Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = BUBR1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2960 KiB  
Article
Overexpression of BubR1 Mitotic Checkpoint Protein Predicts Short Survival and Influences the Progression of Cholangiocarcinoma
by Nongnapas Pokaew, Piya Prajumwongs, Kulthida Vaeteewoottacharn, Sopit Wongkham, Chawalit Pairojkul and Kanlayanee Sawanyawisuth
Biomedicines 2024, 12(7), 1611; https://doi.org/10.3390/biomedicines12071611 - 19 Jul 2024
Viewed by 1411
Abstract
Budding Uninhibited by Benzimidazole-Related 1 (BubR1) or BUB1 Mitotic Checkpoint Serine/Threonine Kinase B (BUB1B) is an essential component of the spindle assembly checkpoint (SAC), which controls chromosome separation during mitosis. Overexpression of BubR1 has been associated with the progression of various cancers. This [...] Read more.
Budding Uninhibited by Benzimidazole-Related 1 (BubR1) or BUB1 Mitotic Checkpoint Serine/Threonine Kinase B (BUB1B) is an essential component of the spindle assembly checkpoint (SAC), which controls chromosome separation during mitosis. Overexpression of BubR1 has been associated with the progression of various cancers. This study demonstrated that high expression of BubR1 correlated with cholangiocarcinogenesis in a hamster cholangiocarcinoma (CCA) model and was associated with shorter survival in patients with CCA. Co-expression of BubR1 and MPS1, which is a SAC-related protein, indicated a shorter survival rate in patients with CCA. Knockdown of BubR1 expression by specific siRNA (siBubR1) significantly decreased cell proliferation and colony formation while inducing apoptosis in CCA cell lines. In addition, suppression of BubR1 inhibited migration and invasion abilities via epithelial–mesenchymal transition (EMT). A combination of siBubR1 and chemotherapeutic drugs showed synergistic effects in CCA cell lines. Taken together, this finding suggested that BubR1 had oncogenic functions, which influenced CCA progression. Suppression of BubR1 might be an alternative option for CCA treatment. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

16 pages, 3461 KiB  
Article
BUBR1 as a Prognostic Biomarker in Canine Oral Squamous Cell Carcinoma
by Leonor Delgado, Luís Monteiro, Patrícia Silva, Hassan Bousbaa, Fernanda Garcez, João Silva, Paula Brilhante-Simões, Isabel Pires and Justina Prada
Animals 2022, 12(22), 3082; https://doi.org/10.3390/ani12223082 - 9 Nov 2022
Cited by 3 | Viewed by 2619
Abstract
Chromosomal instability (CIN) plays a key role in the carcinogenesis of several human cancers and can be related to the deregulation of core components of the spindle assembly checkpoint (SAC) including BUBR1 protein kinase. These proteins have been related to tumor development and [...] Read more.
Chromosomal instability (CIN) plays a key role in the carcinogenesis of several human cancers and can be related to the deregulation of core components of the spindle assembly checkpoint (SAC) including BUBR1 protein kinase. These proteins have been related to tumor development and poor survival rates in human patients with oral squamous cell carcinoma (OSCC). To investigate the expression of the SAC proteins BUBR1, BUB3 and SPINDLY and also Ki-67 in canine OSCC, we performed an immunohistochemical evaluation in 60 canine OSCCs and compared them with clinical and pathological variables. BUBR1, Ki-67, BUB3 and SPINDLY protein expressions were detected in all cases and classified as with a high-expression extent score in 31 (51.7%) cases for BUBR1, 33 (58.9%) cases for BUB3 and 28 (50.9%) cases for SPINDLY. Ki-67 high expression was observed in 14 (25%) cases. An independent prognostic value for BUBR1 was found, where high BUBR1 expression was associated with lower survival (p = 0.012). These results indicate that BUBR1 expression is an independent prognostic factor in these tumors, suggesting the potential use for clinical applications as a prognostic biomarker and also as a pharmacological target in canine OSCC. Full article
Show Figures

Figure 1

18 pages, 3544 KiB  
Article
Discovery of Novel Agents on Spindle Assembly Checkpoint to Sensitize Vinorelbine-Induced Mitotic Cell Death against Human Non-Small Cell Lung Cancers
by Ya-Ching Chang, Yu-Ling Tseng, Wohn-Jenn Leu, Chi-Min Du, Yi-Huei Jiang, Lih-Ching Hsu, Jui-Ling Hsu, Duen-Ren Hou and Jih-Hwa Guh
Int. J. Mol. Sci. 2020, 21(16), 5608; https://doi.org/10.3390/ijms21165608 - 5 Aug 2020
Cited by 4 | Viewed by 3324
Abstract
Non-small cell lung cancer (NSCLC) accounts about 80% of all lung cancers. More than two-thirds of NSCLC patients have inoperable, locally advanced or metastatic tumors. Non-toxic agents that synergistically potentiate cancer-killing activities of chemotherapeutic drugs are in high demand. YL-9 was a novel [...] Read more.
Non-small cell lung cancer (NSCLC) accounts about 80% of all lung cancers. More than two-thirds of NSCLC patients have inoperable, locally advanced or metastatic tumors. Non-toxic agents that synergistically potentiate cancer-killing activities of chemotherapeutic drugs are in high demand. YL-9 was a novel and non-cytotoxic compound with the structure related to sildenafil but showing much less activity against phosphodiesterase type 5 (PDE5). NCI-H460, an NSCLC cell line with low PDE5 expression, was used as the cell model. YL-9 synergistically potentiated vinorelbine-induced anti-proliferative and apoptotic effects in NCI-H460 cells. Vinorelbine induced tubulin acetylation and Bub1-related kinase (BUBR1) phosphorylation, a necessary component in spindle assembly checkpoint. These effects, as well as BUBR1 cleavage, were substantially enhanced in co-treatment with YL-9. Several mitotic arrest signals were enhanced under combinatory treatment of vinorelbine and YL-9, including an increase of mitotic spindle abnormalities, increased cyclin B1 expression, B-cell lymphoma 2 (Bcl-2) phosphorylation and increased phosphoproteins. Moreover, YL-9 also displayed synergistic activity in combining with vinorelbine to induce apoptosis in A549 cells which express PDE5. In conclusion. the data suggest that YL-9 is a novel agent that synergistically amplifies vinorelbine-induced NSCLC apoptosis through activation of spindle assembly checkpoint and increased mitotic arrest of the cell cycle. YL-9 shows the potential for further development in combinatory treatment against NSCLC. Full article
(This article belongs to the Special Issue Cell Cycle and Cell Cycle Targeting Cancer Therapies)
Show Figures

Graphical abstract

16 pages, 4362 KiB  
Article
Wasabi Compound 6-(Methylsulfinyl) Hexyl Isothiocyanate Induces Cell Death with Coexisting Mitotic Arrest and Autophagy in Human Chronic Myelogenous Leukemia K562 Cells
by Kun-Ming Wu, Hui-Fen Liao, Chih-Wen Chi, Yu Ru Kou and Yu-Jen Chen
Biomolecules 2019, 9(12), 774; https://doi.org/10.3390/biom9120774 - 23 Nov 2019
Cited by 9 | Viewed by 4364
Abstract
A natural compound from Wasabia japonica, 6-(methylsulfinyl) hexyl isothiocyanate (6-MITC) was investigated for its anti-leukemia activity and mechanism of action. It was found that 6-MITC inhibited the viability of human chronic myelogenous leukemia K562 cells along with extensive mitotic arrest, spindle multipolarity, [...] Read more.
A natural compound from Wasabia japonica, 6-(methylsulfinyl) hexyl isothiocyanate (6-MITC) was investigated for its anti-leukemia activity and mechanism of action. It was found that 6-MITC inhibited the viability of human chronic myelogenous leukemia K562 cells along with extensive mitotic arrest, spindle multipolarity, and cytoplasmic vacuole accumulation. The evidence of autophagy included the validation of autophagosomes with double-layered membranes under transmission electron microscopy, LC3I/II conversion, and the induction of G2/M phase arrest observed with acridine orange staining of treated cells, as well as the elevation of phosphorylated-histone H3 expression at the M phase. With regard to the expression of proteins related to mitosis, the down regulation of p-CHK1, p-CHK2, p-cdc25c, and p-cdc2, as well as the upregulation of cyclin B1, p-cdc20, cdc23, BubR1, Mad2, and p-plk-1 was observed. The knockdown of cdc20 was unable to block the effect of 6-MITC. The differentiation of k562 cells into monocytes, granulocytes, and megakaryocytes was not affected by 6-MITC. The 6-MITC-induced unique mode of cell death through the concurrent induction of mitosis and autophagy may have therapeutic potential. Further studies are required to elucidate the pathways associated with the counteracting occurrence of mitosis and autophagy. Full article
Show Figures

Figure 1

19 pages, 3437 KiB  
Article
Melatonin Improves In Vitro Development of Vitrified-Warmed Mouse Germinal Vesicle Oocytes Potentially via Modulation of Spindle Assembly Checkpoint-Related Genes
by Zhenzheng Wu, Bo Pan, Izhar Hyder Qazi, Haoxuan Yang, Shichao Guo, Jingyu Yang, Yan Zhang, Changjun Zeng, Ming Zhang, Hongbing Han, Qingyong Meng and Guangbin Zhou
Cells 2019, 8(9), 1009; https://doi.org/10.3390/cells8091009 - 30 Aug 2019
Cited by 47 | Viewed by 5924
Abstract
The present study aimed to investigate the effect of melatonin (MT) supplementation on in vitro maturation of vitrified mouse germinal vesicle (GV) oocytes. The fresh oocytes were randomly divided into three groups: untreated (control), or vitrified by open-pulled straw method without (vitrification group) [...] Read more.
The present study aimed to investigate the effect of melatonin (MT) supplementation on in vitro maturation of vitrified mouse germinal vesicle (GV) oocytes. The fresh oocytes were randomly divided into three groups: untreated (control), or vitrified by open-pulled straw method without (vitrification group) or with MT supplementation (vitrification + MT group). After warming, oocytes were cultured in vitro, then the reactive oxygen species (ROS) and glutathione (GSH) levels, mitochondrial membrane potential, ATP levels, spindle morphology, mRNA expression of spindle assembly checkpoint (SAC)-related genes (Mps1, BubR1, Mad1, Mad2), and their subsequent developmental potential in vitro were evaluated. The results showed that vitrification/warming procedures significantly decreased the percentage of GV oocytes developed to metaphase II (MII) stage, the mitochondrial membrane potential, ATP content, and GSH levels, remarkably increased the ROS levels, and significantly impaired the spindle morphology. The expressions of SAC-related genes were also altered in vitrified oocytes. However, when 10−7 mol/L MT was administered during the whole length of the experiment, the percentage of GV oocytes matured to MII stage was significantly increased, and the other indicators were also significantly improved and almost recovered to the normal levels relative to the control. Thus, we speculate that MT might regulate the mitochondrial membrane potential, ATP content, ROS, GSH, and expression of SAC-related genes, potentially increasing the in vitro maturation of vitrified-warmed mouse GV oocytes. Full article
(This article belongs to the Special Issue Melatonin in Human Health and Diseases)
Show Figures

Graphical abstract

18 pages, 2050 KiB  
Article
Phyllanthus emblica Fruit Extract Activates Spindle Assembly Checkpoint, Prevents Mitotic Aberrations and Genomic Instability in Human Colon Epithelial NCM460 Cells
by Xihan Guo and Xu Wang
Int. J. Mol. Sci. 2016, 17(9), 1437; https://doi.org/10.3390/ijms17091437 - 3 Sep 2016
Cited by 30 | Viewed by 8562
Abstract
The fruit of Phyllanthus emblica Linn. (PE) has been widely consumed as a functional food and folk medicine in Southeast Asia due to its remarkable nutritional and pharmacological effects. Previous research showed PE delays mitotic progress and increases genomic instability (GIN) in human [...] Read more.
The fruit of Phyllanthus emblica Linn. (PE) has been widely consumed as a functional food and folk medicine in Southeast Asia due to its remarkable nutritional and pharmacological effects. Previous research showed PE delays mitotic progress and increases genomic instability (GIN) in human colorectal cancer cells. This study aimed to investigate the similar effects of PE by the biomarkers related to spindle assembly checkpoint (SAC), mitotic aberrations and GIN in human NCM460 normal colon epithelial cells. Cells were treated with PE and harvested differently according to the biomarkers observed. Frequencies of micronuclei (MN), nucleoplasmic bridge (NPB) and nuclear bud (NB) in cytokinesis-block micronucleus assay were used as indicators of GIN. Mitotic aberrations were assessed by the biomarkers of chromosome misalignment, multipolar division, chromosome lagging and chromatin bridge. SAC activity was determined by anaphase-to- metaphase ratio (AMR) and the expression of core SAC gene budding uninhibited by benzimidazoles related 1 (BubR1). Compared with the control, PE-treated cells showed (1) decreased incidences of MN, NPB and NB (p < 0.01); (2) decreased frequencies of all mitotic aberration biomarkers (p < 0.01); and (3) decreased AMR (p < 0.01) and increased BubR1 expression (p < 0.001). The results revealed PE has the potential to protect human normal colon epithelial cells from mitotic and genomic damages partially by enhancing the function of SAC. Full article
Show Figures

Graphical abstract

14 pages, 2652 KiB  
Article
BubR1 Acts as a Promoter in Cellular Motility of Human Oral Squamous Cancer Cells through Regulating MMP-2 and MMP-9
by Chou-Kit Chou, Chang-Yi Wu, Jeff Yi-Fu Chen, Ming-Chong Ng, Hui-Min David Wang, Jen-Hao Chen, Shyng-Shiou F. Yuan, Eing-Mei Tsai, Jan-Gowth Chang and Chien-Chih Chiu
Int. J. Mol. Sci. 2015, 16(7), 15104-15117; https://doi.org/10.3390/ijms160715104 - 3 Jul 2015
Cited by 12 | Viewed by 6580
Abstract
BubR1 is a critical component of spindle assembly checkpoint, ensuring proper chromatin segregation during mitosis. Recent studies showed that BubR1 was overexpressed in many cancer cells, including oral squamous cell carcinomas (OSCC). However, the effect of BubR1 on metastasis of OSCC remains unclear. [...] Read more.
BubR1 is a critical component of spindle assembly checkpoint, ensuring proper chromatin segregation during mitosis. Recent studies showed that BubR1 was overexpressed in many cancer cells, including oral squamous cell carcinomas (OSCC). However, the effect of BubR1 on metastasis of OSCC remains unclear. This study aimed to unravel the role of BubR1 in the progression of OSCC and confirm the expression of BubR1 in a panel of malignant OSCC cell lines with different invasive abilities. The results of quantitative real-time PCR showed that the mRNA level of BubR1 was markedly increased in four OSCC cell lines, Ca9-22, HSC3, SCC9 and Cal-27 cells, compared to two normal cells, normal human oral keratinocytes (HOK) and human gingival fibroblasts (HGF). Moreover, the expression of BubR1 in these four OSCC cell lines was positively correlated with their motility. Immunofluorescence revealed that BubR1 was mostly localized in the cytosol of human gingival carcinoma Ca9-22 cells. BubR1 knockdown significantly decreased cellular invasion but slightly affect cellular proliferation on both Ca9-22 and Cal-27 cells. Consistently, the activities of metastasis-associated metalloproteinases MMP-2 and MMP-9 were attenuated in BubR1 knockdown Ca9-22 cells, suggesting the role of BubR1 in promotion of OSCC migration. Our present study defines an alternative pathway in promoting metastasis of OSCC cells, and the expression of BubR1 could be a prognostic index in OSCC patients. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop