Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Avian Sarcoma and Leukosis Viruses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2062 KiB  
Article
Comparison of Endogenous Alpharetroviruses (ALV-like) across Galliform Species: New Distant Proviruses
by Sergio Fandiño, Esperanza Gomez-Lucia, Laura Benítez and Ana Doménech
Microorganisms 2024, 12(1), 86; https://doi.org/10.3390/microorganisms12010086 - 31 Dec 2023
Cited by 1 | Viewed by 1829
Abstract
The Genus Alpharetrovirus contains viruses pathogenic mainly for chickens, forming the Avian Sarcoma and Leukosis Virus group (ASLV). Cells of most Galliform species, besides chickens, contain genetic elements (endogenous retroviruses, ERVs) that could recombine with other alpharetroviruses or express proteins, complementing defective ASLV, [...] Read more.
The Genus Alpharetrovirus contains viruses pathogenic mainly for chickens, forming the Avian Sarcoma and Leukosis Virus group (ASLV). Cells of most Galliform species, besides chickens, contain genetic elements (endogenous retroviruses, ERVs) that could recombine with other alpharetroviruses or express proteins, complementing defective ASLV, which may successfully replicate and cause disease. However, they are quite unknown, and only ALV-F, from ring-necked pheasants, has been partially published. Upon scrutiny of 53 genomes of different avian species, we found Alpharetrovirus-like sequences only in 12 different Galliformes, including six full-length (7.4–7.6 Kbp) and 27 partial sequences. Phylogenetic studies of the regions studied (LTR, gag, pol, and env) consistently resulted in five almost identical clades containing the same ERVs: Clade I (presently known ASLVs); Clade II (Callipepla spp. ERVs); Clade IIIa (Phasianus colchicus ERVs); Clade IIIb (Alectoris spp. ERVs); and Clade IV (Centrocercus spp. ERVs). The low pol identity scores suggested that each of these Clades may be considered a different species. ORF analysis revealed that putatively encoded proteins would be very similar in length and domains to those of other alpharetroviruses and thus potentially functional. This will undoubtedly contribute to better understanding the biology of defective viruses, especially in wild Galliformes, their evolution, and the danger they may represent for other wild species and the poultry industry. Full article
(This article belongs to the Special Issue Pathogen Infection in Wildlife 2.0)
Show Figures

Graphical abstract

14 pages, 2766 KiB  
Article
Exploring the Microbial Community Structure in the Chicken House Environment by Metagenomic Analysis
by Cheng Lou, Zhuo Chen, Yu Bai, Tongjie Chai, Yuling Guan and Bo Wu
Animals 2024, 14(1), 55; https://doi.org/10.3390/ani14010055 - 22 Dec 2023
Cited by 4 | Viewed by 2030
Abstract
The environmental conditions of chicken houses play an important role in the growth and development of these animals. The chicken house is an essential place for the formation of microbial aerosols. Microbial aerosol pollution and transmission can affect human and animal health. In [...] Read more.
The environmental conditions of chicken houses play an important role in the growth and development of these animals. The chicken house is an essential place for the formation of microbial aerosols. Microbial aerosol pollution and transmission can affect human and animal health. In this work, we continuously monitored fine particulate matter (PM2.5) in the chicken house environment for four weeks and studied the microbial community structure in the aerosols of the chicken house environment through metagenomic sequencing. Our results found that bacteria, fungi, viruses, and archaea were the main components of PM2.5 in the chicken house environment, accounting for 89.80%, 1.08%, 2.06%, and 0.49%, respectively. Conditional pathogens are a type of bacteria that poses significant harm to animals themselves and to farm workers. We screened ten common conditional pathogens and found that Staphylococcus had the highest relative abundance, while Clostridium contained the most microbial species, up to 456. Basidiomycetes and Ascomycota in fungi showed dramatic changes in relative abundance, and other indexes showed no significant difference. Virulence factors (VF) are also a class of molecules produced by pathogenic microbes that can cause host diseases. The top five virulence factors were found in four groups: FbpABC, HitABC, colibactin, acinetobactin, and capsule, many of which are used for the iron uptake system. In the PM2.5 samples, eight avian viruses were the most significant discoveries, namely Fowl aviadovirus E, Fowl aviadovirus D, Avian leukosis virus, Avian endogenous retrovirus EAV-HP, Avian dependent parvovirus 1, Fowl adenovus, Fowl aviadovirus B, and Avian sarcoma virus. The above results significantly improve our understanding of the microbial composition of PM2.5 in chicken houses, filling a gap on virus composition; they also indicate a potential threat to poultry and to human health. This work provides an important theoretical basis for animal house environmental monitoring and protection. Full article
(This article belongs to the Collection Veterinary Microbiology in Farm Animals)
Show Figures

Figure 1

2 pages, 196 KiB  
Extended Abstract
CRISPR/Cas9 Editing of Viral Receptors and Biotechnological Approach to Host Resistance
by Jiří Hejnar, Anna Koslová, Pavel Trefil, Jiří Plachý, Markéta Reinišová, Dana Kučerová, Jitka Mucksová and Jiří Kalina
Proceedings 2020, 50(1), 22; https://doi.org/10.3390/proceedings2020050022 - 8 Jun 2020
Viewed by 1173
Abstract
Avian sarcoma and leukosis virus (ASLV), diversified into seven phylogenetically relative
subgroups (A, B, C, D, E, J, and K), present as either exogenous or endogenous viruses in domestic
chicken. [...] Full article
(This article belongs to the Proceedings of Viruses 2020—Novel Concepts in Virology)
15 pages, 1934 KiB  
Article
Avian Sarcoma and Leukosis Virus Envelope Glycoproteins Evolve to Broaden Receptor Usage Under Pressure from Entry Competitors
by Audelia Munguia and Mark J. Federspiel
Viruses 2019, 11(6), 519; https://doi.org/10.3390/v11060519 - 5 Jun 2019
Cited by 8 | Viewed by 3121
Abstract
The subgroup A through E avian sarcoma and leukosis viruses (ASLV(A) through ASLV(E)) are a group of highly related alpharetroviruses that have evolved their envelope glycoproteins to use different receptors to enable efficient virus entry due to host resistance and/or to expand host [...] Read more.
The subgroup A through E avian sarcoma and leukosis viruses (ASLV(A) through ASLV(E)) are a group of highly related alpharetroviruses that have evolved their envelope glycoproteins to use different receptors to enable efficient virus entry due to host resistance and/or to expand host range. Previously, we demonstrated that ASLV(A) in the presence of a competitor to the subgroup A Tva receptor, SUA-rIgG immunoadhesin, evolved to use other receptor options. The selected mutant virus, RCASBP(A)Δ155–160, modestly expanded its use of the Tvb and Tvc receptors and possibly other cell surface proteins while maintaining the binding affinity to Tva. In this study, we further evolved the Δ155–160 virus with the genetic selection pressure of a soluble form of the Tva receptor that should force the loss of Tva binding affinity in the presence of the Δ155–160 mutation. Viable ASLVs were selected that acquired additional mutations in the Δ155–160 Env hypervariable regions that significantly broadened receptor usage to include Tvb and Tvc as well as retaining the use of Tva as a receptor determined by receptor interference assays. A similar deletion in the hr1 hypervariable region of the subgroup C ASLV glycoproteins evolved to broaden receptor usage when selected on Tvc-negative cells. Full article
Show Figures

Figure 1

23 pages, 3122 KiB  
Article
Mutations in Both the Surface and Transmembrane Envelope Glycoproteins of the RAV-2 Subgroup B Avian Sarcoma and Leukosis Virus Are Required to Escape the Antiviral Effect of a Secreted Form of the TvbS3 Receptor
by Xueqian Yin, Deborah C. Melder, William S. Payne, Jerry B. Dodgson and Mark J. Federspiel
Viruses 2019, 11(6), 500; https://doi.org/10.3390/v11060500 - 31 May 2019
Cited by 8 | Viewed by 2958
Abstract
The subgroup A through E avian sarcoma and leukosis viruses ASLV(A) through ASLV(E) are a group of highly related alpharetroviruses that have evolved to use very different host protein families as receptors. We have exploited genetic selection strategies to force the replication-competent ASLVs [...] Read more.
The subgroup A through E avian sarcoma and leukosis viruses ASLV(A) through ASLV(E) are a group of highly related alpharetroviruses that have evolved to use very different host protein families as receptors. We have exploited genetic selection strategies to force the replication-competent ASLVs to naturally evolve and acquire mutations to escape the pressure on virus entry and yield a functional replicating virus. In this study, evolutionary pressure was exerted on ASLV(B) virus entry and replication using a secreted for of its Tvb receptor. As expected, mutations in the ASLV(B) surface glycoprotein hypervariable regions were selected that knocked out the ability for the mutant glycoprotein to bind the sTvbS3-IgG inhibitor. However, the subgroup B Rous associated virus 2 (RAV-2) also required additional mutations in the C-terminal end of the SU glycoprotein and multiple regions of TM highlighting the importance of the entire viral envelope glycoprotein trimer structure to mediate the entry process efficiently. These mutations altered the normal two-step ASLV membrane fusion process to enable infection. Full article
Show Figures

Figure 1

25 pages, 4175 KiB  
Review
Reverse Engineering Provides Insights on the Evolution of Subgroups A to E Avian Sarcoma and Leukosis Virus Receptor Specificity
by Mark J. Federspiel
Viruses 2019, 11(6), 497; https://doi.org/10.3390/v11060497 - 30 May 2019
Cited by 22 | Viewed by 3713
Abstract
The initial step of retrovirus entry—the interaction between the virus envelope glycoprotein trimer and a cellular receptor—is complex, involving multiple, noncontiguous determinants in both proteins that specify receptor choice, binding affinity and the ability to trigger conformational changes in the viral glycoproteins. Despite [...] Read more.
The initial step of retrovirus entry—the interaction between the virus envelope glycoprotein trimer and a cellular receptor—is complex, involving multiple, noncontiguous determinants in both proteins that specify receptor choice, binding affinity and the ability to trigger conformational changes in the viral glycoproteins. Despite the complexity of this interaction, retroviruses have the ability to evolve the structure of their envelope glycoproteins to use a different cellular protein as receptors. The highly homologous subgroup A to E Avian Sarcoma and Leukosis Virus (ASLV) glycoproteins belong to the group of class 1 viral fusion proteins with a two-step triggering mechanism that allows experimental access to intermediate structures during the fusion process. We and others have taken advantage of replication-competent ASLVs and exploited genetic selection strategies to force the ASLVs to naturally evolve and acquire envelope glycoprotein mutations to escape the pressure on virus entry and still yield a functional replicating virus. This approach allows for the simultaneous selection of multiple mutations in multiple functional domains of the envelope glycoprotein that may be required to yield a functional virus. Here, we review the ASLV family and experimental system and the reverse engineering approaches used to understand the evolution of ASLV receptor usage. Full article
Show Figures

Figure 1

13 pages, 4243 KiB  
Review
Multifunctional miR-155 Pathway in Avian Oncogenic Virus-Induced Neoplastic Diseases
by Megha Sravani Bondada, Yongxiu Yao and Venugopal Nair
Non-Coding RNA 2019, 5(1), 24; https://doi.org/10.3390/ncrna5010024 - 13 Mar 2019
Cited by 20 | Viewed by 6171
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that fine-tune the responses of the cell by modulating the cell transcriptome and gene expression. MicroRNA 155 (miR-155) is a conserved multifunctional miRNA involved in multiple roles including the modulation of the immune responses. When deregulated, miR-155 [...] Read more.
MicroRNAs (miRNAs) are small noncoding RNAs that fine-tune the responses of the cell by modulating the cell transcriptome and gene expression. MicroRNA 155 (miR-155) is a conserved multifunctional miRNA involved in multiple roles including the modulation of the immune responses. When deregulated, miR-155 can also contribute to cancer as has been demonstrated in several human malignancies such as diffuse large B cell lymphoma, chronic lymphocytic leukemia, as well as in Epstein–Barr virus (EBV)-induced B cell transformation. Avian oncogenic viruses such as Marek’s disease virus (MDV), avian leukosis virus (ALV), and reticuloendotheliosis virus (REV) that account for more than 90% of cancers in avian species, also make use of the miR-155 pathway during oncogenesis. While oncogenic retroviruses, such as ALV, activate miR-155 by insertional activation, acutely transforming retroviruses use transduced oncogenes such as v-rel to upregulate miR-155 expression. MDV on the other hand, encodes a functional miR-155 ortholog mdv1-miR-M4, similar to the miR-155 ortholog kshv-miR-K11 present in Kaposi’s sarcoma-associated herpesvirus (KSHV). We have shown that mdv1-miR-M4 is critical for the induction of MDV-induced lymphomas further demonstrating the oncogenic potential of miR-155 pathway in cancers irrespective of the diverse etiology. In this review, we discuss on our current understanding of miR-155 function in virus-induced lymphomas focusing primarily on avian oncogenic viruses. Full article
(This article belongs to the Special Issue Non-Coding RNAs in Viral Infections)
Show Figures

Figure 1

Back to TopTop