Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Auricularia polytricha

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2168 KiB  
Article
Utilization of Giant Mimosa Stalk to Produce Effective Stick Spawn for Reducing Inoculum Costs in Economic Mushroom Farming Systems
by Orlavanh Xayyavong, Worawoot Aiduang, Kritsana Jatuwong and Saisamorn Lumyong
Agriculture 2025, 15(15), 1584; https://doi.org/10.3390/agriculture15151584 - 23 Jul 2025
Viewed by 248
Abstract
The high cost of mushroom spawn remains a critical constraint to economically viable mushroom cultivation, particularly for small-scale farmers. This study investigated four spawn types, including stick (giant mimosa stalks, GMS), sawdust, sorghum, and liquid culture as inoculum sources for 10 edible mushroom [...] Read more.
The high cost of mushroom spawn remains a critical constraint to economically viable mushroom cultivation, particularly for small-scale farmers. This study investigated four spawn types, including stick (giant mimosa stalks, GMS), sawdust, sorghum, and liquid culture as inoculum sources for 10 edible mushroom species. The results indicated that GMS stick spawn provides excellent conditions for the mycelial growth of seven species, outperforming other spawn types in terms of colonization rate and pinhead formation. Mushrooms grown on GMS substrate demonstrated rapid development, with full colonization occurring within 11 to 26 days and pinhead initiation between 18 and 47 days, depending on the species. Among the mushroom species tested, Schizophyllum commune exhibited the fastest growth, reaching full colonization in 11 days and forming pinheads after 18 days of inoculation. In comparison, Auricularia polytricha showed the slowest development. Economically, GMS spawn was the most cost-effective at 0.074 USD per unit, significantly lower than sawdust (0.24 USD), sorghum (0.29 USD), and potato dextrose broth (PDB; 2.80 USD). The conversion from PDB with GMS could reduce industrial inoculum costs from 35,000 USD to 600 USD annually. These findings demonstrate the potential of GMS as an effective, low-cost, and sustainable spawn option that can enhance mycelial growth and support eco-friendly farming practices. Full article
Show Figures

Figure 1

11 pages, 3553 KiB  
Article
Responses of Crop Yield, Soil Fertility, and Heavy Metals to Spent Mushroom Residues Application
by Qichao Tang, Weijia Liu, Han Huang, Zhaohui Peng and Liangji Deng
Plants 2024, 13(5), 663; https://doi.org/10.3390/plants13050663 - 28 Feb 2024
Cited by 4 | Viewed by 2284
Abstract
Waste mushroom residues are often returned to fields as organic amendments. Here, we estimated the effects of the continuous applications of different spent mushroom substrates for 2 years on crop yields, soil nutrients, and heavy metals in paddy fields. The study comprised seven [...] Read more.
Waste mushroom residues are often returned to fields as organic amendments. Here, we estimated the effects of the continuous applications of different spent mushroom substrates for 2 years on crop yields, soil nutrients, and heavy metals in paddy fields. The study comprised seven treatments: no fertilization (CK) and mineral NPK fertilizer (CF), as well as NPK fertilizer combined with Enoki mushroom residue (EMR50), Oyster mushroom residue (OMR50), Auricularia polytricha mushroom residue (APR50), Shiitake mushroom residue (SMR50), and Agaricus bisporus residue (ABR50). The grain yield was highest under the APR50 treatment. The short-term application of waste mushroom residue significantly increased SOC, TN, TP, and TK content relative to the CK treatment. The SOC, TP, and TK were highest under ABR50. Both total Cr and Cd contents were highest under CF treatment. The highest cumulative ecological risk was observed under OMR50 treatment. In addition, crop yield was positively correlated with SOC, TN, TP, and TP. Our results highlight that further research and innovation are needed to optimize the benefits and overcome the challenges of mushroom residue application. Full article
(This article belongs to the Special Issue Management of Soil Health in Agroecosystem)
Show Figures

Figure 1

15 pages, 3095 KiB  
Article
Multifunctional Biological Properties and Topical Film Forming Spray Base on Auricularia polytricha as a Natural Polysaccharide Containing Brown Agaricus bisporus Extract for Skin Hydration
by Nichcha Nitthikan, Pimporn Leelapornpisid, Ornchuma Naksuriya, Nutjeera Intasai and Kanokwan Kiattisin
Cosmetics 2023, 10(5), 145; https://doi.org/10.3390/cosmetics10050145 - 20 Oct 2023
Cited by 4 | Viewed by 4177
Abstract
Mushrooms are edible fungi containing valuable nutrients. They provide attractive bio-active properties, which have confirmed anti-oxidants, anti-aging, and anti-inflammatory properties. Mushrooms possess abundant natural polymers affecting skin hydration and acting as moisturizers supporting skin barrier function. In this study, cloud ear mushroom ( [...] Read more.
Mushrooms are edible fungi containing valuable nutrients. They provide attractive bio-active properties, which have confirmed anti-oxidants, anti-aging, and anti-inflammatory properties. Mushrooms possess abundant natural polymers affecting skin hydration and acting as moisturizers supporting skin barrier function. In this study, cloud ear mushroom (Auricularia polytricha) water extract (CW) was produced as a natural polymer to evaluate a new film-forming spray (FFS) containing CW to increase skin hydration and protect transepidermal water loss. CW contained polysaccharides as 748.2 ± 0.02 mg glucose/g extract. CW significantly inhibited the secretion of IL-6 and TNF-α and enhanced skin hydration by increasing aquaporin-3 (AQP3) and filaggrin (FLG) in HaCaT cells. The FFS was formulated using CW, sodium polystyrene sulfonate, and glycerin. The selected formulation contained brown Agaricus bisporus (BE-FFS) evaluated physical appearance, spray angle, spray pattern, and in vitro skin permeation. The BE-FFS has a transparent thin film with suitable occlusive properties, drying time, and physical appearance. Afterward, in vitro skin permeation and human hydration property studies presented the long-lasting effects and provided safety and hydration potential after 4 weeks of use. Overall, all results indicate that the BE-FFS is a natural film-forming spray for skin hydration improvement. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Graphical abstract

12 pages, 2649 KiB  
Article
Gamma-Irradiation-Induced Degradation of the Water-Soluble Polysaccharide from Auricularia polytricha and Its Anti-Hypercholesterolemic Activity
by Ping Li, Chuan Xiong and Wenli Huang
Molecules 2022, 27(3), 1110; https://doi.org/10.3390/molecules27031110 - 7 Feb 2022
Cited by 23 | Viewed by 2905
Abstract
The water-soluble polysaccharides (APPs) isolated from the edible mushroom Auricularia polytricha were irradiated by γ-ray at doses of 10, 100, and 1000 kGy. The effect of gamma irradiation on the degradation of the polysaccharide was investigated. After irradiation treatment, the viscosity and molecular [...] Read more.
The water-soluble polysaccharides (APPs) isolated from the edible mushroom Auricularia polytricha were irradiated by γ-ray at doses of 10, 100, and 1000 kGy. The effect of gamma irradiation on the degradation of the polysaccharide was investigated. After irradiation treatment, the viscosity and molecular weight of APPs decreased with the increase in the irradiation dose. The changes in the enthalpy of APPs after irradiation treatment were observed. Meanwhile, SEM showed that R-APPs were crushed into fragments and the surfaces became smooth and wrinkled after irradiation. In further spectrum analysis, it was found that the glycoside bonds of the polysaccharides were broken and accompanied by the formation of double bonds. This suggested that gamma irradiation could cause the depolymerization and oxidation of polysaccharides. In addition, irradiated APPs could reduce the body weight of hyperlipidemia mice. The levels of serum and liver TC, TG, and serum LDH-c significantly decreased in hyperlipidemia mice after treatment by irradiated APPs. It indicated that gamma irradiation significantly improved the anti-hypolipidemic activity of APPs. The relationship between the physicochemical properties and hypolipidemic activity of polysaccharides was interpreted, which provides a theoretical basis for the further development of APP products. Gamma irradiation is a viable technology for macromolecular modification for degradation. Full article
Show Figures

Figure 1

19 pages, 6136 KiB  
Article
Neuroprotective Effects against Glutamate-Induced HT-22 Hippocampal Cell Damage and Caenorhabditis elegans Lifespan/Healthspan Enhancing Activity of Auricularia polytricha Mushroom Extracts
by Chanin Sillapachaiyaporn, Panthakarn Rangsinth, Sunita Nilkhet, Alison T. Ung, Siriporn Chuchawankul and Tewin Tencomnao
Pharmaceuticals 2021, 14(10), 1001; https://doi.org/10.3390/ph14101001 - 29 Sep 2021
Cited by 21 | Viewed by 5167
Abstract
Oxidative stress is associated with several diseases, particularly neurodegenerative diseases, commonly found in the elderly. The attenuation of oxidative status is one of the alternatives for neuroprotection and anti-aging. Auricularia polytricha (AP), an edible mushroom, contains many therapeutic properties, including antioxidant properties. Herein, [...] Read more.
Oxidative stress is associated with several diseases, particularly neurodegenerative diseases, commonly found in the elderly. The attenuation of oxidative status is one of the alternatives for neuroprotection and anti-aging. Auricularia polytricha (AP), an edible mushroom, contains many therapeutic properties, including antioxidant properties. Herein, we report the effects of AP extracts on antioxidant, neuroprotective, and anti-aging activities. The neuroprotective effect of AP extracts against glutamate-induced HT-22 neuronal damage was determined by evaluating the cytotoxicity, intracellular reactive oxygen species (ROS) accumulation, and expression of antioxidant enzyme genes. Lifespan and healthspan assays were performed to examine the effects of AP extracts from Caenorhabditis elegans. We found that ethanolic extract (APE) attenuated glutamate-induced HT-22 cytotoxicity and increased the expression of antioxidant enzyme genes. Moreover, APE promoted in the longevity and health of the C. elegans. Chemical analysis of the extracts revealed that APE contains the highest quantity of flavonoids and a reasonable percentage of phenols. The lipophilic compounds in APE were identified by gas chromatography/mass spectrometry (GC/MS), revealing that APE mainly contains linoleic acid. Interestingly, linoleic acid suppressed neuronal toxicity and ROS accumulation from glutamate induction. These results indicate that AP could be an exciting natural source that may potentially serves as neuroprotective and anti-aging agents. Full article
Show Figures

Graphical abstract

14 pages, 3904 KiB  
Article
Application of Fungus Enzymes in Spent Mushroom Composts from Edible Mushroom Cultivation for Phthalate Removal
by Bea-Ven Chang, Chiao-Po Yang and Chu-Wen Yang
Microorganisms 2021, 9(9), 1989; https://doi.org/10.3390/microorganisms9091989 - 19 Sep 2021
Cited by 19 | Viewed by 4715
Abstract
Spent mushroom composts (SMCs) are waste products of mushroom cultivation. The handling of large amounts of SMCs has become an important environmental issue. Phthalates are plasticizers which are widely distributed in the environment and urban wastewater, and cannot be effectively removed by conventional [...] Read more.
Spent mushroom composts (SMCs) are waste products of mushroom cultivation. The handling of large amounts of SMCs has become an important environmental issue. Phthalates are plasticizers which are widely distributed in the environment and urban wastewater, and cannot be effectively removed by conventional wastewater treatment methods. In this study, SMCs are tested for their ability to remove phthalates, including benzyl butyl phthalate (BBP), di-n-butyl phthalate (DBP), and diethyl phthalate (DEP). Batch experiments reveal that BBP, DBP, and DEP can be degraded by the SMC enzyme extracts of four edible mushrooms: Pleurotus eryngii, Pleurotus djamor, Pleurotus ostreatus, and Auricularia polytricha. Potential fungus enzymes associated with BBP, DBP, and DEP degradation in SMCs (i.e., esterases, oxygenases, and oxidases/dehydrogenases) are uncovered by metaproteomic analysis using mass spectrometry. Bioreactor experiments indicate that the direct application of SMCs can remove BBP, DBP, and DEP from wastewater, through adsorption and biodegradation. The results of this study extend the application of white-rot fungi without laccases (e.g., Auricularia sp.) for the removal of organic pollutants which are not degraded by laccases. The application of SMCs for phthalate removal can be developed into a mycoremediation-based green and sustainable technology. Full article
(This article belongs to the Special Issue Fungal Biodiversity for Bioremediation)
Show Figures

Figure 1

11 pages, 875 KiB  
Article
Evaluation of Using Spent Mushroom Sawdust Wastes for Cultivation of Auricularia polytricha
by Chiu-Yeh Wu, Chih-Hung Liang and Zeng-Chin Liang
Agronomy 2020, 10(12), 1892; https://doi.org/10.3390/agronomy10121892 - 29 Nov 2020
Cited by 18 | Viewed by 4853
Abstract
The purpose of this study was to investigate the suitability of different spent mushroom sawdust wastes (SMSWs) and different proportions of SMSWs as potential substrates for the cultivation of Auricularia polytricha by evaluating yield and biological efficiency of the fruiting body. Nine SMSWs [...] Read more.
The purpose of this study was to investigate the suitability of different spent mushroom sawdust wastes (SMSWs) and different proportions of SMSWs as potential substrates for the cultivation of Auricularia polytricha by evaluating yield and biological efficiency of the fruiting body. Nine SMSWs were respectively utilized as the main ingredient in the cultivation of A. polytricha. Then, spent Pleurotus eryngii, Pleurotus cystidiosus, and Pleurotus ostreatus sawdust wastes were screened among these nine SMSWs to be utilized as substrate and to determine the suitable proportion of SMSW in the cultivation of A. polytricha based on their yields and biological efficiencies. The highest yield and biological efficiency (total of two flushes) of A. polytricha cultivation on a single SMSW substrate was obtained with spent P. eryngii sawdust waste, followed by spent P. cystidiosus and P. ostreatus sawdust wastes. These three SMSWs were then applied in nine combination substrates, which were screened based on yield and biological efficiency for cultivation of A. polytricha. The combination substrate with the highest yield and biological efficiency of A. polytricha cultivation was P. eryngii (PES) + P. cystidiosus spent sawdust (PCYS) (235.4 g/bag yield and 58.85% biological efficiency); its yield was 1.62 folds higher than that of the control. From the results, we found that it was feasible to use spent sawdust wastes of P. eryngii and P. cystidiosus to replace sawdust for cultivation of A. polytricha. Full article
Show Figures

Figure 1

16 pages, 3417 KiB  
Article
Diversity, Abundance, and Distribution of Wood-Decay Fungi in Major Parks of Hong Kong
by Shunping Ding, Hongli Hu and Ji-Dong Gu
Forests 2020, 11(10), 1030; https://doi.org/10.3390/f11101030 - 24 Sep 2020
Cited by 13 | Viewed by 5644
Abstract
Wood-decay fungi are one of the major threats to the old and valuable trees in Hong Kong and constitute a main conservation and management challenge because they inhabit dead wood as well as living trees. The diversity, abundance, and distribution of wood-decay fungi [...] Read more.
Wood-decay fungi are one of the major threats to the old and valuable trees in Hong Kong and constitute a main conservation and management challenge because they inhabit dead wood as well as living trees. The diversity, abundance, and distribution of wood-decay fungi associated with standing trees and stumps in four different parks of Hong Kong, including Hong Kong Park, Hong Kong Zoological and Botanical Garden, Kowloon Park, and Hong Kong Observatory Grounds, were investigated. Around 4430 trees were examined, and 52 fungal samples were obtained from 44 trees. Twenty-eight species were identified from the samples and grouped into twelve families and eight orders. Phellinus noxius, Ganoderma gibbosum, and Auricularia polytricha were the most abundant species and occurred in three of the four parks. Most of the species were detected on old trees, indicating that older trees were more susceptible to wood-decay fungi than younger ones. More wood-decay fungal species were observed on Ficus microcarpa trees than on other tree species. These findings expanded the knowledge of wood-decay fungi in urban environments in Hong Kong and provided useful information for the conservation of old trees and the protection of human life and property from the danger of falling trees. Full article
(This article belongs to the Special Issue Pests and Pathogens of Urban Trees)
Show Figures

Figure 1

14 pages, 1793 KiB  
Article
Assessment of Cosmeceutical Potentials of Selected Mushroom Fruitbody Extracts Through Evaluation of Antioxidant, Anti-Hyaluronidase and Anti-Tyrosinase Activity
by Dang Lelamurni Abd Razak, Anisah Jamaluddin, Nur Yuhasliza Abd Rashid, Nor Ajila Sani and Musaalbakri Abdul Manan
J 2020, 3(3), 329-342; https://doi.org/10.3390/j3030026 - 18 Sep 2020
Cited by 8 | Viewed by 6562
Abstract
Cosmeceutical formulations containing naturally derived active ingredients are currently preferred by consumers worldwide. Mushrooms are one of the potential sources for cosmeceutical ingredients but relevant research is still lacking. In this study, hot- and cold-water extractions were performed on four locally-cultivated mushrooms—Pleurotus [...] Read more.
Cosmeceutical formulations containing naturally derived active ingredients are currently preferred by consumers worldwide. Mushrooms are one of the potential sources for cosmeceutical ingredients but relevant research is still lacking. In this study, hot- and cold-water extractions were performed on four locally-cultivated mushrooms—Pleurotus ostreatus, Ganoderma lucidum, Auricularia polytricha and Schizophyllum commune—with the aim to assess the cosmeceutical potential of these mushroom fruitbody extracts. Total phenolics, polysaccharide and glucan content were determined. Antioxidant property of the mushroom extracts was assessed by determining the DPPH radical scavenging, ferric-reducing (FRAP) and superoxide anion (SOA) scavenging activity. Anti-hyaluronidase activity was used as an indicator for the anti-aging and anti-inflammatory property, while anti-tyrosinase activity was evaluated to assess the anti-pigmentation or whitening property of these extracts. Our results showed that total polysaccharide content of P. ostreatus extracts was the highest (235.8–253.6 mg GE/g extract), while extracts from G. lucidum contained the lowest glucan (10.12–10.67%). Cold-water extract from S. commune exhibited substantial tyrosinase inhibition activity (98.15%) and SOA scavenging activity (94.82%). The greatest hyaluronidase activity was exhibited by G. lucidum hot-water extract, with the value of 72.78%. The findings from the correlation analyses suggest that the cosmeceutical properties of these mushrooms can be attributed mainly to the combination of different types of compound such as polysaccharides and phenolics. Overall, cold-water extract of S. commune and hot-water extract of G. lucidum showed the best results and may be further investigated. Full article
(This article belongs to the Section Biology & Life Sciences)
Show Figures

Figure 1

14 pages, 5828 KiB  
Article
Dissipation and Migration of Pyrethroids in Auricularia polytricha Mont. from Cultivation to Postharvest Processing and Dietary Risk
by Jin-Jing Xiao, Jin-Sheng Duan, Yan-Can Wu, Yan-Hong Shi, Qing-Kui Fang, Min Liao, Ri-Mao Hua and Hai-Qun Cao
Molecules 2018, 23(4), 791; https://doi.org/10.3390/molecules23040791 - 29 Mar 2018
Cited by 3 | Viewed by 4151
Abstract
In order to ensure raw consumption safety the dissipation behavior, migration, postharvest processing, and dietary risk assessment of five pyrethroids in mushroom (Auricularia polytricha Mont.) cultivated under Chinese greenhouse-field conditions. Half-lives (t1/2) of pyrethroids in fruiting body and substrate [...] Read more.
In order to ensure raw consumption safety the dissipation behavior, migration, postharvest processing, and dietary risk assessment of five pyrethroids in mushroom (Auricularia polytricha Mont.) cultivated under Chinese greenhouse-field conditions. Half-lives (t1/2) of pyrethroids in fruiting body and substrate samples were 3.10–5.26 and 17.46–40.06 d, respectively. Fenpropathrin dissipated rapidly in fruiting bodies (t1/2 3.10 d); bifenthrin had the longest t1/2. At harvest, pyrethroid residues in A. polytricha (except fenpropathrin) were above the respective maximum residue limits (MRLs). Some migration of lambda-cyhalothrin was observed in the substrate-fruit body system. In postharvest-processing, sun-drying and soaking reduced pyrethroid residues by 25–83%. We therefore recommend that consumers soak these mushrooms in 0.5% NaHCO3 at 50 °C for 90 min. Pyrethroids exhibit a particularly low PF value of 0.08–0.13%, resulting in a negligible exposure risk upon mushroom consumption. This study provides guidance for the safe application of pyrethroids to edible fungi, and for the establishment of MRLs in mushrooms to reduce pesticide exposure in humans. Full article
Show Figures

Graphical abstract

Back to TopTop