Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = BCTZ ceramics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5588 KiB  
Article
Influence of Grain Size on Dielectric Behavior in Lead-Free 0.5 Ba(Zr0.2Ti0.8)O3–0.5 (Ba0.7Ca0.3)TiO3 Ceramics
by Vladimir Lucian Ene, Valentin Razvan Lupu, Claudiu Vasile Condor, Roxana Elena Patru, Luminita Mirela Hrib, Luminita Amarande, Adrian Ionut Nicoara, Lucian Pintilie and Adelina-Carmen Ianculescu
Nanomaterials 2023, 13(22), 2934; https://doi.org/10.3390/nano13222934 - 12 Nov 2023
Cited by 11 | Viewed by 2207
Abstract
Fine-tuning of grain sizes can significantly influence the interaction between different dielectric phenomena, allowing the development of materials with tailored dielectric resistivity. By virtue of various synthesis mechanisms, a pathway to manipulate grain sizes and, consequently, tune the material’s dielectric response is revealed. [...] Read more.
Fine-tuning of grain sizes can significantly influence the interaction between different dielectric phenomena, allowing the development of materials with tailored dielectric resistivity. By virtue of various synthesis mechanisms, a pathway to manipulate grain sizes and, consequently, tune the material’s dielectric response is revealed. Understanding these intricate relationships between granulation and dielectric properties can pave the way for designing and optimizing materials for specific applications where tailored dielectric responses are sought. The experimental part involved the fabrication of dense BCT-BZT ceramics with different grain sizes by varying the synthesis (conventional solid-state reaction route and sol-gel) and consolidation methods. Both consolidation methods produced well-crystallized specimens, with Ba0.85Ca0.15O3Ti0.9Zr0.1 (BCTZ) perovskite as the major phase. Conventional sintering resulted in microstructured and submicron-structured BCT-BZT ceramics, with average grain sizes of 2.35 μm for the solid-state sample and 0.91 μm for the sol-gel synthesized ceramic. However, spark plasma sintering produced a nanocrystalline specimen with an average grain size of 67.5 nm. As the grain size decreases, there is a noticeable decrease in the maximum permittivity, a significant reduction in dielectric losses, and a shifting of the Curie temperature towards lower values. Full article
(This article belongs to the Special Issue Synthesis and Spectral Characterization of Ceramics and Nanomaterials)
Show Figures

Figure 1

14 pages, 4239 KiB  
Article
Piezoelectricity and Thermophysical Properties of Ba0.90Ca0.10Ti0.96Zr0.04O3 Ceramics Modified with Amphoteric Nd3+ and Y3+ Dopants
by Yongshang Tian, Mingyang Ma, Shuiyun Li, Junli Dong, Xiang Ji, Haitao Wu, Jinshuang Wang and Qiangshan Jing
Materials 2023, 16(6), 2369; https://doi.org/10.3390/ma16062369 - 15 Mar 2023
Cited by 9 | Viewed by 2283
Abstract
Lead-free barium calcium titanate zirconate (BCTZ) ceramics doped with a single rare-earth element generally exhibit excellent piezoelectric properties. However, their electrical properties deteriorate at an excessive dopant content, limiting their application. In this study, amphoteric neodymium (Nd3+) and yttrium (Y3+ [...] Read more.
Lead-free barium calcium titanate zirconate (BCTZ) ceramics doped with a single rare-earth element generally exhibit excellent piezoelectric properties. However, their electrical properties deteriorate at an excessive dopant content, limiting their application. In this study, amphoteric neodymium (Nd3+) and yttrium (Y3+)-codoped BCTZ-NYx ceramics were synthesized via a solid-state reaction at 1240 °C. The influences of the Y3+ content (x) on the structural features, electrical properties, mechanical properties, and thermophysical properties were investigated. At a small x (<0.18 mol%), Y3+ could enhance the fracture strength and electrical properties by eliminating oxygen vacancies, defect dipoles, and/or structural defects. However, the outstanding performance deteriorated with excessive x. Additionally, the mechanism of the defect chemistry at different x was deduced. At an yttrium content of 0.18 mol%, the ceramic exhibited high piezoelectricity and ferroelectricity with low domain-switching activation energy (Ea = 0.401 eV), indicating that it could replace commercial lead-based piezoelectric ceramics. Full article
(This article belongs to the Topic Piezoelectric Materials and Applications)
Show Figures

Figure 1

23 pages, 4903 KiB  
Article
Multi-Parametric Exploration of a Selection of Piezoceramic Materials for Bone Graft Substitute Applications
by Liviu Nedelcu, José M. F. Ferreira, Adrian-Claudiu Popa, Luminița Amarande, Bo Nan, Liliana-Marinela Bălescu, Cezar Dragoș Geambașu, Marius-Cristian Cioangher, Lucia Leonat, Mihai Grigoroscuță, Daniel Cristea, Hermine Stroescu, Robert Cătălin Ciocoiu and George E. Stan
Materials 2023, 16(3), 901; https://doi.org/10.3390/ma16030901 - 17 Jan 2023
Cited by 8 | Viewed by 3151
Abstract
This work was devoted to the first multi-parametric unitary comparative analysis of a selection of sintered piezoceramic materials synthesised by solid-state reactions, aiming to delineate the most promising biocompatible piezoelectric material, to be further implemented into macro-porous ceramic scaffolds fabricated by 3D printing [...] Read more.
This work was devoted to the first multi-parametric unitary comparative analysis of a selection of sintered piezoceramic materials synthesised by solid-state reactions, aiming to delineate the most promising biocompatible piezoelectric material, to be further implemented into macro-porous ceramic scaffolds fabricated by 3D printing technologies. The piezoceramics under scrutiny were: KNbO3, LiNbO3, LiTaO3, BaTiO3, Zr-doped BaTiO3, and the (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 solid solution (BCTZ). The XRD analysis revealed the high crystallinity of all sintered ceramics, while the best densification was achieved for the BaTiO3-based materials via conventional sintering. Conjunctively, BCTZ yielded the best combination of functional properties—piezoelectric response (in terms of longitudinal piezoelectric constant and planar electromechanical coupling factor) and mechanical and in vitro osteoblast cell compatibility. The selected piezoceramic was further used as a base material for the robocasting fabrication of 3D macro-porous scaffolds (porosity of ~50%), which yielded a promising compressive strength of ~20 MPa (higher than that of trabecular bone), excellent cell colonization capability, and noteworthy cytocompatibility in osteoblast cell cultures, analogous to the biological control. Thereby, good prospects for the possible development of a new generation of synthetic bone graft substitutes endowed with the piezoelectric effect as a stimulus for the enhancement of osteogenic capacity were settled. Full article
Show Figures

Graphical abstract

16 pages, 5185 KiB  
Article
Optimization of Processing Steps for Superior Functional Properties of (Ba, Ca)(Zr, Ti)O3 Ceramics
by Cristina Elena Ciomaga, Lavinia P. Curecheriu, Vlad Alexandru Lukacs, Nadejda Horchidan, Florica Doroftei, Renaud Valois, Megane Lheureux, Marie Hélène Chambrier and Liliana Mitoseriu
Materials 2022, 15(24), 8809; https://doi.org/10.3390/ma15248809 - 9 Dec 2022
Cited by 10 | Viewed by 1825
Abstract
Lead-free piezoelectric ceramics with nominal composition at morphotropic phase boundary Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCTZ) prepared by different processing routes and sintered either by conventional solid-state reaction or by spark plasma sintering (SPS) techniques were comparatively investigated [...] Read more.
Lead-free piezoelectric ceramics with nominal composition at morphotropic phase boundary Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCTZ) prepared by different processing routes and sintered either by conventional solid-state reaction or by spark plasma sintering (SPS) techniques were comparatively investigated to observe the role of structural modifications and of microstructures on the dielectric, ferroelectric, piezoelectric and electrocaloric responses. The ceramics presented relative densities from 75% to 97% and showed variations in their phase composition as a result of variable mixing and different synthesis and sintering parameters providing local compositional heterogeneity. As result, all of the ceramics showed diffuse phase transition and ferroelectric switching responses, with parameters affected mostly by density (Pr between 3.6 to 10.1 μC/cm2). High values for the electrocaloric response in the Curie range were found for the ceramics with predominantly orthorhombic character. Field-induced structural modifications were probed by tunability anomalies and by XRD experiments in remanence conditions. Piezoelectric effects with notably high figure of merit values were assigned to the better densification and poling efficiency of BCTZ ceramics. Full article
(This article belongs to the Special Issue Perspective on the Development of Lead-Free Piezoceramics)
Show Figures

Figure 1

12 pages, 4281 KiB  
Article
Piezoelectric Hybrid Heterostructures PVDF/(Ba,Ca)(Zr,Ti)O3 Obtained by Laser Techniques
by Nicoleta Enea, Valentin Ion, Antoniu Moldovan, Anca Bonciu and Nicu Doinel Scarisoreanu
Coatings 2020, 10(12), 1155; https://doi.org/10.3390/coatings10121155 - 26 Nov 2020
Cited by 3 | Viewed by 3048
Abstract
In this paper we report the development of thin films composed of two piezoelectric materials, namely (Ba(Ti0.8Zr0.2)O3-x(Ba0.7Ca0.3)TiO3 (BCTZ) and polyvinylidene difluoride (PVDF), thus obtaining high piezoelectric hybrid heterostructures for making [...] Read more.
In this paper we report the development of thin films composed of two piezoelectric materials, namely (Ba(Ti0.8Zr0.2)O3-x(Ba0.7Ca0.3)TiO3 (BCTZ) and polyvinylidene difluoride (PVDF), thus obtaining high piezoelectric hybrid heterostructures for making them a viable option for wearable pressure sensors. The piezoelectric output response as a function of different weight percentage of BCTZ ceramic powders (x = 0.50 BCTZ50 and x = 0.55 BCTZ55) in the PVDF matrix was investigated. The highest value of the piezoelectric coefficient d33 and the capacitance, with low dielectric loss was obtained for the heterostructure composed of PVDF/BCTZ50. Full article
Show Figures

Figure 1

10 pages, 5706 KiB  
Article
Dielectric and Impedance Analysis on the Electrical Response of Lead-Free Ba1−xCaxTi0.9Zr0.1O3 Ceramics at High Temperature Range
by Armando Reyes-Montero, Paola Ramos-Alvarez, Amador M. González, Rigoberto López-Juárez and María Elena Villafuerte-Castrejón
Appl. Sci. 2017, 7(3), 214; https://doi.org/10.3390/app7030214 - 23 Feb 2017
Cited by 23 | Viewed by 6489
Abstract
Ba1−xCaxTi0.9Zr0.1O3 (x = 0.10, 0.15, 0.18) solid solutions were synthesized by the conventional solid-state method. A perovskite-type structure was determined using the X-ray diffraction (XRD) technique. The addition of Ca2+ reduced [...] Read more.
Ba1−xCaxTi0.9Zr0.1O3 (x = 0.10, 0.15, 0.18) solid solutions were synthesized by the conventional solid-state method. A perovskite-type structure was determined using the X-ray diffraction (XRD) technique. The addition of Ca2+ reduced the grain size (22.6, 17.9 and 13.3 μm, respectively) for all well-sintered ceramics (≈98%). Moreover, the stability temperature ranges for the tetragonal phase were promoted by displacing the ferroelectric-ferroelectric phase’s transition temperatures while TC was maintained (86 °C). The electrical performance of the material improved as the stoichiometric composition was positioned near the morphotropic phase boundary (x = 0.15): εr ≈ 16,500 (TC) at 1 kHz. For T > TC, a thermally activated relaxation process occurred. In addition, the bulk and grain boundary processes were responsible for the conduction mechanisms. The composition x = 0.15 showed an activation energy of Ea = 1.49 eV with a maximum conductivity of σmax = 2.48 × 10−2 S·cm−1 at 580 °C. Systematic studies at high temperature for dielectric properties were accomplished for analyzing electrical inhomogeneities associated with the grain, grain boundaries or surfaces, which are important for device design and a fundamental electrical characterization. Full article
(This article belongs to the Special Issue A Perspective on the Design of Lead-Free Piezoceramics)
Show Figures

Figure 1

17 pages, 4796 KiB  
Article
Growth and Characterization of Lead-free Piezoelectric Single Crystals
by Philippe Veber, Feres Benabdallah, Hairui Liu, Gabriel Buse, Michael Josse and Mario Maglione
Materials 2015, 8(11), 7962-7978; https://doi.org/10.3390/ma8115436 - 24 Nov 2015
Cited by 14 | Viewed by 6851
Abstract
Lead-free piezoelectric materials attract more and more attention owing to the environmental toxicity of lead-containing materials. In this work, we review our first attempts of single crystal grown by the top-seeded solution growth method of BaTiO3 substituted with zirconium and calcium (BCTZ) [...] Read more.
Lead-free piezoelectric materials attract more and more attention owing to the environmental toxicity of lead-containing materials. In this work, we review our first attempts of single crystal grown by the top-seeded solution growth method of BaTiO3 substituted with zirconium and calcium (BCTZ) and (K0.5Na0.5)NbO3 substituted with lithium, tantalum, and antimony (KNLSTN). The growth methodology is optimized in order to reach the best compositions where enhanced properties are expected. Chemical analysis and electrical characterizations are presented for both kinds of crystals. The compositionally-dependent electrical performance is investigated for a better understanding of the relationship between the composition and electrical properties. A cross-over from relaxor to ferroelectric state in BCTZ solid solution is evidenced similar to the one reported in ceramics. In KNLSTN single crystals, we observed a substantial evolution of the orthorhombic-to-tetragonal phase transition under minute composition changes. Full article
(This article belongs to the Special Issue Piezoelectric Materials)
Show Figures

Figure 1

Back to TopTop