕ Decays
by Emidio Gabrielli and Luca Marzola
Symmetry 2024, 16(8), 1036; https://doi.org/10.3390/sym16081036 - 13 Aug 2024
Cited by 4 | Viewed by 1442
Abstract
The decays of the B meson into vector mesons, observed during the LHCb experiment, provide an ideal laboratory to investigate particle physics phenomena with quantum information theory methods. In this article, we focus on the decays yielding a pair of ϕ mesons to [...] Read more.
The decays of the B meson into vector mesons, observed during the LHCb experiment, provide an ideal laboratory to investigate particle physics phenomena with quantum information theory methods. In this article, we focus on the decays yielding a pair of ϕ mesons to investigate the presence of entanglement in the spin correlations of the system and quantify the amount of Bell inequality violation it entails. Our results show that the present LHCb data allow access to entanglement and to the Bell inequality violation with a significance exceeding the 5σ threshold in both the cases. This demonstrates that the strong and electroweak interactions responsible for the B meson decay act as a source of entanglement and the quantum mechanics nature of high-energy phenomena. Particular attention is paid to the assessment of loopholes: deficiencies in the experimental setup which could invalidate the results of the Bell test. Full article
(This article belongs to the Special Issue Quantum Entanglement and Quantum Information in High Energy Physics)
17 pages, 849 KiB  
Article
EPR Correlations Using Quaternion Spin
by Bryan Sanctuary
Quantum Rep. 2024, 6(3), 409-425; https://doi.org/10.3390/quantum6030026 - 13 Aug 2024
Cited by 1 | Viewed by 2595
Abstract
We present a statistical simulation replicating the correlation observed in EPR coincidence experiments without needing non-local connectivity. We define spin coherence as a spin attribute that complements polarization by being anti-symmetric and generating helicity. Point particle spin becomes structured with two orthogonal magnetic [...] Read more.
We present a statistical simulation replicating the correlation observed in EPR coincidence experiments without needing non-local connectivity. We define spin coherence as a spin attribute that complements polarization by being anti-symmetric and generating helicity. Point particle spin becomes structured with two orthogonal magnetic moments, each with a spin of 12—these moments couple in free flight to create a spin-1 boson. Depending on its orientation in the field, when it encounters a filter, it either decouples into two independent fermion spins of 12, or it remains a boson and precedes without decoupling. The only variable in this study is the angle that orients a spin on the Bloch sphere, first identified in the 1920s. There are no hidden variables. The new features introduced in this work result from changing the spin symmetry from SU(2) to the quaternion group, Q8, which complexifies the Dirac field. The transition from a free-flight boson to a measured fermion causes the observed violation of Bell’s Inequalities and resolves the EPR paradox. Full article
(This article belongs to the Special Issue 100 Years of Quantum Mechanics)
Show Figures

Figure 1

14 pages, 596 KiB  
Article
A Study of Spin 1 Unruh–De Witt Detectors
by F. M. Guedes, M. S. Guimaraes, I. Roditi and S. P. Sorella
Universe 2024, 10(8), 307; https://doi.org/10.3390/universe10080307 - 24 Jul 2024
Cited by 1 | Viewed by 971
Abstract
A study of the interaction of spin 1 Unruh–De Witt detectors with a relativistic scalar quantum field is presented here. After tracing out the field modes, the resulting density matrix for a bipartite qutrit system is employed to investigate the violation of the [...] Read more.
A study of the interaction of spin 1 Unruh–De Witt detectors with a relativistic scalar quantum field is presented here. After tracing out the field modes, the resulting density matrix for a bipartite qutrit system is employed to investigate the violation of the Bell–CHSH inequality. Unlike the case of spin 1/2, for which the effects of the quantum field result in a decrease in the size of violation, in the case of spin 1, both a decrease or an increase in the size of the violation may occur. This effect is ascribed to the fact that Tsirelson’s bound is not saturated in the case of qutrits. Full article
(This article belongs to the Section Field Theory)
Show Figures

Figure 1

19 pages, 731 KiB  
Article
Correlations in the EPR State Observables
by Daniel F. Orsini, Luna R. N. Oliveira and Marcos G. E. da Luz
Entropy 2024, 26(6), 476; https://doi.org/10.3390/e26060476 - 30 May 2024
Viewed by 1397
Abstract
The identification and physical interpretation of arbitrary quantum correlations are not always effortless. Two features that can significantly influence the dispersion of the joint observable outcomes in a quantum bipartite system composed of systems I and II are: (a) All possible pairs of [...] Read more.
The identification and physical interpretation of arbitrary quantum correlations are not always effortless. Two features that can significantly influence the dispersion of the joint observable outcomes in a quantum bipartite system composed of systems I and II are: (a) All possible pairs of observables describing the composite are equally probable upon measurement, and (b) The absence of concurrence (positive reinforcement) between any of the observables within a particular system; implying that their associated operators do not commute. The so-called EPR states are known to observe (a). Here, we demonstrate in very general (but straightforward) terms that they also satisfy condition (b), a relevant technical fact often overlooked. As an illustration, we work out in detail the three-level systems, i.e., qutrits. Furthermore, given the special characteristics of EPR states (such as maximal entanglement, among others), one might intuitively expect the CHSH correlation, computed exclusively for the observables of qubit EPR states, to yield values greater than two, thereby violating Bell’s inequality. We show such a prediction does not hold true. In fact, the combined properties of (a) and (b) lead to a more limited range of values for the CHSH measure, not surpassing the nonlocality threshold of two. The present constitutes an instructive example of the subtleties of quantum correlations. Full article
(This article belongs to the Special Issue Quantum Probability and Randomness V)
Show Figures

Figure 1

11 pages, 360 KiB  
Article
Entanglement of Temporal Sections as Quantum Histories and Their Quantum Correlation Bounds
by Marcin Nowakowski
Entropy 2024, 26(3), 198; https://doi.org/10.3390/e26030198 - 26 Feb 2024
Cited by 1 | Viewed by 1860
Abstract
In this paper, we focus on the underlying quantum structure of temporal correlations and show their peculiar nature which differentiates them from spatial quantum correlations. With a growing interest in the representation of quantum states as topological objects, we consider quantum history bundles [...] Read more.
In this paper, we focus on the underlying quantum structure of temporal correlations and show their peculiar nature which differentiates them from spatial quantum correlations. With a growing interest in the representation of quantum states as topological objects, we consider quantum history bundles based on the temporal manifold and show the source of the violation of monogamous temporal Bell-like inequalities. We introduce definitions for the mixture of quantum histories and consider their entanglement as sections over the Hilbert vector bundles. As a generalization of temporal Bell-like inequalities, we derive the quantum bound for multi-time Bell-like inequalities. Full article
(This article belongs to the Special Issue Quantum Shannon Theory and Its Applications)
Show Figures

Figure 1

17 pages, 578 KiB  
Review
Quantum Nonlocality: How Does Nature Do It?
by Marian Kupczynski
Entropy 2024, 26(3), 191; https://doi.org/10.3390/e26030191 - 23 Feb 2024
Cited by 8 | Viewed by 3123
Abstract
In his article in Science, Nicolas Gisin claimed that quantum correlations emerge from outside space–time. We explainthat they are due to space-time symmetries. This paper is a critical review of metaphysical conclusions found in many recent articles. It advocates the importance of contextuality [...] Read more.
In his article in Science, Nicolas Gisin claimed that quantum correlations emerge from outside space–time. We explainthat they are due to space-time symmetries. This paper is a critical review of metaphysical conclusions found in many recent articles. It advocates the importance of contextuality, Einstein -causality and global symmetries. Bell tests allow only rejecting probabilistic coupling provided by a local hidden variable model, but they do not justify metaphysical speculations about quantum nonlocality and objects which know about each other’s state, even when separated by large distances. The violation of Bell inequalities in physics and in cognitive science can be explained using the notion of Bohr- contextuality. If contextual variables, describing varying experimental contexts, are correctly incorporated into a probabilistic model, then the Bell–CHSH inequalities cannot be proven and nonlocal correlations may be explained in an intuitive way. We also elucidate the meaning of statistical independence assumption incorrectly called free choice, measurement independence or no- conspiracy. Since correlation does not imply causation, the violation of statistical independence should be called contextuality; it does not restrict the experimenter’s freedom of choice. Therefore, contrary to what is believed, closing the freedom-of choice loophole does not close the contextuality loophole. Full article
Show Figures

Figure 1

11 pages, 2567 KiB  
Article
Breaking a Combinatorial Symmetry Resolves the Paradox of Einstein-Podolsky-Rosen and Bell
by Jürgen Jakumeit and Karl Hess
Symmetry 2024, 16(3), 255; https://doi.org/10.3390/sym16030255 - 20 Feb 2024
Cited by 4 | Viewed by 1319
Abstract
We present a Monte Carlo model of Einstein–Podolsky–Rosen experiments that may be implemented on two independent computers and resembles the measurements of the Clauser–Aspect–Zeilinger-type which are performed in two distant stations SA and SB. Our computer model is local deterministic [...] Read more.
We present a Monte Carlo model of Einstein–Podolsky–Rosen experiments that may be implemented on two independent computers and resembles the measurements of the Clauser–Aspect–Zeilinger-type which are performed in two distant stations SA and SB. Our computer model is local deterministic because we show that a theorist in station SB is able to conceive the products of the measurement outcomes of both stations, conditional to any possible equipment configuration in station SA. We show that the Monte Carlo model violates Bell-type inequalities and approaches the results of quantum theory for certain relationships between the number of measurements performed and the number of possible different physical properties of the entangled photon pairs. These relationships are clearly linked to Vorob’ev cyclicities, which always enforce Bell-type inequalities. The realization of this cyclicity depends, however, on combinatorial symmetry considerations that, in turn, depend on the mathematical properties of Einstein’s elements of physical reality. Because these mathematical properties have never been investigated and, therefore, may be free to be chosen in the models for all published experiments, Einstein’s physics does not contradict the experimental findings, instantaneous influences at a distance are put into question and the paradox of Einstein–Podolsky–Rosen and Bell is, thus, resolved. Full article
(This article belongs to the Topic Mathematical Modeling)
Show Figures

Figure 1

18 pages, 305 KiB  
Article
Hidden Tensor Structures
by Marek Czachor
Entropy 2024, 26(2), 145; https://doi.org/10.3390/e26020145 - 7 Feb 2024
Cited by 1 | Viewed by 1432
Abstract
Any single system whose space of states is given by a separable Hilbert space is automatically equipped with infinitely many hidden tensor-like structures. This includes all quantum mechanical systems as well as classical field theories and classical signal analysis. Accordingly, systems as simple [...] Read more.
Any single system whose space of states is given by a separable Hilbert space is automatically equipped with infinitely many hidden tensor-like structures. This includes all quantum mechanical systems as well as classical field theories and classical signal analysis. Accordingly, systems as simple as a single one-dimensional harmonic oscillator, an infinite potential well, or a classical finite-amplitude signal of finite duration can be decomposed into an arbitrary number of subsystems. The resulting structure is rich enough to enable quantum computation, violation of Bell’s inequalities, and formulation of universal quantum gates. Less standard quantum applications involve a distinction between position and hidden position. The hidden position can be accompanied by a hidden spin, even if the particle is spinless. Hidden degrees of freedom are, in many respects, analogous to modular variables. Moreover, it is shown that these hidden structures are at the roots of some well-known theoretical constructions, such as the Brandt–Greenberg multi-boson representation of creation–annihilation operators, intensively investigated in the context of higher-order or fractional-order squeezing. In the context of classical signal analysis, the discussed structures explain why it is possible to emulate a quantum computer by classical analog circuit devices. Full article
(This article belongs to the Special Issue Bell's Theorem and Forms of Relativity)
Back to TopTop