Utilization of Giant Mimosa Stalk to Produce Effective Stick Spawn for Reducing Inoculum Costs in Economic Mushroom Farming Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Mushroom Mycelium Source and Preparation
2.2. Material Source and Preparation
2.3. Determination of Physicochemical Properties of Raw Biomass Materials Used for Stick Spawn Preparation
2.3.1. Chemical Properties
2.3.2. Density
2.3.3. Determination of Water Absorption of Raw Biomass Material
2.4. Evaluation of the Suitable Material for Mushroom Mycelial Growth on Stick Spawn
2.5. Evaluation of Mycelial Growth on Different Mushroom Spawn Types
2.5.1. Mushroom Spawn Type
2.5.2. Spawn Preparation and Inoculation
2.5.3. Substrate Preparation and Inoculation
2.6. Economic Comparison of Inoculum Types for Mushroom Cultivation to Maximize Profitability
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of Raw Biomass Materials Used for Stick Spawn Preparation
3.2. Water Absorption
3.3. Evaluation of Suitable Material for Mushroom Mycelial Growth on Stick Spawn
3.4. Comparison of Mycelial Growth on Different Mushroom Spawn Types
3.5. Cost-Benefit Analysis and Economic Impact Assessments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saldanha, A.; Gomes, L.C.; Pinela, J.; Coimbra, M.A.; Barros, L.; Dias, M.I.; Pereira, C. Sustainable cultivation of edible mushrooms: Preserving biodiversity and ensuring product quality. Biol. Life Sci. Forum. 2023, 6, 27. [Google Scholar]
- Kumla, J.; Suwannarach, N.; Sujarit, K.; Penkhrue, W.; Kakumyan, P.; Jatuwong, K.; Vadthanarat, S.; Lumyong, S. Cultivation of mushrooms and their lignocellulolytic enzyme production through the utilization of agro-industrial waste. Molecules 2020, 25, 2811. [Google Scholar] [CrossRef]
- Bhambri, A.; Srivastava, M.; Mahale, V.G.; Mahale, S.; Karn, S.K. Mushrooms as potential sources of active metabolites and medicines. Front. Microbiol. 2022, 13, 837266. [Google Scholar] [CrossRef] [PubMed]
- Saetang, N.; Ramaraj, R.; Praphruet, R.; Unpaprom, Y. Unlocking the benefits of split gill mushroom: Chemical analysis and prebiotic properties of schizophyllan extract. Int. J. Biol. Macromol. 2023, 252, 126544. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Hu, J. Study on survival strategies of farmers engage in small—Scale household cultivation of edible mushrooms: Take Shandong Province as an example. Mod. Econ. 2014, 5, 1092–1100. [Google Scholar] [CrossRef]
- Chaudhary, D.K. Mushroom Cultivation: Advances, Opportunities, and Challenges in Sustainable Agriculture. Available online: https://www.researchgate.net/publication/390971561_Mushroom_Cultivation_Advances_Opportunities_and_Challenges_in_Sustainable_Agriculture (accessed on 24 June 2025).
- Balan, V.; Zhu, W.; Krishnamoorthy, H.; Benhaddou, D.; Mowrer, J.; Husain, H.; Eskandari, A. Challenges and opportunities in producing high-quality edible mushrooms from lignocellulosic biomass in a small scale. Appl. Microbiol. Biotechnol. 2022, 106, 1355–1374. [Google Scholar] [CrossRef]
- Aditya; Neeraj; Bhatia, J.N.; Yadav, A.N. Characterization and yield performance of spawn prepared from Hypsizygus ulmarius (Bull.) Redhead and some Pleurotus species (Agaricomycetes). Biocatal. Agric. Biotechnol. 2024, 56, 103047. [Google Scholar] [CrossRef]
- Aiduang, W.; Jatuwong, K.; Luangharn, T.; Jinanukul, P.; Thamjaree, W.; Teeraphantuvat, T.; Waroonkun, T.; Lumyong, S. A review delving into the factors influencing mycelium—Based green composites (MBCs) production and their properties for long-term sustainability targets. Biomimetics 2024, 9, 337. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Hu, D.D.; Ma, X.T.; Li, S.G.; Gu, J.G.; Hu, Q.X. Adopting stick spawn reduced the spawn running time and improved mushroom yield and biological efficiency of Pleurotus eryngii. Sci. Hortic. 2014, 175, 156–159. [Google Scholar] [CrossRef]
- Liu, S.R.; Zhang, W.R.; Kuang, Y.B. Production of stalk spawn of an edible mushroom (Pleurotus ostreatus) in liquid culture as a suitable substitute for stick spawn in mushroom cultivation. Sci. Hortic. 2018, 240, 572–577. [Google Scholar] [CrossRef]
- Li, H.; Tin, Y.; Menolli, N.; Ye, L.; Krunarathna, S.C.; Perez-Moreno, J.; Rahman, M.M.; Rashid, M.H.; Phengsintham, P.; Rizal, L.; et al. Reviewing the world’s edible mushroom species: A new evidence-based classification system. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1982–2014. [Google Scholar] [CrossRef] [PubMed]
- Saetang, N.; Amornlerdpison, D.; Rattanapot, T.; Ramaraj, R.; Unpaprom, Y. Processing of split gill mushroom as a biogenic material for functional food purpose. Biocatal. Agric. Biotechnol. 2022, 41, 102314. [Google Scholar] [CrossRef]
- Chen, F.; Xiong, S.; Sundelin, J.; Martin, C.; Hultberg, M. Potential for combined production of food and biofuel: Cultivation of Pleurotus pulmonarius on soft-and hardwood sawdust. J. Clean. Prod. 2020, 266, 122011. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, S.; Peng, B.; Tan, D.; Wu, M.; Wei, J.; Wang, Y.; Luo, H. Ganoderma lucidum: A comprehensive review of phytochemistry, efficacy, safety and clinical study. Food Sci. Hum. Wellness. 2024, 13, 568–596. [Google Scholar] [CrossRef]
- Hu, W.; Di, Q.; Liang, T.; Liu, J.; Zhang, J. Effects of spent mushroom substrate biochar on growth of oyster mushroom (Pleurotus ostreatus). Environ. Technol. 2022, 28, 102729. [Google Scholar] [CrossRef]
- Rambey, R.; Sitepu, I.D.B.; Siregar, E.B.M. Productivity of oyster mushrooms (Pleurotus ostreatus) on media corncobs mixed with sawdust. IOP Conf. Series. Earth Environ. Sci. 2019, 260, 012076. [Google Scholar] [CrossRef]
- Zhang, W.R.; Liu, S.R.; Kuang, Y.B.; Zheng, S.Z. Development of a novel spawn (block spawn) of an edible mushroom, Pleurotus ostreatus, in liquid culture and its cultivation evaluation. Mycobiology 2019, 47, 97–104. [Google Scholar] [CrossRef]
- Meng, L.; Fu, Y.; Li, D.; Sun, X.; Chen, Y.; Li, X.; Xu, S.; Li, X.; Li, C.; Song, B.; et al. Effects of corn stalk cultivation substrate on the growth of the slippery mushroom (Pholiota microspora). RSC. Adv. 2019, 9, 5347–5353. [Google Scholar] [CrossRef]
- Zakil, F.A.; Hassan, K.H.M.; Sueb, M.S.M.; Isha, R. Growth and yield of Pleurotus ostreatus using sugarcane bagasse as an alternative substrate in Malaysia. IOP Conf. Ser. Mater. Sci. Eng. 2020, 736, 022021. [Google Scholar]
- Ramaraj, R.; Bhuyar, P.; Intarod, K.; Sameechaem, N.; Unpaprom, Y. Stimulation of natural enzymes for germination of mimosa weed seeds to enhanced bioethanol production. 3 Biotech 2021, 11, 307. [Google Scholar] [CrossRef] [PubMed]
- Welgama, A.; Florentine, S.; Roberts, J. A global review of the woody invasive alien species Mimosa pigra (Giant sensitive plant): Its biology and management implications. Plants 2022, 11, 2366. [Google Scholar] [CrossRef]
- Aiduang, W.; Chanthaluck, A.; Kumla, J.; Jatuwong, K.; Srinuanpan, S.; Waroonkun, T.; Oranratmanee, R.; Lumyong, S.; Suwannarach, N. Amazing fungi for eco-friendly composite materials: A comprehensive review. J. Fungus. 2022, 8, 842. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of the Association of Official Analytical Chemists, 16th ed.; Association of Official Analytical Chemists: Arlington, TX, USA, 2005. [Google Scholar]
- Cortés-Herrera, C.; Quirós-Fallas, S.; Calderón-Calvo, E.; Cordero-Madrigal, R.; Jiménez, L.; Granados-Chinchilla, F.; Artavia, G. Nitrogen/protein and one-step moisture and ash examination in foodstuffs: Validation case analysis using automated combustion and thermogravimetry determination under ISO/IEC 17025 guidel-ines. Curr. Res. Food Sci. 2021, 4, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Pásztory, Z.; Zoltán Börcsök, Z.; Ildikó Ronyecz, I.; Mohácsi, K.; Molnár, S.; Sándor Kis, S. Oven dry density of sessile oak, turkey oak and hornbeam in different region of Mecsek mountain. Wood Res. 2014, 59, 683–694. [Google Scholar]
- ASTM D1037-2; Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials. ASTM International: West Conshohocken, PA, USA, 2020.
- Cartabia, M.; Girometta, C.E.; Milanese, C.; Baiguera, R.M.; Buratti, S.; Branciforti, D.S.; Vadivel, D.; Girella, A.; Babbini, S.; Savino, E.; et al. Collection and characterization of wood decay fungal strains for developing pure mycelium mats. J. Fungi Basel. 2021, 7, 1008. [Google Scholar] [CrossRef]
- Schoder, K.A.; Krümpel, J.; Müller, J.; Lemmer, A. Effects of environmental and nutritional conditions on mycelium growth of three Basidiomycota. Mycobiology 2024, 52, 124–134. [Google Scholar] [CrossRef]
- Abdullah, N.; Ismail, R.; Johari, N.M.K.; Annuar, M.S.M. Production of liquid spawn of an edible grey oyster mushroom, Pleurotus pulmonarius (Fr.) Quél. by submerged fermentation and sporophore yield on rubber wood sawdust. Sci. Hortic. 2013, 161, 65–69. [Google Scholar] [CrossRef]
- Raman, J.; Jang, K.Y.; Oh, Y.L.; Oh, M.; Oh, M.; Im, J.H.; Lakshmanan, H.; Sabaratnam, V. Cultivation and nutritional value of prominent Pleurotus spp.: An overview. Mycobiology 2021, 49, 1–14. [Google Scholar] [CrossRef]
- Girmay, Z.; Gorems, W.; Birhanu, G.; Zewdie, S. Growth and yield performance of Pleurotus ostreatus (Jacq. Fr.) Kumm (oyster mushroom) on different substrates. Amb. Express. 2016, 6, 1–7. [Google Scholar] [CrossRef]
- Atila, F. Lignocellulosic and proximate based compositional changes in substrates during cultivation of Hericium erinaceus mushroom. Sci. Hortic. 2019, 258, 108779. [Google Scholar] [CrossRef]
- Huyen, H.T.K.; Ni, N.T.H.; Duy, V.H.Q.; Tuyet, L.T.H.; Duong, D.V.; Tran, T. Sustainable application of medicinal residue as a replacement substrate for gray oyster mushroom (Pleurotus ostreatus) cultivation. E3S. Web Conf. EDP Sci. 2025, 621, 01010. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, V.; Goala, M.; Singh, J.; Kumar, P. Integrated use of treated dairy wastewater and agro-residue for Agaricus bisporus mushroom cultivation: Experimental and kinetics studies. Biocatal. Agric. Biotechnol. 2021, 32, 101940. [Google Scholar] [CrossRef]
- Panda, D.; Biswas, M.K.; Nath, B. Evaluation of different substrates for spawn preparation of Calocybe indica and its impact on yield and biological efficiency. Agric. Sci. Dig. 2022, 42, 152–158. [Google Scholar] [CrossRef]
- Yang, Y.R.; Guo, Y.X.; Wang, Q.Y.; Hu, B.Y.; Tian, S.Y.; Yang, Q.Z. Impacts of composting duration on physicochemical properties and microbial communities during short-term composting for the substrate for oyster mushrooms. Sci. Total Environ. 2022, 847, 157673. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Wang, Y.X.; Guan, T.K.; Wang, Q.Y.; Zhang, J.; Zhang, J.Y.; Wang, J.L.; Chen, Q.J.; Zhang, G.Q. Bacterial communities during composting cultivation of oyster mushroom Pleurotus floridanus using broken eggs as the nitrogen source and study of agronomic and nutritional properties. Front. Microbiol. 2024, 14, 1274032. [Google Scholar] [CrossRef] [PubMed]
- Andrew, S.M. Production and nutritional value of Pleurotus floridanus grown on rice straw supplemented with Leucaena leucocephala foliage. Environ. Sustain. Indic. 2023, 17, 100223. [Google Scholar] [CrossRef]
- Vitrone, F.; Ramos, D.; Ferrando, F.; Salvadó, J. Binderless fiberboards for sustainable construction. materials, production methods and applications. J. Build. Eng. 2021, 44, 102625. [Google Scholar] [CrossRef]
- Boerjan, W.; Ralph, J.; Baucher, M. Lignin biosynthesis. Annu. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef]
- Dahiya, A. Part 2 Wood and Grass Biomass as Biofuels. In Bioenergy; Elsevier: London, UK, 2020; pp. 65–67. [Google Scholar]
- Shah, A.A.; Seehar, T.H.; Sharma, K.; Toor, S.S. Biomass pretreatment technologies. Hydrocarb. Biorefin. 2021, 7, 203–228. [Google Scholar]
- Akpabio, U.D.; Udiong, D.S.; Akpakpa, A.E. The physicochemical characteristics of plantain (Musa paradisiaca) and banana (Musa sapientum) pseudo stem wastes. Adv. Nat. Appl. Sci. 2012, 6, 167–172. [Google Scholar]
- Chutimanukul, P.; Sukdee, S.; Prajuabjinda, O.; Thepsilvisut, O.; Panthong, S.; Athinuwat, D.; Chuaboon, W.; Poomipan, P.; Vachirayagorn, V. The effects of soybean meal on growth, bioactive compounds, and antioxidant activity of Hericium erinaceus. Horticulturae 2023, 9, 693. [Google Scholar] [CrossRef]
- Bellettini, M.B.; Fiorda, F.A.; Maieves, H.A.; Teixeira, G.L.; Ávila, S.; Hornung, P.S.; Junior, A.M.; Ribani, R.H. Factors affecting mushroom Pleurotus spp. Saudi J. Biol. Sci. 2019, 26, 633–646. [Google Scholar]
- Khazaei, J. Water absorption characteristics of three wood varieties. Cercet. Agron. Mold. 2008, 2, 134–145. [Google Scholar]
- Varivodina, I.; Kosichenko, N.; Varivodin, V.; Sedliačik, J.A.N. Interconnections among the rate of growth, porosity and wood water absorption. Wood Res. 2010, 55, 59–66. [Google Scholar]
- Stankovská, M.; Gigac, J.; Fišerová, M.; Opálená, E. Relationship between structural parameters and water absorption of bleached softwood and hardwood kraft pulps. Wood Res. 2019, 64, 261–272. [Google Scholar]
- Mohammed, M.; Jawad, A.J.M.; Mohammed, A.M.; Oleiwi, J.K.; Adam, T.; Osman, A.F.; Dahham, O.S.; Betar, B.O.; Gopinath, S.C.B.; Jaafar, M. Challenges and advancement in water absorption of natural fiber-reinforced polymer composites. Polym. Test. 2023, 124, 108083. [Google Scholar] [CrossRef]
- Chouhan, P.; Koreti, D.; Kosre, A.; Chauhan, R.; Jadhav, S.K.; Chandrawanshi, N.K. Production and assessment of stick-shaped spawns of oyster mushroom from banana leaf-midribs. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2022, 92, 405–414. [Google Scholar] [CrossRef]
- Desisa, B.; Muleta, D.; Dejene, T.; Jida, M.; Goshu, A.; Negi, T.; Martin-Pinto, P. Utilization of local agro-industrial by-products-based substrates to enhance production and dietary value of mushroom (P. ostreatus) in Ethiopia. World J. Microbio. 2024, 40, 277. [Google Scholar] [CrossRef]
- Ahmed, R.; Niloy, M.A.H.M.; Islam, M.S.; Reza, M.S.; Yesmin, S.; Rasul, S.B.; Khandakar, J. Optimizing tea waste as a sustainable substrate for oyster mushroom (Pleurotus ostreatus) cultivation: A comprehensive study on biological efficiency and nutritional aspect. Front. Sustain. Food Syst. 2024, 7, 1308053. [Google Scholar] [CrossRef]
- Laeid-on, K.; Sangsila, A. Development of rice straw, maize, and giant mimosa for growing mushrooms instead of sawdust. Int. J. 2023, 10, 324–331. [Google Scholar]
- NSTDA. Economic-Mushroom-Market. Available online: https://waa.inter.nstda.or.th/stks/pub/2021/20210817-economic-mushroom-market.pdf (accessed on 9 April 2025).
Properties | Raw Material | |||
---|---|---|---|---|
GMS | RTW | MSR | BLS | |
Cellulose (%) | 45.10 ± 0.53 a | 39.46 ± 0.50 b | 40.02 ± 0.84 b | 33.42 ± 0.90 c |
Hemicellulose (%) | 26.73 ± 1.38 a | 26.61 ± 1.60 a | 25.90 ± 1.47 a | 21.44 ± 0.84 b |
Lignin (%) | 22.12 ± 1.41 b | 28.40 ± 0.95 a | 9.59 ± 1.75 c | 4.89 ± 1.54 d |
OM (%) | 89.45 ± 0.71 ab | 87.15 ± 0.98 b | 91.49 ± 0.70 a | 88.31 ± 1.55 b |
OC (%) | 51.88 ± 1.01 a | 50.55 ± 0.83 a | 53.06 ± 0.77 a | 51.22 ± 1.19 a |
Total N (%) | 0.76 ± 0.04 b | 0.29 ± 0.07 c | 0.83 ± 0.02 b | 1.01 ± 0.05 a |
C/N ratio | 68.26 ± 0.84 b | 174.31 ± 0.69 a | 63.93 ± 0.59 c | 50.71 ± 0.36 d |
EC (ds m−1) | 12.42 ± 0.36 c | 4.24 ± 0.15 d | 35.23 ± 0.84 b | 80.30 ± 1.16 a |
pH | 5.97 ± 0.72 bc | 5.53 ± 0.20 c | 8.69 ± 0.03 a | 6.90 ± 0.10 b |
Density (kg m3) | 421 ± 5.34 b | 606 ± 7.13 a | 97 ± 10.06 c | 118 ± 9.91 c |
Mushroom Species | Spawn Types | |||||||
---|---|---|---|---|---|---|---|---|
GMS Stick | Sawdust | Sorghum | Liquid (PDB) | |||||
FC (days) | PH (days) | FC (days) | PH (days) | FC (days) | PH (days) | FC (days) | PH (days) | |
P. ostreatus | 16.00 ± 0.70 c | 26.70 ± 0.83 c | 21.80 ± 0.83 a | 33.60 ± 0.89 a | 20.6 ± 0.54 b | 30.40 ± 0.54 b | 20.20 ± 0.83 b | 33.00 ± 0.70 a |
P. pulmonarius | 15.80 ± 0.83 b | 23.80 ± 0.57 d | 21.40 ± 0.54 a | 33.60 ± 0.28 a | 22.20 ± 0.83 a | 29.00 ± 0.57 b | 21.60 ± 0.54 a | 26.20 ± 0.57 c |
A. polytricha | 26.80 ± 0.83 c | 47.00 ± 0.70 d | 35.80 ± 0.83 a | 55.40 ± 0.89 b | 31.40 ± 0.89 b | 50.40 ± 0.54 c | 31.80 ± 0.83 b | 59.60 ± 0.89 a |
L. polychrous | 17.20 ± 0.83 b | 43.40 ± 1.15 b | 21.00 ± 1.22 a | 45.00 ± 1.87 ab | 19.60 ± 1.14 a | 43.20 ± 1.48 b | 21.00 ± 1.22 a | 45.80 ± 0.83 a |
G. lucidum | 21.00 ± 0.70 c | 30.00 ± 0.70 b | 24.20 ± 0.44 a | 33.60 ± 1.14 ab | 22.60 ± 1.34 b | 34.80 ± 0.83 a | 22.00 ± 0.70 bc | 35.80 ± 0.83 a |
L. squarrosulus | 14.00 ± 0.70 c | 42.40 ± 1.51 c | 15.40 ± 0.54 b | 45.20 ± 1.48 ab | 16.40 ± 1.14 ab | 43.40 ± 2.07 bc | 17.40 ± 1.14 a | 46.80 ± 1.30 a |
S. commune | 11.40 ± 0.54 b | 18.20 ± 0.44 c | 14.00 ± 1.00 a | 21.00 ± 0.70 ab | 14.60 ± 0.54 a | 20.00 ± 1.22 bc | 14.20 ± 0.83 a | 23.00 ± 0.70 a |
Performance | GMS Stick | Traditional Products Used | ||
---|---|---|---|---|
Sawdust | Sorghum | Liquid (PDB) | ||
Analysis of Producing Income and Cost | ||||
Cost (USD) | 0.074 USD 2.5 Bath | 0.24 USD 28 Bath | 0.29 USD 10 Bath | 2.80 USD 95 Bath |
Volume per unit | 85–95 sticks/bag | 500–600 g/bag | 100–150 g/bottle | 120–200 mL/bottle |
Amount of inoculation (Approx. bags) | ≈90 | ≈100 | ≈45 | ≈47 |
Average inoculum cost per bag (USD) | 0.0009 USD 0.03 Bath | 0.0024 USD 0.08 Bath | 0.0071 USD 0.24 Bath | 0.060 USD 2.02 Bath |
Cost analysis across farm sizes | ||||
Small scale (1000–30,000 bags/year) | ≈0.97–29.52 USD ≈33.78–1013.33 Baht | ≈3.08–92.35 USD ≈106.67–3200.00 Baht | ≈6.87–206.06 USD ≈238.10–7142.86 Baht | ≈58.28–1749.42 USD ≈2021.28–60.638.30 Bath |
Medium scale (30,001–200,000 bags/year) | ≈29.26–195.06 USD ≈1013.37–6755.55 Baht | ≈92.38–615.98 USD ≈3200.11–21,333.33 Baht | ≈206.15–1374.60 USD ≈7143.10–47,619.05 Baht | ≈1750.28–11,688.84 USD ≈60,640.32–404,255.32 Bath |
Large scale (200,001–600,000 bags/year) | ≈194.96–584.86 USD ≈6755.59–20,266.66 Baht | ≈615.77–1847.31 USD ≈213,33.44–64,000 Bath | ≈1374.85–4122.53 USD ≈47,619.29–142,857.14 Baht | ≈11,670.92–35,014.6 USD ≈404,257.34–1,212,765.96 Bath |
Industrial scale (>600,000 bags/year) | >584.86 USD >20,266.67 Baht | >1847.31 USD >64,000 Bath | >4122.53 USD >142,857.14 Baht | >35,014.6 USD >1,212,765.96 Bath |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xayyavong, O.; Aiduang, W.; Jatuwong, K.; Lumyong, S. Utilization of Giant Mimosa Stalk to Produce Effective Stick Spawn for Reducing Inoculum Costs in Economic Mushroom Farming Systems. Agriculture 2025, 15, 1584. https://doi.org/10.3390/agriculture15151584
Xayyavong O, Aiduang W, Jatuwong K, Lumyong S. Utilization of Giant Mimosa Stalk to Produce Effective Stick Spawn for Reducing Inoculum Costs in Economic Mushroom Farming Systems. Agriculture. 2025; 15(15):1584. https://doi.org/10.3390/agriculture15151584
Chicago/Turabian StyleXayyavong, Orlavanh, Worawoot Aiduang, Kritsana Jatuwong, and Saisamorn Lumyong. 2025. "Utilization of Giant Mimosa Stalk to Produce Effective Stick Spawn for Reducing Inoculum Costs in Economic Mushroom Farming Systems" Agriculture 15, no. 15: 1584. https://doi.org/10.3390/agriculture15151584
APA StyleXayyavong, O., Aiduang, W., Jatuwong, K., & Lumyong, S. (2025). Utilization of Giant Mimosa Stalk to Produce Effective Stick Spawn for Reducing Inoculum Costs in Economic Mushroom Farming Systems. Agriculture, 15(15), 1584. https://doi.org/10.3390/agriculture15151584