Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,984)

Search Parameters:
Keywords = Artificial Intelligence Adoption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 920 KB  
Article
AI-Based Facial Emotion Analysis for Early and Differential Diagnosis of Dementia
by Letizia Bergamasco, Anita Coletta, Gabriella Olmo, Aurora Cermelli, Elisa Rubino and Innocenzo Rainero
Bioengineering 2025, 12(10), 1082; https://doi.org/10.3390/bioengineering12101082 (registering DOI) - 4 Oct 2025
Abstract
Early and differential diagnosis of dementia is essential for timely and targeted care. This study investigated the feasibility of using an artificial intelligence (AI)-based system to discriminate between different stages and etiologies of dementia by analyzing facial emotions. We collected video recordings of [...] Read more.
Early and differential diagnosis of dementia is essential for timely and targeted care. This study investigated the feasibility of using an artificial intelligence (AI)-based system to discriminate between different stages and etiologies of dementia by analyzing facial emotions. We collected video recordings of 64 participants exposed to standardized audio-visual stimuli. Facial emotion features in terms of valence and arousal were extracted and used to train machine learning models on multiple classification tasks, including distinguishing individuals with mild cognitive impairment (MCI) and overt dementia from healthy controls (HCs) and differentiating Alzheimer’s disease (AD) from other types of cognitive impairment. Nested cross-validation was adopted to evaluate the performance of different tested models (K-Nearest Neighbors, Logistic Regression, and Support Vector Machine models) and optimize their hyperparameters. The system achieved a cross-validation accuracy of 76.0% for MCI vs. HCs, 73.6% for dementia vs. HCs, and 64.1% in the three-class classification (MCI vs. dementia vs. HCs). Among cognitively impaired individuals, a 75.4% accuracy was reached in distinguishing AD from other etiologies. These results demonstrated the potential of AI-driven facial emotion analysis as a non-invasive tool for early detection of cognitive impairment and for supporting differential diagnosis of AD in clinical settings. Full article
Show Figures

Figure 1

23 pages, 1218 KB  
Review
Beyond the Resistome: Molecular Insights, Emerging Therapies, and Environmental Drivers of Antibiotic Resistance
by Nada M. Nass and Kawther A. Zaher
Antibiotics 2025, 14(10), 995; https://doi.org/10.3390/antibiotics14100995 (registering DOI) - 4 Oct 2025
Abstract
Antibiotic resistance remains one of the most formidable challenges to modern medicine, threatening to outpace therapeutic innovation and undermine decades of clinical progress. While resistance was once viewed narrowly as a clinical phenomenon, it is now understood as the outcome of complex ecological [...] Read more.
Antibiotic resistance remains one of the most formidable challenges to modern medicine, threatening to outpace therapeutic innovation and undermine decades of clinical progress. While resistance was once viewed narrowly as a clinical phenomenon, it is now understood as the outcome of complex ecological and molecular interactions that span soil, water, agriculture, animals, and humans. Environmental reservoirs act as silent incubators of resistance genes, with horizontal gene transfer and stress-induced mutagenesis fueling their evolution and dissemination. At the molecular level, advances in genomics, structural biology, and systems microbiology have revealed intricate networks involving plasmid-mediated resistance, efflux pump regulation, integron dynamics, and CRISPR-Cas interactions, providing new insights into the adaptability of pathogens. Simultaneously, the environmental dimensions of resistance, from wastewater treatment plants and aquaculture to airborne dissemination, highlight the urgency of adopting a One Health framework. Yet, alongside this growing threat, novel therapeutic avenues are emerging. Innovative β-lactamase inhibitors, bacteriophage-based therapies, engineered lysins, antimicrobial peptides, and CRISPR-driven antimicrobials are redefining what constitutes an “antibiotic” in the twenty-first century. Furthermore, artificial intelligence and machine learning now accelerate drug discovery and resistance prediction, raising the possibility of precision-guided antimicrobial stewardship. This review synthesizes molecular insights, environmental drivers, and therapeutic innovations to present a comprehensive landscape of antibiotic resistance. By bridging ecological microbiology, molecular biology, and translational medicine, it outlines a roadmap for surveillance, prevention, and drug development while emphasizing the need for integrative policies to safeguard global health. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and Environmental Health, 2nd Edition)
17 pages, 390 KB  
Review
Deep Learning Image Processing Models in Dermatopathology
by Apoorva Mehta, Mateen Motavaf, Danyal Raza, Neil Jairath, Akshay Pulavarty, Ziyang Xu, Michael A. Occidental, Alejandro A. Gru and Alexandra Flamm
Diagnostics 2025, 15(19), 2517; https://doi.org/10.3390/diagnostics15192517 (registering DOI) - 4 Oct 2025
Abstract
Dermatopathology has rapidly advanced due to the implementation of deep learning models and artificial intelligence (AI). From convolutional neural networks (CNNs) to transformer-based foundation models, these systems are now capable of accurate whole-slide analysis and multimodal integration. This review synthesizes the most recent [...] Read more.
Dermatopathology has rapidly advanced due to the implementation of deep learning models and artificial intelligence (AI). From convolutional neural networks (CNNs) to transformer-based foundation models, these systems are now capable of accurate whole-slide analysis and multimodal integration. This review synthesizes the most recent advents of deep-learning architecture and synthesizes its evolution from first-generation CNNs to hybrid CNN-transformer systems to large-scale foundational models such as Paige’s PanDerm AI and Virchow. Herein, we examine performance benchmarks from real-world deployments of major dermatopathology deep learning models (DermAI, PathAssist Derm), as well as emerging next-generation models still under research and development. We assess barriers to clinical workflow adoption such as dataset bias, AI interpretability, and government regulation. Further, we discuss potential future research directions and emphasize the need for diverse, prospectively curated datasets, explainability frameworks for trust in AI, and rigorous compliance to Good Machine-Learning-Practice (GMLP) to achieve safe and scalable deep learning dermatopathology models that can fully integrate into clinical workflows. Full article
(This article belongs to the Special Issue Artificial Intelligence in Skin Disorders 2025)
35 pages, 6224 KB  
Article
An AIoT Product Development Process with Integrated Sustainability and Universal Design
by Meng-Dar Shieh, Hsu-Chan Hsiao, Jui-Feng Chang, Yu-Ting Hsiao and Yuan-Jyun Jhou
Sustainability 2025, 17(19), 8874; https://doi.org/10.3390/su17198874 (registering DOI) - 4 Oct 2025
Abstract
The rapid development of contemporary artificial intelligence and Internet of Things (IoT) technologies has given rise to the emerging paradigm of the AIoT (Artificial Intelligence of Things), which is profoundly impacting human life and driving the digital transformation of industries and society. The [...] Read more.
The rapid development of contemporary artificial intelligence and Internet of Things (IoT) technologies has given rise to the emerging paradigm of the AIoT (Artificial Intelligence of Things), which is profoundly impacting human life and driving the digital transformation of industries and society. The AIoT not only enhances product functionality and convenience but also accelerates the achievement of the United Nations Sustainable Development Goals (SDGs). However, the widespread adoption of these technologies still poses challenges related to social inclusivity, particularly regarding insufficient accessibility for elderly users, which may exacerbate the digital divide and social inequality, contradicting SDG 10 (reducing inequality). This study integrates AIoT product development processes based on sustainability and universal design principles using methods such as Quality Function Deployment, the Analytic Hierarchy Process, the Scenario Method, the Entropy Weight Method, and Fuzzy Comprehensive Evaluation. The features of this process include ease of operation and high flexibility, making it suitable for cross-departmental product development while prioritizing the needs of diverse age groups throughout the development process. The research findings indicate that the AIoT product concepts proposed can meet the needs of diverse users, contributing to the realization of age-friendly products. This study provides a reference point for future AIoT product development, promoting the inclusive and sustainable development of smart technology. Full article
(This article belongs to the Section Sustainable Products and Services)
25 pages, 7875 KB  
Article
Intelligent Optimal Seismic Design of Buildings Based on the Inversion of Artificial Neural Networks
by Augusto Montisci, Francesca Pibi, Maria Cristina Porcu and Juan Carlos Vielma
Appl. Sci. 2025, 15(19), 10713; https://doi.org/10.3390/app151910713 (registering DOI) - 4 Oct 2025
Abstract
The growing need for safe, cheap and sustainable earthquake-resistant buildings means that efficient methods for optimal seismic design must be found. The complexity and nonlinearity of the problem can be addressed using advanced automated techniques. This paper presents an intelligent three-step procedure for [...] Read more.
The growing need for safe, cheap and sustainable earthquake-resistant buildings means that efficient methods for optimal seismic design must be found. The complexity and nonlinearity of the problem can be addressed using advanced automated techniques. This paper presents an intelligent three-step procedure for optimally designing earthquake-resistant buildings based on the training (1st step) and successive inversion (2nd step) of Multi-Layer Perceptron Neural Networks. This involves solving the inverse problem of determining the optimal design parameters that meet pre-assigned, code-based performance targets, by means of a gradient-based optimization algorithm (3rd step). The effectiveness of the procedure was tested using an archetypal multistory, moment-resisting, concentrically braced steel frame with active tension diagonal bracing. The input dataset was obtained by varying four design parameters. The output dataset resulted from performance variables obtained through non-linear dynamic analyses carried out under three earthquakes consistent with the Chilean code spectrum, for all cases considered. Three spectrum-consistent records are sufficient for code-based seismic design, while each seismic excitation provides a wealth of information about the behavior of the structure, highlighting potential issues. For optimization purposes, only information relevant to critical sections was used as a performance indicator. Thus, the dataset for training consisted of pairs of design parameter sets and their corresponding performance indicator sets. A dedicated MLP was trained for each of the outputs over the entire dataset, which greatly reduced the total complexity of the problem without compromising the effectiveness of the solution. Due to the comparatively low number of cases considered, the leave-one-out method was adopted, which made the validation process more rigorous than usual since each case acted once as a validation set. The trained network was then inverted to find the input design search domain, where a cost-effective gradient-based algorithm determined the optimal design parameters. The feasibility of the solution was tested through numerical analyses, which proved the effectiveness of the proposed artificial intelligence-aided optimal seismic design procedure. Although the proposed methodology was tested on an archetypal building, the significance of the results highlights the effectiveness of the three-step procedure in solving complex optimization problems. This paves the way for its use in the design optimization of different kinds of earthquake-resistant buildings. Full article
Show Figures

Figure 1

27 pages, 2297 KB  
Article
Artificial Intelligence Adoption in Non-Chemical Agriculture: An Integrated Mechanism for Sustainable Practices
by Arokiaraj A. Amalan and I. Arul Aram
Sustainability 2025, 17(19), 8865; https://doi.org/10.3390/su17198865 (registering DOI) - 4 Oct 2025
Abstract
Artificial Intelligence (AI) holds significant potential to enhance sustainable non-chemical agricultural methods (NCAM) by optimising resource management, automating precision farming practices, and strengthening climate resilience. However, its widespread adoption among farmers’ remains limited due to socio-economic, infrastructural, and justice-related challenges. This study investigates [...] Read more.
Artificial Intelligence (AI) holds significant potential to enhance sustainable non-chemical agricultural methods (NCAM) by optimising resource management, automating precision farming practices, and strengthening climate resilience. However, its widespread adoption among farmers’ remains limited due to socio-economic, infrastructural, and justice-related challenges. This study investigates AI adoption among NCAM farmers using an Integrated Mechanism for Sustainable Practices (IMSP) conceptual framework which combines the Technology Acceptance Model (TAM) with a justice-centred approach. A mixed-methods design was employed, incorporating Fuzzy-Set Qualitative Comparative Analysis (fsQCA) of AI adoption pathways based on survey data, alongside critical discourse analysis of thematic farmers narrative through a justice-centred lens. The study was conducted in Tamil Nadu between 30 September and 25 October 2024. Using purposive sampling, 57 NCAM farmers were organised into three focus groups: marginal farmers, active NCAM practitioners, and farmers from 18 districts interested in agricultural technologies and AI. This enabled an in-depth exploration of practices, adoption, and perceptions. The findings indicates that while factors such as labour shortages, mobile technology use, and cost efficiencies are necessary for AI adoption, they are insufficient without supportive extension services and inclusive communication strategies. The study refines the TAM framework by embedding economic, cultural, and political justice considerations, thereby offering a more holistic understanding of technology acceptance in sustainable agriculture. By bridging discourse analysis and fsQCA, this research underscores the need for justice-centred AI solutions tailored to diverse farming contexts. The study contributes to advancing sustainable agriculture, digital inclusion, and resilience, thereby supporting the United Nations’ Sustainable Development Goals (SDGs). Full article
Show Figures

Figure 1

23 pages, 5798 KB  
Article
Application of Generative AI in Financial Risk Prediction: Enhancing Model Accuracy and Interpretability
by Kai-Chao Yao, Hsiu-Chu Hung, Ching-Hsin Wang, Wei-Lun Huang, Hui-Ting Liang, Tzu-Hsin Chu, Bo-Siang Chen and Wei-Sho Ho
Information 2025, 16(10), 857; https://doi.org/10.3390/info16100857 - 3 Oct 2025
Abstract
This study explores the application of generative artificial intelligence (AI) in financial risk forecasting, aiming to assess its potential in enhancing both the accuracy and interpretability of predictive models. Traditional methods often struggle with the complexity and nonlinearity of financial data, whereas generative [...] Read more.
This study explores the application of generative artificial intelligence (AI) in financial risk forecasting, aiming to assess its potential in enhancing both the accuracy and interpretability of predictive models. Traditional methods often struggle with the complexity and nonlinearity of financial data, whereas generative AI—such as large language models and generative adversarial networks (GANs)—offers novel solutions to these challenges. The study begins with a comprehensive review of current research on generative AI in financial risk prediction, with a focus on its roles in data augmentation and feature extraction. It then investigates techniques such as Generative Adversarial Explanation (GAX) to evaluate their effectiveness in improving model interpretability. Case studies demonstrate the practical value of generative AI in real-world financial forecasting and quantify its contribution to predictive accuracy. Furthermore, the study identifies key challenges—including data quality, model training costs, and regulatory compliance—and proposes corresponding mitigation strategies. The findings suggest that generative AI can significantly improve the accuracy and interpretability of financial risk models, though its adoption must be carefully managed to address associated risks. This study offers insights and guidance for future research in applying generative AI to financial risk forecasting. Full article
(This article belongs to the Special Issue Modeling in the Era of Generative AI)
25 pages, 737 KB  
Systematic Review
A Systematic Literature Review on the Implementation and Challenges of Zero Trust Architecture Across Domains
by Sadaf Mushtaq, Muhammad Mohsin and Muhammad Mujahid Mushtaq
Sensors 2025, 25(19), 6118; https://doi.org/10.3390/s25196118 - 3 Oct 2025
Abstract
The Zero Trust Architecture (ZTA) model has emerged as a foundational cybersecurity paradigm that eliminates implicit trust and enforces continuous verification across users, devices, and networks. This study presents a systematic literature review of 74 peer-reviewed articles published between 2016 and 2025, spanning [...] Read more.
The Zero Trust Architecture (ZTA) model has emerged as a foundational cybersecurity paradigm that eliminates implicit trust and enforces continuous verification across users, devices, and networks. This study presents a systematic literature review of 74 peer-reviewed articles published between 2016 and 2025, spanning domains such as cloud computing (24 studies), Internet of Things (11), healthcare (7), enterprise and remote work systems (6), industrial and supply chain networks (5), mobile networks (5), artificial intelligence and machine learning (5), blockchain (4), big data and edge computing (3), and other emerging contexts (4). The analysis shows that authentication, authorization, and access control are the most consistently implemented ZTA components, whereas auditing, orchestration, and environmental perception remain underexplored. Across domains, the main challenges include scalability limitations, insufficient lightweight cryptographic solutions for resource-constrained systems, weak orchestration mechanisms, and limited alignment with regulatory frameworks such as GDPR and HIPAA. Cross-domain comparisons reveal that cloud and enterprise systems demonstrate relatively mature implementations, while IoT, blockchain, and big data deployments face persistent performance and compliance barriers. Overall, the findings highlight both the progress and the gaps in ZTA adoption, underscoring the need for lightweight cryptography, context-aware trust engines, automated orchestration, and regulatory integration. This review provides a roadmap for advancing ZTA research and practice, offering implications for researchers, industry practitioners, and policymakers seeking to enhance cybersecurity resilience. Full article
Show Figures

Figure 1

53 pages, 3279 KB  
Review
Cognitive Bias Mitigation in Executive Decision-Making: A Data-Driven Approach Integrating Big Data Analytics, AI, and Explainable Systems
by Leonidas Theodorakopoulos, Alexandra Theodoropoulou and Constantinos Halkiopoulos
Electronics 2025, 14(19), 3930; https://doi.org/10.3390/electronics14193930 - 3 Oct 2025
Abstract
Cognitive biases continue to pose significant challenges in executive decision-making, often leading to strategic inefficiencies, misallocation of resources, and flawed risk assessments. While traditional decision-making relies on intuition and experience, these methods are increasingly proving inadequate in addressing the complexity of modern business [...] Read more.
Cognitive biases continue to pose significant challenges in executive decision-making, often leading to strategic inefficiencies, misallocation of resources, and flawed risk assessments. While traditional decision-making relies on intuition and experience, these methods are increasingly proving inadequate in addressing the complexity of modern business environments. Despite the growing integration of big data analytics into executive workflows, existing research lacks a comprehensive examination of how AI-driven methodologies can systematically mitigate biases while maintaining transparency and trust. This paper addresses these gaps by analyzing how big data analytics, artificial intelligence (AI), machine learning (ML), and explainable AI (XAI) contribute to reducing heuristic-driven errors in executive reasoning. Specifically, it explores the role of predictive modeling, real-time analytics, and decision intelligence systems in enhancing objectivity and decision accuracy. Furthermore, this study identifies key organizational and technical barriers—such as biases embedded in training data, model opacity, and resistance to AI adoption—that hinder the effectiveness of data-driven decision-making. By reviewing empirical findings from A/B testing, simulation experiments, and behavioral assessments, this research examines the applicability of AI-powered decision support systems in strategic management. The contributions of this paper include a detailed analysis of bias mitigation mechanisms, an evaluation of current limitations in AI-driven decision intelligence, and practical recommendations for fostering a more data-driven decision culture. By addressing these research gaps, this study advances the discourse on responsible AI adoption and provides actionable insights for organizations seeking to enhance executive decision-making through big data analytics. Full article
(This article belongs to the Special Issue Feature Papers in Artificial Intelligence)
54 pages, 5812 KB  
Review
Advancing Renewable-Dominant Power Systems Through Internet of Things and Artificial Intelligence: A Comprehensive Review
by Temitope Adefarati, Gulshan Sharma, Pitshou N. Bokoro and Rajesh Kumar
Energies 2025, 18(19), 5243; https://doi.org/10.3390/en18195243 - 2 Oct 2025
Abstract
The sudden increase in global energy demand has prompted the integration of Artificial Intelligence and the Internet of Things into the utility grid. The synergy of Artificial Intelligence and the Internet of Things in renewable energy sources has emerged as a promising solution [...] Read more.
The sudden increase in global energy demand has prompted the integration of Artificial Intelligence and the Internet of Things into the utility grid. The synergy of Artificial Intelligence and the Internet of Things in renewable energy sources has emerged as a promising solution for the development of smart grids and a transformative catalyst that restructures centralized power systems into resilient and sustainable systems. The state-of-the-art of the Internet of Things and Artificial Intelligence is presented in this paper to support the design, planning, operation, management and optimization of renewable energy-based power systems. This paper outlines the benefits of smart and resilient energy systems and the contributions of the Internet of Things across several applications, devices and networks. Artificial Intelligence can be utilized for predictive maintenance, demand-side management, fault detection, forecasting and scheduling. This paper highlights crucial future research directions aimed at overcoming the challenges that are associated with the adoption of emerging technologies in the power system by focusing on market policy and regulation and the human-centric and ethical aspects of Artificial Intelligence and the Internet of Things. The outcomes of this study can be used by policymakers, researchers and development agencies to improve global access to electricity and accelerate the development of sustainable energy systems. Full article
Show Figures

Figure 1

22 pages, 782 KB  
Article
Hybrid CNN-Swin Transformer Model to Advance the Diagnosis of Maxillary Sinus Abnormalities on CT Images Using Explainable AI
by Mohammad Alhumaid and Ayman G. Fayoumi
Computers 2025, 14(10), 419; https://doi.org/10.3390/computers14100419 - 2 Oct 2025
Abstract
Accurate diagnosis of sinusitis is essential due to its widespread prevalence and its considerable impact on patient quality of life. While multiple imaging techniques are available for detecting maxillary sinus, computed tomography (CT) remains the preferred modality because of its high sensitivity and [...] Read more.
Accurate diagnosis of sinusitis is essential due to its widespread prevalence and its considerable impact on patient quality of life. While multiple imaging techniques are available for detecting maxillary sinus, computed tomography (CT) remains the preferred modality because of its high sensitivity and spatial resolution. Although recent advances in deep learning have led to the development of automated methods for sinusitis classification, many existing models perform poorly in the presence of complex pathological features and offer limited interpretability, which hinders their integration into clinical workflows. In this study, we propose a hybrid deep learning framework that combines EfficientNetB0, a convolutional neural network, with the Swin Transformer, a vision transformer, to improve feature representation. An attention-based fusion module is used to integrate both local and global information, thereby enhancing diagnostic accuracy. To improve transparency and support clinical adoption, the model incorporates explainable artificial intelligence (XAI) techniques using Gradient-weighted Class Activation Mapping (Grad-CAM). This allows for visualization of the regions influencing the model’s predictions, helping radiologists assess the clinical relevance of the results. We evaluate the proposed method on a curated maxillary sinus CT dataset covering four diagnostic categories: Normal, Opacified, Polyposis, and Retention Cysts. The model achieves a classification accuracy of 95.83%, with precision, recall, and F1 score all at 95%. Grad-CAM visualizations indicate that the model consistently focuses on clinically significant regions of the sinus anatomy, supporting its potential utility as a reliable diagnostic aid in medical practice. Full article
23 pages, 698 KB  
Review
Machine Learning in Land Use Prediction: A Comprehensive Review of Performance, Challenges, and Planning Applications
by Cui Li, Cuiping Wang, Tianlei Sun, Tongxi Lin, Jiangrong Liu, Wenbo Yu, Haowei Wang and Lei Nie
Buildings 2025, 15(19), 3551; https://doi.org/10.3390/buildings15193551 - 2 Oct 2025
Abstract
The accelerated global urbanization process has positioned land use/land cover change modeling as a critical component of contemporary geographic science and urban planning research. Traditional approaches face substantial challenges when addressing urban system complexity, multiscale spatial interactions, and high-dimensional data associations, creating urgent [...] Read more.
The accelerated global urbanization process has positioned land use/land cover change modeling as a critical component of contemporary geographic science and urban planning research. Traditional approaches face substantial challenges when addressing urban system complexity, multiscale spatial interactions, and high-dimensional data associations, creating urgent demand for sophisticated analytical frameworks. This review comprehensively evaluates machine learning applications in land use prediction through systematic analysis of 74 publications spanning 2020–2024, establishing a taxonomic framework distinguishing traditional machine learning, deep learning, and hybrid methodologies. The review contributes a comprehensive methodological assessment identifying algorithmic evolution patterns and performance benchmarks across diverse geographic contexts. Traditional methods demonstrate sustained reliability, while deep learning architectures excel in complex pattern recognition. Most significantly, hybrid methodologies have emerged as the dominant paradigm through algorithmic complementarity, consistently outperforming single-algorithm implementations. However, contemporary applications face critical constraints including computational complexity, scalability limitations, and interpretability issues impeding practical adoption. This review advances the field by synthesizing fragmented knowledge into a coherent framework and identifying research trajectories toward integrated intelligent systems with explainable artificial intelligence. Full article
(This article belongs to the Special Issue Advances in Urban Planning and Design for Urban Safety and Operations)
Show Figures

Figure 1

16 pages, 452 KB  
Article
Students’ Trust in AI and Their Verification Strategies: A Case Study at Camilo José Cela University
by David Martín-Moncunill and Daniel Alonso Martínez
Educ. Sci. 2025, 15(10), 1307; https://doi.org/10.3390/educsci15101307 - 2 Oct 2025
Abstract
Trust plays a pivotal role in individuals’ interactions with technological systems, and those incorporating artificial intelligence present significantly greater challenges than traditional systems. The current landscape of higher education is increasingly shaped by the integration of AI assistants into students’ classroom experiences. Their [...] Read more.
Trust plays a pivotal role in individuals’ interactions with technological systems, and those incorporating artificial intelligence present significantly greater challenges than traditional systems. The current landscape of higher education is increasingly shaped by the integration of AI assistants into students’ classroom experiences. Their appropriate use is closely tied to the level of trust placed in these tools, as well as the strategies adopted to critically assess the accuracy of AI-generated content. However, scholarly attention to this dimension remains limited. To explore these dynamics, this study applied the POTDAI evaluation framework to a sample of 132 engineering and social sciences students at Camilo José Cela University in Madrid, Spain. The findings reveal a general lack of trust in AI assistants despite their extensive use, common reliance on inadequate verification methods, and a notable skepticism regarding professors’ ability to detect AI-related errors. Additionally, students demonstrated a concerning misperception of the capabilities of different AI models, often favoring less advanced or less appropriate tools. These results underscore the urgent need to establish a reliable verification protocol accessible to both students and faculty, and to further investigate the reasons why students opt for limited tools over the more powerful alternatives made available to them. Full article
Show Figures

Figure 1

16 pages, 268 KB  
Article
Paying the Cognitive Debt: An Experiential Learning Framework for Integrating AI in Social Work Education
by Keith J. Watts
Educ. Sci. 2025, 15(10), 1304; https://doi.org/10.3390/educsci15101304 - 2 Oct 2025
Abstract
The rapid integration of Generative Artificial Intelligence in higher education challenges social work as student adoption outpaces pedagogical guidance. This paper argues that the unguided use of AI fosters cognitive debt: a cumulative deficit in critical thinking, ethical reasoning, and professional judgment that [...] Read more.
The rapid integration of Generative Artificial Intelligence in higher education challenges social work as student adoption outpaces pedagogical guidance. This paper argues that the unguided use of AI fosters cognitive debt: a cumulative deficit in critical thinking, ethical reasoning, and professional judgment that arises from offloading cognitive tasks. To counter this risk, a pedagogical model is proposed, synthesizing experiential learning, andragogy, and critical pedagogies. The framework reframes AI from a passive information tool into an active object of critical inquiry. Through structured assignments across micro, mezzo, and macro practice, the model guides students through cycles of concrete experience with AI, reflective observation of its biases, abstract conceptualization of ethical principles, and active experimentation with responsible professional use. Aligned with professional ethical standards, the model aims to prepare future social workers to scrutinize and shape AI as a tool for social justice. The paper concludes with implications for faculty development, institutional policy, accreditation, and a forward-looking research agenda. Full article
47 pages, 617 KB  
Review
Smart Pregnancy: AI-Driven Approaches to Personalised Maternal and Foetal Health—A Scoping Review
by Vera Correia, Teresa Mascarenhas and Miguel Mascarenhas
J. Clin. Med. 2025, 14(19), 6974; https://doi.org/10.3390/jcm14196974 - 1 Oct 2025
Abstract
Background/Objectives: The integration of artificial intelligence (AI) into obstetric care poses significant potential to enhance clinical decision-making and optimize maternal and neonatal outcomes. Traditional prediction methods in maternal-foetal medicine often rely on subjective clinical judgment and limited statistical models, which may not [...] Read more.
Background/Objectives: The integration of artificial intelligence (AI) into obstetric care poses significant potential to enhance clinical decision-making and optimize maternal and neonatal outcomes. Traditional prediction methods in maternal-foetal medicine often rely on subjective clinical judgment and limited statistical models, which may not fully capture complex patient data. By integrating computational innovation with mechanistic biology and rigorous clinical validation, AI can finally fulfil the promise of precision obstetrics by transforming pregnancy complications into a preventable, personalised continuum of care. This study aims to map the current landscape of AI applications across the continuous spectrum of maternal–foetal health, identify the types of models used, and compare clinical targets and performance, potential pitfalls, and strategies to translate innovation into clinical impact. Methods: A literature search of peer-reviewed studies that employ AI for prediction, diagnosis, or decision support in Obstetrics was conducted. AI algorithms were categorised by application area: foetal monitoring, prediction of preterm birth, prediction of pregnancy complications, and/or labour and delivery. Results: AI-driven models consistently demonstrate superior performance to traditional approaches. Nevertheless, their widespread clinical adoption is hindered by limited dataset diversity, “black-box” algorithms, and inconsistent reporting standards. Conclusions: AI holds transformative potential to improve maternal and neonatal outcomes through earlier diagnosis, personalised risk assessment, and automated monitoring. To fulfil this promise, the field must prioritize the creation of large, diverse, open-access datasets, mandate transparent, explainable model architectures, and establish robust ethical and regulatory frameworks. By addressing these challenges, AI can become an integral, equitable, and trustworthy component of Obstetric care worldwide. Full article
(This article belongs to the Special Issue AI in Maternal Fetal Medicine and Perinatal Management)
Show Figures

Figure 1

Back to TopTop