Smart Pregnancy: AI-Driven Approaches to Personalised Maternal and Foetal Health—A Scoping Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy and Selection Criteria
2.2. Screening and Eligibility
2.3. Data Extraction
2.4. Synthesis and Reporting
3. AI Applications in Maternal-Foetal Medicine
3.1. AI in Foetal Monitoring and Risk Prediction
3.2. AI-Based Prediction of Preterm Birth
3.3. AI in Prediction of Pregnancy Complications
3.3.1. AI for Early Prediction of Preeclampsia
3.3.2. AI-Driven Models for Gestational Diabetes Risk Stratification
3.3.3. AI in Predicting Postpartum Haemorrhage
3.4. AI Applications in Labour and Delivery
4. Challenges and Limitations: Ethical and Regulatory Frameworks for AI in Obstetrics
4.1. Current AI Legal Frameworks in Healthcare
4.2. Clinical Investigation and AI-Specific Requirements
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
2D | Two-Dimensional |
AIF | Amniotic Fluid Index |
ANN | Artificial Neural Network |
APTT | Activated Partial Thromboplastin Time |
ASA | American Society of Anesthesiologists Physical Status |
ASAT | Aspartate Aminotransferase |
ACS | Antenatal Corticosteroids |
AdaBoost | Adaptive Boosting |
Acc | Accuracy |
AISI | Aggregate Index of Systemic Inflammation |
AI | Artificial Intelligence |
AN | Artificial Neural Network |
AUROC | Area Under the Receiver-Operating-Characteristic Curve |
AUC | Area Under the Curve |
AUC-PR | Area Under the Precision–Recall Curve |
AUCfinal | Overall Survival AUC |
AUCtd | Time-Dependent AUC |
Bagging | Bootstrap Aggregating |
BMI | Body Mass Index |
BP | Blood Pressure |
CBC | Complete Blood Count |
CART | Classification and Regression Tree |
CHAID | Chi-Square Automatic Interaction Detection |
CI | Confidence Interval |
CKD | Chronic Kidney Disease |
CS | Caesarean Section |
CSL | Consortium on Safe Labor |
Cox PH | Cox Proportional Hazards Model |
CNN | Convolutional Neural Network |
Cr | Creatinine |
CTG | Cardiotocography |
DFA | Detrended Fluctuation Analysis |
DBP | Diastolic Blood Pressure |
DEGs | Differentially Expressed Genes |
DL | Deep Learning |
DLR | Deep Learning Radiomics |
DLCNN | Deep Learning Convolutional Neural Network |
DM | Diabetes Mellitus |
DNN | Deep Neural Network |
DTC | Decision Tree Classifier |
DT | Decision Tree |
DR | Detection Rate |
DR10 | Detection Rate at 10% FPR |
DRF | Distributed Random Forest |
EHR | Electronic Health Record |
EFM | Electronic Fetal Monitoring |
EMG | Electromyography |
EMR | Electronic Medical Record |
EFW | Estimated Fetal Weight |
F1 | F1-Score |
FBS | Fasting Blood Sugar |
FGR | Fetal Growth Restriction |
FHR | Fetal Heart Rate |
FPG | Fasting Plasma Glucose |
FT4 | Free Thyroxine |
FT-IR | Fourier-Transform Infrared Spectroscopy |
FPR | False-Positive Rate |
GB | Gradient Boosting |
GBM | Gradient Boosting Machine |
GBDT | Gradient-Boosted Decision Trees |
GBT | Gradient-Boosted Trees |
GAM | Generalized Additive Model |
GCT | Glucose Challenge Test |
GDM | Gestational Diabetes Mellitus |
GA | Gestational Age |
GNB | Gaussian Naïve Bayes |
GRU | Gated Recurrent Unit |
GWG | Gestational Weight Gain |
HDP | Hypertensive Disorders of Pregnancy |
HGSORF | Henry Gas Solubility Optimization–Based Random Forest |
HELLP | Hemolysis, Elevated Liver Enzymes, Low Platelets Syndrome |
HGB | Hemoglobin |
Hb | Hemoglobin |
HbA1c | Glycated Hemoglobin |
HTN | Hypertension |
ICU | Intensive Care Unit |
IBS | Integrated Brier Score |
IUGR | Intrauterine Growth Restriction |
IVF | In Vitro Fertilization |
KNN | k-Nearest Neighbors |
k-NN | k-nearest Neighbors |
LDA | Linear Discriminant Analysis |
LASSO | Least Absolute Shrinkage and Selection Operator |
LFHF | Low and High-Frequency Spectral Power |
LR | Logistic Regression |
LGB | LightGBM |
LERS | Learning from Examples Using Rough Sets |
LSTM | Long Short-Term Memory |
MARS | Multivariate Adaptive Regression Splines |
MAE | Mean Absolute Error |
MAP | Mean Arterial Pressure |
MAPE | Mean Absolute Percentage Error |
MCH | Mean Corpuscular Hemoglobin |
MCC | Matthews Correlation Coefficient |
ML | Machine Learning |
MLP | Multilayer Perceptron |
MoM | Multiples of the Median |
MOMI | Multi-center Observational Maternal Initiative |
MRI | Magnetic Resonance Imaging |
NB | Naïve Bayes |
NFH | Neonatal Fetal Hypoxia |
NMF | Non-negative Matrix Factorization |
NICHD | National Institute of Child Health and Human Development |
NPV | Negative Predictive Value |
OASI | Obstetric Anal Sphincter Injury |
OGTT | Oral Glucose Tolerance Test |
PAPP-A | Pregnancy-Associated Plasma Protein-A |
PCA | Principal Component Analysis |
PF | Probability Forest |
PG | Plasma Glucose |
PlGF | Placental Growth Factor |
PP-13 | Placental Protein-13 |
PPROM | Preterm Premature Rupture of Membranes |
PROM | Premature Rupture of Membranes |
PPV | Positive Predictive Value |
PR-AUC | Precision-Recall Area Under the Curve |
Pred | Predictors |
PT | Prothrombin Time |
PTB | Preterm Birth |
RF | Random Forest |
ReLU | Rectified Linear Unit |
RBF | Radial Basis Function |
ROC | Receiver-Operating-Characteristic |
ROC-AUC | Receiver-Operating-Characteristic Area Under the Curve |
RMS | Root-Mean-Square |
RNN | Recurrent Neural Network |
SBELM | Stacked Bayesian Extreme Learning Machine |
SBP | Systolic Blood Pressure |
Sens | Sensitivity |
SHAP | SHapley Additive Explanations |
SFM | State Flow Machine |
SGB | Stochastic Gradient Boosting |
SMOTE | Synthetic Minority Oversampling Technique |
SOM | Self-Organizing Map |
spec | Specificity |
ST | Study Type |
STV | Short-Term Variability |
TBIL | Total Bilirubin |
TG | Triglycerides |
TOCO | Tocodynamometry |
TGLCN | Trend-Guided Long Convolution Network |
T2WI | T2-Weighted Imaging |
TT | Thrombin Time |
UC | Uterine Contraction |
UtA-PI | Uterine Artery Pulsatility Index |
U-Net | U-Shaped Convolutional Network |
US | Ultrasound |
VD | Vaginal Delivery |
Vit D3 | Vitamin D3 |
VIP | Variable Importance in Projection |
WBC | White Blood Cell Count |
WC | Waist Circumference |
XGB | Extreme Gradient Boosting |
XGBoost | eXtreme Gradient Boosting |
References
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach; Pearson: Hoboken, NJ, USA, 2020. [Google Scholar]
- Kufel, J.; Bargieł-Łączek, K.; Kocot, S.; Koźlik, M.; Bartnikowska, W.; Janik, M.; Czogalik, Ł.; Dudek, P.; Magiera, M.; Lis, A.; et al. What is machine learning, artificial neural networks and deep learning?—Examples of practical applications in medicine. Diagnostics 2023, 13, 2582. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Advances in Neural Information Processing Systems; Curran Associates: Red Hook, NY, USA, 2017; pp. 5998–6008. [Google Scholar]
- Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Bertini, A.; Salas, R.; Chabert, S.; Sobrevia, L.; Pardo, F. Using machine learning to predict complications in pregnancy: A systematic review. Front. Bioeng. Biotechnol. 2021, 9, 780389. [Google Scholar] [CrossRef]
- Juszczak, K.; Summers, S.; Elson, D.; Peters, T.M. Automated measurement of fetal head circumference from ultrasound images using deep learning. Ultrasound Med. Biol. 2020, 46, 1947–1957. [Google Scholar]
- van den Heuvel, T.L.A.; de Bruijn, D.; de Korte, C.L.; van Ginneken, B. Automated measurement of fetal head circumference using 2D ultrasound images. PLoS ONE 2018, 13, e0200412. [Google Scholar] [CrossRef]
- Hassan, A.N.; Guend, H.; Syed, S. Wearable sensor-based phenotyping of maternal and fetal health: Opportunities and challenges. npj Digit. Med. 2022, 5, 50. [Google Scholar]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Peters, M.D.J.; Godfrey, C.M.; McInerney, P.; Soares, C.B.; Khalil, H.; Parker, D. Methodology for JBI scoping reviews. In Joanna Briggs Institute Reviewers’ Manual; Aromataris, E., Munn, Z., Eds.; The Joanna Briggs Institute: Adelaide, Australia, 2015; pp. 1–24. [Google Scholar]
- McCoy, J.A.; Levine, L.D.; Wan, G.; Chivers, C.; Teel, J.; La Cava, W.G. Intrapartum electronic fetal heart rate monitoring to predict acidemia at birth with the use of deep learning. Am. J. Obstet. Gynecol. 2025, 232, 116.e1–116.e9. [Google Scholar] [CrossRef]
- Ben M’Barek, I.; Jauvion, G.; Merrer, J.; Koskas, M.; Sibony, O.; Ceccaldi, P.F.; Le Pennec, E.; Stirnemann, J. DeepCTG® 2.0: Development and validation of a deep learning model to detect neonatal acidemia from cardiotocography during labor. Comput. Biol. Med. 2025, 184, 109448. [Google Scholar] [CrossRef]
- Gumilar, K.E.; Wardhana, M.P.; Akbar, M.I.A.; Putra, A.S.; Banjarnahor, D.P.P.; Mulyana, R.S.; Fatati, I.; Yu, Z.Y.; Hsu, Y.C.; Dachlan, E.G.; et al. Artificial intelligence–large language models (AI-LLMs) for reliable and accurate cardiotocography (CTG) interpretation in obstetric practice. Comput. Struct. Biotechnol. J. 2025, 23, 3034–3045. [Google Scholar] [CrossRef]
- Roozbeh, N.; Montazeri, F.; Vahidi Farashah, M.; Mehrnoush, V.; Darsareh, F. Proposing a machine learning-based model for predicting nonreassuring fetal heart. Sci. Rep. 2025, 15, 7812. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhu, J.; Jiao, P.; Wang, J.; Zhang, X.; Lu, X.; Zhang, Y. Hybrid-FHR: A multi-modal AI approach for automated fetal acidosis diagnosis. BMC Med. Inform. Decis. Mak. 2024, 24, 19. [Google Scholar] [CrossRef]
- Tarvonen, M.; Manninen, M.; Lamminaho, P.; Jehkonen, P.; Tuppurainen, V.; Andersson, S. Computer vision for identification of increased fetal heart variability in cardiotocogram. Gynecol. Obstet. Investig. 2024, 89, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, G.; Veningston, K. AI-driven interpretable deep learning based fetal health classification. SLAst 2024, 4, 100206. [Google Scholar] [CrossRef] [PubMed]
- Melaet, R.; de Vries, I.R.; Kok, R.D.; Oei, S.G.; Huijben, I.A.M.; van Sloun, R.J.G.; van Laar, J.O.E.H.; Vullings, R. Artificial intelligence-based cardiotocogram assessment during labor. Eur. J. Obstet. Gynecol. Reprod. Biol. 2024, 295, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Wahbah, M.; Zitouni, M.S.; Al Sakaji, R.; Funamoto, K.; Widatalla, N.; Krishnan, A.; Kimura, Y.; Khandoker, A.H. A deep learning framework for noninvasive fetal ECG signal extraction. Front. Physiol. 2024, 15, 1329313. [Google Scholar] [CrossRef]
- Mendis, L.; Palaniswami, M.; Keenan, E.; Brownfoot, F. Rapid detection of fetal compromise using input length-invariant deep learning on fetal heart rate signals. Sci. Rep. 2024, 14, 63108. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Guo, C.; Chen, Q.; Liu, G.; Li, L.; Luo, X.; Wei, H. Multicentric intelligent cardiotocography signal interpretation using deep semi-supervised domain adaptation via minimax entropy and domain invariance. Comput. Methods Programs Biomed. 2024, 249, 108145. [Google Scholar] [CrossRef]
- Das, S.; Obaidullah, S.M.; Mahmud, M.; Kaiser, M.S.; Roy, K.; Saha, C.K.; Goswami, K. A machine learning pipeline to classify foetal heart rate deceleration with optimal feature set. Sci. Rep. 2023, 13, 2495. [Google Scholar] [CrossRef]
- Liang, H.; Lu, Y. A CNN-RNN unified framework for intrapartum cardiotocograph classification. Comput. Methods Programs Biomed. 2022, 223, 107300. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhao, Z.; Zhang, X.; Zhang, X.; Jiao, P.; Ye, X. Identifying fetal status with fetal heart rate: Deep learning approach based on long convolution. Comput. Biol. Med. 2023, 161, 106970. [Google Scholar] [CrossRef]
- Lee, K.S.; Choi, E.S.; Nam, Y.J.; Liu, N.W.; Yang, Y.S.; Kim, H.Y.; Ahn, K.H.; Hong, S.C. Real-time classification of fetal status based on deep learning and cardiotocography data. J. Med. Syst. 2023, 47, 60. [Google Scholar] [CrossRef]
- Ben M’Barek, I.; Jauvion, G.; Vitrou, J.; Holmström, E.; Koskas, M.; Ceccaldi, P.F. DeepCTG® 1.0: An interpretable model to detect fetal hypoxia from cardiotocography data during labor and delivery. Front. Pediatr. 2023, 11, 1190441. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, G.; Xu, L.; Li, C.; Hao, Y.; Chen, Q.; Li, X.; Liu, G.; Wei, H. Intelligent antepartum fetal monitoring via deep learning and fusion of cardiotocographic signals and clinical data. Healthcare Inform. Res. 2023, 29, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Daydulo, Y.D.; Thamineni, B.L.; Dasari, H.K.; Aboye, G.T. Morse wavelet CTG analysis. BMC Med. Inform. Decis. Mak. 2022, 22, 2068. [Google Scholar] [CrossRef]
- Spairani, E.; Daniele, B.; Signorini, M.G.; Magenes, G. A deep learning mixed-data type approach for the classification of FHR signals. Front. Bioeng. Biotechnol. 2022, 10, 887549. [Google Scholar] [CrossRef] [PubMed]
- Boudet, S.; Houzé de l’Aulnoit, A.; Peyrodie, L.; Demailly, R.; de L’aulnoit, D.H. Use of deep learning to detect maternal heart rate and false signals on fetal heart rate recordings. Biosensors 2022, 12, 691. [Google Scholar] [CrossRef]
- Frasch, M.G.; Strong, S.B.; Nilosek, D.; Leaverton, J.; Schifrin, B.S. Detection of preventable fetal distress from scanned cardiotocogram tracings using deep learning. Front. Pediatr. 2021, 9, 736834. [Google Scholar] [CrossRef]
- Fotiadou, E.; van Sloun, R.J.G.; van Laar, J.O.E.H.; Vullings, R. A dilated inception CNN-LSTM network for fetal heart rate estimation. Physiol. Meas. 2021, 42, 045007. [Google Scholar] [CrossRef]
- Liu, L.C.; Tsai, Y.H.; Chou, Y.C.; Jheng, Y.C.; Lin, C.K.; Lyu, N.Y.; Chien, Y.; Yang, Y.P.; Chang, K.J.; Chang, K.H.; et al. Concordance analysis of intrapartum cardiotocography between physicians and artificial intelligence-based technique using modified one-dimensional fully convolutional networks. J. Chin. Med. Assoc. 2021, 84, 1022–1028. [Google Scholar] [CrossRef] [PubMed]
- Signorini, M.G.; Pini, N.; Malovini, A.; Bellazzi, R.; Magenes, G. Integrating machine learning techniques and physiology based heart rate features for antepartum fetal monitoring. Comput. Methods Programs Biomed. 2020, 185, 105015. [Google Scholar] [CrossRef] [PubMed]
- Hoodbhoy, Z.; Noman, M.; Shafique, A.; Nasim, A.; Chowdhury, D.; Hasan, B. Use of machine learning algorithms for prediction of fetal risk using cardiotocographic data. Int. J. Appl. Basic Med. Res. 2019, 9, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhang, Y.; Comert, Z.; Deng, Y. Computer-Aided Diagnosis System of Fetal Hypoxia Incorporating Recurrence Plot with Convolutional Neural Network. Front. Physiol. 2019, 10, 255. [Google Scholar] [CrossRef]
- Cömert, Z.; Şengür, A.; Budak, Ü.; Kocamaz, A.F. Prediction of intrapartum fetal hypoxia considering feature selection algorithms and machine learning models. Health Inf. Sci. Syst. 2019, 7, 17. [Google Scholar] [CrossRef]
- Zhao, Z.; Deng, Y.; Zhang, Y.; Zhang, Y.; Zhang, X.; Shao, L. DeepFHR: Intelligent prediction of fetal acidemia using fetal heart rate signals based on convolutional neural network. BMC Med. Inform. Decis. Mak. 2019, 19, 286. [Google Scholar] [CrossRef]
- Tang, H.; Wang, T.; Li, M.; Yang, X. The design and implementation of cardiotocography signals classification algorithm based on neural network. Comput. Math. Methods Med. 2018, 2018, 8568617. [Google Scholar] [CrossRef]
- Leonarduzzi, R.; Spilka, J.; Frecon, J.; Wendt, H.; Pustelnik, N.; Jaffard, S.; Abry, P.; Doret, M. P-leader multifractal analysis and sparse SVM for intrapartum fetal acidosis detection. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2015, 2015, 1971–1974. [Google Scholar] [CrossRef]
- Maeda, K.; Noguchi, Y.; Matsumoto, F.; Nagasawa, T. Quantitative fetal heart rate evaluation without pattern classification: FHR score and artificial neural network analysis. J. Matern.-Fetal Neonatal Med. 2010, 23, 1517–1522. [Google Scholar] [CrossRef]
- Salamalekis, E.; Thomopoulos, P.; Giannaris, D.; Salloum, I.; Vasios, G.; Prentza, A.; Koutsouris, D. Computerised intrapartum diagnosis of fetal hypoxia based on fetal heart rate monitoring and fetal pulse oximetry recordings utilising wavelet analysis and neural networks. BJOG 2002, 109, 553–562. [Google Scholar] [CrossRef]
- Liszka-Hackzell, J.J. Categorization of fetal heart rate patterns using neural networks. Comput. Methods Programs Biomed. 2001, 67, 209–217. [Google Scholar] [CrossRef]
- Kol, S.; Thaler, I.; Paz, N.; Shmueli, O. Interpretation of nonstress tests by an artificial neural network. Am. J. Obstet. Gynecol. 1995, 173, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Keith, R.D.; Westgate, J.; Ifeachor, E.C.; Greene, K.R. Suitability of artificial neural networks for feature extraction from cardiotocogram during labour. J. Perinat. Med. 1995, 23, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Kloska, A.; Harmoza, A.; Kloska, S.M.; Marciniak, T.; Sadowska-Krawczenko, I. Predicting preterm birth using machine learning methods. Sci. Rep. 2025, 15, 89905. [Google Scholar] [CrossRef] [PubMed]
- Ohtaka, A.; Akazawa, M.; Hashimoto, K. Transvaginal ultrasound for preterm birth prediction. J. Med. Ultrason. 2023, 50, 394. [Google Scholar] [CrossRef]
- Bitar, G.; Liu, W.; Tunguhan, J.; Kumar, K.V.; Hoffman, M.K. A machine learning algorithm using clinical and demographic data for all-cause preterm birth prediction. Am. J. Perinatol. 2024, 41 (Suppl. S1), e3115–e3123. [Google Scholar] [CrossRef]
- Ushida, T.; Kotani, T.; Baba, J.; Imai, K.; Moriyama, Y.; Nakano-Kobayashi, T.; Iitani, Y.; Nakamura, N.; Hayakawa, M.; Kajiyama, H.; et al. Antenatal prediction models for outcomes of extremely and very preterm infants based on machine learning. Arch. Gynecol. Obstet. 2023, 306, 1287–1296. [Google Scholar] [CrossRef]
- Andrade Júnior, V.L.; França, M.S.; Santos, R.A.F.; Hatanaka, A.R.; Cruz, J.J.; Hamamoto, T.E.K.; Traina, E.; Sarmento, S.G.P.; Elito Júnior, J.; Pares, D.B.d.S.; et al. A new model based on artificial intelligence to screening preterm birth. J. Matern.-Fetal Neonatal Med. 2023, 36, 2241100. [Google Scholar] [CrossRef]
- Kokkinidis, I.; Logaras, E.; Rigas, E.S.; Tsakiridis, I.; Dagklis, T.; Billis, A.; Bamidis, P.D. Towards an explainable AI-based tool to predict preterm birth. Stud. Health Technol. Inform. 2023, 305, 207. [Google Scholar] [CrossRef]
- Khan, W.; Zaki, N.; Ghenimi, N.; Ahmad, A.; Bian, J.; Masud, M.M.; Ali, N.; Govender, R.; Ahmed, L.A. Predicting preterm birth using explainable machine learning in a prospective cohort of nulliparous and multiparous pregnant women. PLoS ONE 2023, 18, e0293925. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, S.; Hu, T.; Xu, S.; Lu, H.; Xu, C.; Li, J.; Zhu, X. Establishment of a model for predicting preterm birth based on the machine learning algorithm. BMC Pregnancy Childbirth 2023, 23, 6058. [Google Scholar] [CrossRef]
- Sun, Q.; Zou, X.; Yan, Y.; Zhang, H.; Wang, S.; Gao, Y.; Liu, H.; Liu, S.; Lu, J.; Yang, Y.; et al. Machine learning-based prediction model of preterm birth using electronic health record. Comput. Math. Methods Med. 2022, 2022, 9635526. [Google Scholar] [CrossRef]
- Wong, K.; Tessema, G.A.; Chai, K.; Pereira, G. Development of prognostic model for preterm birth using machine learning in a population-based cohort of Western Australia births between 1980 and 2015. Sci. Rep. 2022, 12, 21936. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, Y.; Zhang, Y.; Zhang, Y.; Wu, W.; Fan, J. Identifying non-linear association between maternal free thyroxine and risk of preterm delivery by a machine learning model. Front. Endocrinol. 2022, 13, 817595. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Moon, J.; Kang, N.; Kim, Y.H.; You, Y.A.; Kwon, E.; Ansari, A.; Hur, Y.M.; Park, T.; Kim, Y.J. Predicting preterm birth through vaginal microbiota, cervical length, and WBC using a machine learning model. Front. Microbiol. 2022, 13, 912853. [Google Scholar] [CrossRef] [PubMed]
- Rawashdeh, H.; Awawdeh, S.; Shannag, F.; Henawi, E.; Faris, H.; Obeid, N.; Hyett, J. Intelligent system based on data mining techniques for prediction of preterm birth for women with cervical cerclage. Comput. Biol. Chem. 2020, 89, 107233. [Google Scholar] [CrossRef]
- Gao, C.; Osmundson, S.; Velez Edwards, D.R.; Jackson, G.P.; Malin, B.A.; Chen, Y. Deep learning predicts extreme preterm birth from electronic health records. J. Biomed. Inform. 2019, 100, 103334. [Google Scholar] [CrossRef]
- Elaveyini, U.; Devi, S.P.; Rao, K.S. Neural networks prediction of preterm delivery with first trimester bleeding. Arch. Gynecol. Obstet. 2011, 282, 203–209. [Google Scholar] [CrossRef]
- Catley, C.; Frize, M.; Walker, C.R.; Petriu, D.C. Predicting high-risk preterm birth using artificial neural networks. IEEE Trans. Inf. Technol. Biomed. 2006, 10, 540–549. [Google Scholar] [CrossRef]
- Goodwin, L.K.; Iannacchione, M.A.; Hammond, W.E.; Crockett, P.; Maher, J.E.; Schlitz, K.; Manning, C. Data mining methods find demographic predictors of preterm birth. Am. J. Obstet. Gynecol. 2001, 185, 1097–1100. [Google Scholar] [CrossRef]
- Woolery, L.K.; Grzymala-Busse, J. Machine learning for an expert system to predict preterm birth risk. J. Am. Med. Inform. Assoc. 1994, 1, 439–446. [Google Scholar] [CrossRef]
- Zheng, W.; Jiang, Y.; Jiang, Z.; Li, J.; Bian, W.; Hou, H.; Yan, G.; Shen, W.; Zou, Y.; Luo, Q.; et al. Association between deep learning radiomics based on placental MRI and preeclampsia with fetal growth restriction: A multicenter study. Eur. J. Radiol. 2025, 184, 111985. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, L.; Li, G.; Cheng, H. Development of immune-derived molecular markers for preeclampsia based on multiple machine learning algorithms. Sci. Rep. 2025, 15, 86442. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, D.; Qiu, H. NMF typing and machine learning algorithm-based exploration of preeclampsia-related mechanisms on ferroptosis signature genes. Cell. Mol. Biol. Lett. 2025, 29, 72. [Google Scholar] [CrossRef]
- Lv, B.; Wang, G.; Pan, Y.; Yuan, G.; Wei, L. Construction and evaluation of machine learning-based predictive models for early-onset preeclampsia. Pregnancy Hypertens. 2025, 30, 101198. [Google Scholar] [CrossRef] [PubMed]
- da Silva, S.M.S.D.; Nogueira, M.S.; Rizzato, J.M.B.; de Lima Silva, S.; Cortelli, S.C.; Borges, R.; da Silva Martinho, H.; Silva, R.A.; de Carvalho, L.F.D.C.E.S. Machine learning combined with infrared spectroscopy for detection of hypertension pregnancy: Towards newborn and pregnant blood analysis. BMC Pregnancy Childbirth 2024, 24, 6941. [Google Scholar] [CrossRef] [PubMed]
- Eberhard, B.W.; Gray, K.J.; Bates, D.W.; Kovacheva, V.P. Deep survival analysis for interpretable time-varying prediction of preeclampsia risk. J. Biomed. Inform. 2024, 150, 104688. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Gu, S.; Shao, F.; Li, P.; Wu, Y.; Xiong, J.; Wang, B.; Zhou, C.; Gao, P.; Hua, X. Prediction of preeclampsia from retinal fundus images via deep learning in singleton pregnancies: A prospective cohort study. J. Hypertens. 2023, 41, 1602–1611. [Google Scholar] [CrossRef]
- Vasilache, I.A.; Scripcariu, I.S.; Doroftei, B.; Bernad, R.L.; Cărăuleanu, A.; Socolov, D.; Melinte-Popescu, A.S.; Vicoveanu, P.; Harabor, V.; Mihalceanu, E.; et al. Prediction of intrauterine growth restriction and preeclampsia using machine learning-based algorithms: A prospective study. Diagnostics 2024, 14, 453. [Google Scholar] [CrossRef]
- Bülez, A.; Hansu, K.; Çağan, E.S.; Şahin, A.R.; Dokumacı, H.Ö. Artificial intelligence in early diagnosis of preeclampsia. Niger. J. Clin. Pract. 2024, 27, 383–388. [Google Scholar] [CrossRef]
- Kaya, Y.; Bütün, Z.; Çelik, Ö.; Salik, E.A.; Tahta, T. Risk assessment for preeclampsia in the preconception period based on maternal clinical history via machine learning methods. J. Clin. Med. 2024, 14, 155. [Google Scholar] [CrossRef]
- Tiruneh, S.A.; Rolnik, D.L.; Teede, H.J.; Enticott, J. Prediction of pre-eclampsia with machine learning approaches: Leveraging important information from routinely collected data. Int. J. Med. Inform. 2024, 192, 105645. [Google Scholar] [CrossRef]
- Huang, P.; Song, Y.; Yang, Y.; Bai, F.; Li, N.; Liu, D.; Li, C.; Li, X.; Gou, W.; Zong, L. Identification and verification of diagnostic biomarkers based on mitochondria-related genes related to immune microenvironment for preeclampsia using machine learning algorithms. Front. Immunol. 2024, 14, 1304165. [Google Scholar] [CrossRef]
- Araújo, D.C.; de Macedo, A.A.; Veloso, A.A.; Alpoim, P.N.; Gomes, K.B.; Carvalho, M.D.G.; Dusse, L.M.S. Complete blood count as a biomarker for preeclampsia with severe features diagnosis: A machine learning approach. BMC Pregnancy Childbirth 2024, 24, 628. [Google Scholar] [CrossRef]
- Li, T.; Xu, M.; Wang, Y.; Wang, Y.; Tang, H.; Duan, H.; Zhao, G.; Zheng, M.; Hu, Y. Prediction model of preeclampsia using machine learning-based methods: A population-based cohort study in China. Front. Endocrinol. 2024, 15, 1345573. [Google Scholar] [CrossRef]
- Gil, M.M.; Cuenca-Gómez, D.; Rolle, V.; Pertegal, M.; Díaz, C.; Revello, R.; Adiego, B.; Mendoza, M.; Molina, F.S.; Santacruz, B.; et al. Validation of machine-learning model for first-trimester prediction of pre-eclampsia using cohort from PREVAL study. Ultrasound Obstet. Gynecol. 2024, 63, 769–777. [Google Scholar] [CrossRef]
- Edvinsson, C.; Björnsson, O.; Erlandsson, L.; Hansson, S.R. Predicting intensive care need in women with preeclampsia using machine learning: A pilot study. Hypertens. Pregnancy 2024, 43, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Ansbacher-Feldman, Z.; Syngelaki, A.; Meiri, H.; Cirkin, R.; Nicolaides, K.H.; Louzoun, Y. Machine-learning-based prediction of pre-eclampsia using first-trimester maternal characteristics and biomarkers. Ultrasound Obstet. Gynecol. 2022, 60, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Villalaín, C.; Herraiz, I.; Domínguez-Del Olmo, P.; Angulo, P.; Ayala, J.L.; Galindo, A. Prediction of delivery within 7 days after diagnosis of early-onset preeclampsia using machine-learning models. Front. Cardiovasc. Med. 2022, 9, 910701. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yang, X.; Chen, G.; Ding, Y.; Shi, M.; Sun, L.; Huang, Z.; Liu, J.; Liu, T.; Yan, R.; et al. Development of a prediction model on preeclampsia using machine learning-based method: A retrospective cohort study in China. Front. Physiol. 2022, 13, 896969. [Google Scholar] [CrossRef]
- Bennett, R.; Mulla, Z.D.; Parikh, P.; Hauspurg, A.; Razzaghi, T. An imbalance-aware deep neural network for early prediction of preeclampsia. PLoS ONE 2022, 17, e0266042. [Google Scholar] [CrossRef]
- Hoffman, M.K.; Ma, N.; Roberts, A. A machine learning algorithm for predicting maternal readmission for hypertensive disorders of pregnancy. Am. J. Obstet. Gynecol. MFM 2021, 3, 100250. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Y.; Li, S.; Zhang, J.; Jiang, D.; Li, X.; Li, Y.; Du, J. A machine learning-based prediction model for cardiovascular risk in women with preeclampsia. Front. Cardiovasc. Med. 2021, 8, 736491. [Google Scholar] [CrossRef]
- Sufriyana, H.; Husnayain, A.; Chen, Y.-L.; Kuo, C.-Y.; Singh, O.; Yeh, T.-Y.; Wu, Y.-W.; Su, E.C.-Y. Comparison of Multivariable Logistic Regression and Other Machine Learning Algorithms for Prognostic Prediction Studies in Pregnancy Care: Systematic Review and Meta-Analysis. JMIR Med. Inform. 2020, 8, e16503. [Google Scholar] [CrossRef]
- Jhee, J.H.; Lee, S.; Park, Y.; Lee, S.E.; Kim, Y.A.; Kang, S.-W.; Kwon, J.-Y.; Park, J.T. Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS ONE 2019, 14, e0221202. [Google Scholar] [CrossRef] [PubMed]
- Bigdeli, S.K.; Ghazisaedi, M.; Ayyoubzadeh, S.M.; Hantoushzadeh, S.; Ahmadi, M. Predicting Gestational Diabetes Mellitus in the First Trimester Using Machine Learning Algorithms: A Cross-Sectional Study at a Hospital Fertility Health Center in Iran. BMC Med. Inform. Decis. Mak. 2025, 25, 3. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Su, X.; Huang, L. Early gestational diabetes mellitus risk predictor using neural network with NearMiss. J. Matern.-Fetal Neonatal Med. 2025, 38, 2470317. [Google Scholar] [CrossRef] [PubMed]
- Zaky, H.; Fthenou, E.; Srour, L.; Farrell, T.; Bashir, M.; El Hajj, N.; Alam, T. Machine learning based model for the early detection of gestational diabetes mellitus. BMC Med. Inform. Decis. Mak. 2025, 25, 29. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, W.; Cheng, C.; Zhang, Y.; Chen, J.; Lin, J.; He, K.; Guo, X. Predictive Value of Ultrasonic Artificial Intelligence in Placental Characteristics of Early Pregnancy for Gestational Diabetes Mellitus. Front. Endocrinol. 2024, 15, 1344666. [Google Scholar] [CrossRef]
- Chen, M.; Xu, W.; Guo, Y.; Yan, J. Predicting recurrent gestational diabetes mellitus using artificial intelligence models: A retrospective cohort study. Arch. Gynecol. Obstet. 2024, 310, 1621–1630. [Google Scholar] [CrossRef]
- Kaya, Y.; Bütün, Z.; Çelik, Ö.; Akça Salik, E.; Tahta, T.; Altun Yavuz, A. The early prediction of gestational diabetes mellitus by machine learning models. BMC Pregnancy Childbirth 2024, 24, 574. [Google Scholar] [CrossRef]
- Cubillos, G.; Monckeberg, M.; Plaza, A.; Morgan, M.; Estévez, P.A.; Choolani, M.; Kemp, M.W.; Illanes, S.E.; Pérez, C.A. Development of machine learning models to predict gestational diabetes risk in the first half of pregnancy. BMC Pregnancy Childbirth 2023, 23, 469. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Hu, X.; Yu, Y.; Wang, J. Prediction model for gestational diabetes mellitus using the XGBoost machine learning algorithm. Front. Endocrinol. 2023, 14, 1105062. [Google Scholar] [CrossRef] [PubMed]
- Houri, O.; Gil, Y.; Krispin, E.; Amitai-Komem, D.; Chen, R.; Hochberg, A.; Wiznitzer, A.; Hadar, E. Predicting adverse perinatal outcomes among gestational diabetes complicated pregnancies using neural network algorithm. J. Matern.-Fetal Neonatal Med. 2023, 36, 2286928. [Google Scholar] [CrossRef] [PubMed]
- Kadambi, A.; Fulcher, I.; Venkatesh, K.; Schor, J.S.; Clapp, M.A.; Wen, T. Predicting the Risk of Gestational Diabetes Using Clinical Data with Machine Learning: A Predictive Model Study. Am. J. Obstet. Gynecol. MFM 2023, 5, 100965. [Google Scholar] [CrossRef]
- Watanabe, M.; Eguchi, A.; Sakurai, K.; Yamamoto, M.; Mori, C.; Japan Environment Children’s Study (JECS) Group. Prediction of gestational diabetes mellitus using machine learning from birth cohort data of the Japan Environment and Children’s Study. Sci. Rep. 2023, 13, 21410. [Google Scholar] [CrossRef]
- Zhou, M.; Ji, J.; Xie, N.; Chen, D. Prediction of birth weight in pregnancy with gestational diabetes mellitus using an artificial neural network. J. Zhejiang Univ. Sci. B 2022, 23, 459–470. [Google Scholar] [CrossRef]
- Kumar, M.; Ang, L.T.; Png, H.; Ng, M.; Tan, K.; Loy, S.L.; Tan, K.H.; Chan, J.K.Y.; Godfrey, K.M.; Chan, S.-Y.; et al. Automated Machine Learning (AutoML)-Derived Preconception Predictive Risk Model to Guide Early Intervention for Gestational Diabetes Mellitus. Int. J. Environ. Res. Public Health 2022, 19, 6792. [Google Scholar] [CrossRef]
- Kumar, M.; Chen, L.; Tan, K.; Ang, L.T.; Ho, C.; Wong, G.; Soh, S.-E.; Tan, K.H.; Chan, J.K.Y.; Godfrey, K.M.; et al. Population-Centric Risk Prediction Modeling for Gestational Diabetes Mellitus: A Machine Learning Approach. Diabetes Res. Clin. Pract. 2022, 185, 109237. [Google Scholar] [CrossRef]
- Yang, J.; Clifton, D.; Hirst, J.E.; Kavvoura, F.K.; Farah, G.; Mackillop, L.; Lu, H. Machine learning-based risk stratification for gestational diabetes management. Sensors 2022, 22, 4805. [Google Scholar] [CrossRef]
- Liao, L.D.; Ferrara, A.; Greenberg, M.B.; Boggess, K.; Njoroge, J.; Zhang, Z.; Bradshaw, P.T.; Hubbard, A.E.; Zhu, Y. Development and Validation of Prediction Models for Gestational Diabetes Treatment Modality Using Supervised Machine Learning: A Population-Based Cohort Study. BMC Med. 2022, 20, 307. [Google Scholar] [CrossRef]
- Du, Y.; Rafferty, A.R.; McAuliffe, F.M.; Wei, L.; Mooney, C. An explainable machine learning-based clinical decision support system for prediction of gestational diabetes mellitus. Sci. Rep. 2022, 12, 11272. [Google Scholar] [CrossRef]
- Araya, J.; Rodriguez, A.; Lagos-SanMartin, K.; Mennickent, D.; Gutiérrez-Vega, S.; Ortega-Contreras, B.; Valderrama-Gutiérrez, B.; Gonzalez, M.; Farías-Jofré, M.; Guzmán-Gutiérrez, E. Maternal thyroid profile in first and second trimester of pregnancy is correlated with gestational diabetes mellitus through machine learning. Placenta 2021, 112, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, J.; Leng, J.; Wang, H.; Liu, J.; Li, W.; Liu, H.; Wang, S.; Ma, J.; Chan, J.C.; et al. Machine learning risk score for prediction of gestational diabetes in early pregnancy in Tianjin, China. Diabetes Metab. Res. Rev. 2023, 39, e3397. [Google Scholar] [CrossRef] [PubMed]
- Ahmadzia, H.K.; Dzienny, A.C.; Bopf, M.; Phillips, J.M.; Federspiel, J.J.; Amdur, R.; Rice, M.M.; Rodriguez, L. Machine Learning Models for Prediction of Maternal Haemorrhage and Transfusion: Model Development Study. JMIR Bioinform. Biotechnol. 2024, 5, e52059. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yi, G.; Zhang, Y.; Li, M.; Zhang, J. Quantitative Prediction of Postpartum Haemorrhage in Cesarean Section on Machine Learning. BMC Med. Inform. Decis. Mak. 2024, 24, 166. [Google Scholar] [CrossRef]
- Holcroft, S.; Karangwa, I.; Little, F.; Behoor, J.; Bazirete, O. Predictive Modelling of Postpartum Haemorrhage Using Early Risk Factors: A Comparative Analysis of Statistical and Machine Learning Models. Int. J. Environ. Res. Public Health 2024, 21, 600. [Google Scholar] [CrossRef]
- Westcott, J.M.; Hughes, F.; Liu, W.; Grivainis, M.; Hoskins, I.; Fenyö, D. Prediction of Maternal Haemorrhage Using Machine Learning: Retrospective Cohort Study. J. Med. Internet Res. 2022, 24, e34108. [Google Scholar] [CrossRef]
- Liu, J.; Wang, C.; Yan, R.; Lu, Y.; Bai, J.; Wang, H.; Li, R. Machine learning-based prediction of postpartum haemorrhage after vaginal delivery: Combining bleeding high-risk factors and uterine contraction curve. Arch. Gynecol. Obstet. 2022, 306, 1115–1124. [Google Scholar] [CrossRef]
- Akazawa, M.; Hashimoto, K.; Katsuhiko, N.; Kaname, Y. Machine Learning Approach for the Prediction of Postpartum Haemorrhage in Vaginal Birth. Sci. Rep. 2021, 11, 22620. [Google Scholar] [CrossRef]
- Venkatesh, K.K.; Strauss, R.A.; Grotegut, C.A.; Heine, R.P.; Chescheir, N.C.; Stringer, J.S.A.; Stamilio, D.M.; Menard, K.M.; Jelovsek, J.E. Machine learning and statistical models to predict postpartum haemorrhage. Obstet. Gynecol. 2020, 135, 935–944. [Google Scholar] [CrossRef]
- Borycka, K.; Młyńczak, M.; Rosoł, M.; Korzeniewski, K.; Iwanowski, P.; Heřman, H.; Janku, P.; Uchman-Musielak, M.; Dosedla, E.; Diaz, E.G.; et al. Detection of obstetric anal sphincter injuries using machine learning-assisted impedance spectroscopy: A prospective, comparative, multicentre clinical study. Sci. Rep. 2025, 15, 392. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Zhao, L.; Zhao, X.L.; He, L.; Zhong, X.; Yin, Z.; Chen, J.; Han, Y.; Li, K. Accurate prediction of mediolateral episiotomy risk during labor: Development and verification of an artificial intelligence model. BMC Pregnancy Childbirth 2025, 25, 370. [Google Scholar] [CrossRef]
- Boie, S.; Glavind, J.; Uldbjerg, N.; Steer, P.J.; Bor, P.; CONDISOX Trial Group. Continued versus discontinued oxytocin stimulation in the active phase of labour (CONDISOX): Individual management based on artificial intelligence—A secondary analysis. BMC Pregnancy Childbirth 2024, 24, 6461. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.S.; Wells, M.; Zamanzadeh, D.; Akre, S.; Pevnick, J.M.; Bui, A.A.T.; Gregory, K.D. Applying automated machine learning to predict mode of delivery using ongoing intrapartum data in laboring patients. Am. J. Perinatol. 2023, 40, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Kuanar, A.; Akbar, A.; Sujata, P.; Kar, D. Deep neural network modelling for prediction of the mode of delivery. Eur. J. Obstet. Gynecol. Reprod. Biol. 2024, 293, 84–90. [Google Scholar] [CrossRef]
- Xu, J.; Liu, Z.; Lu, Y.; Zheng, Z.; Zhang, X. A machine learning model to predict spontaneous vaginal delivery failure for term nulliparous women: An observational study. Int. J. Gynecol. Obstet. 2023, 162, 292–300. [Google Scholar] [CrossRef]
- Chen, G.; Bai, J.; Ou, Z.; Lu, Y.; Wang, H. PSFHS: Intrapartum ultrasound image dataset for AI-based segmentation of pubic symphysis and fetal head. PSFHS: Intrapartum ultrasound image dataset for AI-based segmentation of pubic symphysis and fetal head. Sci. Data 2024, 11, 3266. [Google Scholar] [CrossRef]
- Liu, Y.S.; Lu, S.; Wang, H.B.; Hou, Z.; Zhang, C.Y.; Chong, Y.W.; Wang, S.; Tang, W.Z.; Qu, X.L.; Yan, Z. An evaluation of cervical maturity for Chinese women with labor induction by machine learning and ultrasound images. BMC Pregnancy Childbirth 2023, 23, 737. [Google Scholar] [CrossRef]
- Lodi, M.; Poterie, A.; Exarchakis, G.; Brien, C.; Lafaye de Micheaux, P.; Deruelle, P.; Gallix, B. Prediction of cesarean delivery in class III obese nulliparous women: An externally validated model using machine learning. J. Gynecol. Obstet. Hum. Reprod. 2023, 52, 102624. [Google Scholar] [CrossRef]
- Zhang, R.; Sheng, W.; Liu, F.; Zhang, J.; Bai, W. Establishment and validation of a machine learning-based prediction model for termination of pregnancy via cesarean section. Int. J. Gen. Med. 2023, 16, 5567–5578. [Google Scholar] [CrossRef]
- D’Souza, R.; Doyle, O.; Miller, H.; Pillai, N.; Angehrn, Z.; Li, P.; Ispas-Jouron, S. Prediction of successful labor induction in persons with a low Bishop score using machine learning: Secondary analysis of two randomised controlled trials. Birth 2023, 50, e358–e366. [Google Scholar] [CrossRef]
- Meyer, R.; Weisz, B.; Eilenberg, R.; Avgil-Tsadok, M.; Uziel, M.; Sivan, E.; Mazaki-Tovi, S.; Tsur, A. Utilizing machine learning to predict unplanned cesarean delivery. Int. J. Gynaecol. Obstet. 2022, 161, 255–263. [Google Scholar] [CrossRef]
- Hu, T.; Du, S.; Li, X.; Yang, F.; Zhang, S.; Yi, J.; Xiao, B.; Li, T.; He, L. Establishment of a model for predicting the outcome of induced labor in full-term pregnancy based on machine learning algorithm. Sci. Rep. 2022, 12, 19179. [Google Scholar] [CrossRef] [PubMed]
- Ghi, T.; Conversano, F.; Ramirez Zegarra, R.; Pisani, P.; Dall’Asta, A.; Lanzone, A.; Lau, W.; Vimercati, A.; Iliescu, D.G.; Mappa, I.; et al. Novel artificial intelligence approach for automatic differentiation of fetal occiput anterior and non-occiput anterior positions during labor. Ultrasound Obstet. Gynecol. 2022, 62, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Awal, M.A.; Laboni, J.N.; Pinki, F.T.; Karmokar, S.; Mumenin, K.M.; Al-Ahmadi, A.; Rahman, M.A.; Hossain, M.S.; Mirjalili, S.; et al. HGSORF: Henry Gas Solubility Optimization-based Random Forest for C-Section prediction and XAI-based cause analysis. Comput. Biol. Med. 2022, 147, 105671. [Google Scholar] [CrossRef] [PubMed]
- Chill, H.H.; Guedalia, J.; Lipschuetz, M.; Shimonovitz, T.; Unger, R.; Shveiky, D.; Karavani, G. Prediction model for obstetric anal sphincter injury using machine learning. Int. Urogynecol. J. 2022, 33, 1893–1901. [Google Scholar] [CrossRef]
- Ullah, Z.; Saleem, F.; Jamjoom, M.; Fakieh, B. Reliable prediction models based on enriched data for identifying the mode of childbirth by using machine learning methods: Development study. JMIR Med. Inform. 2021, 9, e28856. [Google Scholar] [CrossRef]
- Guedalia, J.; Sompolinsky, Y.; Novoselsky Persky, M.; Cohen, S.M.; Kabiri, D.; Yagel, S.; Unger, R.; Lipschuetz, M. Prediction of severe adverse neonatal outcomes at the second stage of labour using machine learning: A retrospective cohort study. BJOG 2021, 130, 1927–1937. [Google Scholar] [CrossRef]
- Tarimo, C.S.; Bhuyan, S.S.; Li, Q.; Mahande, M.J.J.; Wu, J.; Fu, X. Validating machine learning models for the prediction of labour induction intervention using routine data: A registry-based retrospective cohort study at a tertiary hospital in northern Tanzania. BMJ Open 2021, 11, e051925. [Google Scholar] [CrossRef]
- Meyer, R.; Hendin, N.; Zamir, M.; Mor, N.; Levin, G.; Sivan, E.; Aran, D.; Tsur, A. Implementation of machine learning models for the prediction of vaginal birth after cesarean delivery. J. Matern.-Fetal Neonatal Med. 2020, 35, 3677–3683. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, C.; Improta, G.; Amato, F.; Cesarelli, G.; Romano, M. Classifying the type of delivery from cardiotocographic signals: A machine learning approach. Comput. Methods Programs Biomed. 2020, 196, 105712. [Google Scholar] [CrossRef] [PubMed]
- Beksac, M.S.; Tanacan, A.; Bacak, H.O.; Leblebicioglu, K. Computerized prediction system for the route of delivery (vaginal birth versus cesarean section). J. Perinat. Med. 2018, 46, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Fergus, P.; Selvaraj, M.; Chalmers, C. Machine learning ensemble modelling to classify caesarean section and vaginal delivery types using cardiotocography traces. Comput. Biol. Med. 2018, 93, 7–16. [Google Scholar] [CrossRef]
- Devoe, L.D.; Samuel, S.; Prescott, P.; Work, B.A. Predicting the duration of the first stage of spontaneous labor using a neural network. J. Matern.-Fetal Investig. 1996, 6, 205–209. [Google Scholar] [CrossRef]
- Nielsen, P.V.; Stigsby, B.; Nickelsen, C.; Nim, J. Intra- and inter-observer variability in the assessment of intrapartum cardiotocograms. Acta Obstet. Gynecol. Scand. 1987, 66, 421–424. [Google Scholar] [CrossRef]
- Arduini, D.; Rizzo, G.; Romanini, C. Computerized analysis of fetal heart rate. J. Perinat. Med. 1994, 22 (Suppl. S1), 22–27. [Google Scholar] [CrossRef]
- Stout, M.J.; Cahill, A.G. Electronic fetal monitoring: Past, present, and future. Clin. Perinatol. 2011, 38, 127–142. [Google Scholar] [CrossRef]
- Georgieva, A. OxSys: Integrating clinical risk factors into computerized CTG analysis. Ultrasound Obstet. Gynecol. 2017, 50, 371–378. [Google Scholar]
- Baumert, M. Phase-rectified signal averaging for CTG feature extraction. IEEE Trans. Biomed. Eng. 2013, 60, 1432–1440. [Google Scholar]
- Liu, S. Wavelet-based feature extraction of CTG signals for fetal compromise detection. Comput. Biol. Med. 2015, 65, 232–239. [Google Scholar]
- Long, Y. Nonclassic CTG features and composite metrics: Systematic review. J. Matern.-Fetal Neonatal Med. 2019, 32, 543–551. [Google Scholar]
- Steer, P.J. Early indicators of fetal compromise: Late preterm and small for gestational age associations. BJOG 2012, 119, e116–e124. [Google Scholar]
- Park, C.E.; Choi, B.; Park, R.W.; Kwak, D.W.; Ko, H.S.; Seong, W.J.; Cha, H.-H.; Kim, H.M.; Lee, J.; Seol, H.-J.; et al. Automated interpretation of cardiotocography using deep learning in a nationwide multicenter study. Sci. Rep. 2025, 15, 19617. [Google Scholar] [CrossRef]
- Blencowe, H.; Cousens, S.; Oestergaard, M.Z.; Chou, D.; Moller, A.B.; Narwal, R.; Adler, A.; Vera Garcia, C.; Rohde, S.; Say, L.; et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. Lancet 2012, 379, 2162–2172. [Google Scholar] [CrossRef]
- Yagel, S.; Cohen, S.M.; Admati, I.; Skarbianskis, N.; Solt, I.; Zeisel, A.; Beharier, O.; Goldman-Wohl, D. Expert review: Preeclampsia type I and type II. Am. J. Obstet. Gynecol. MFM 2023, 5, 101203. [Google Scholar] [CrossRef]
- Roberts, J.M.; Cooper, D.W. Pathogenesis and genetics of pre-eclampsia. Lancet 2001, 357, 53–56. [Google Scholar] [CrossRef]
- Redman, C.W.G.; Sargent, I.L. Placental stress and pre-eclampsia: A revised view. Placenta 2009, 30, S38–S42. [Google Scholar] [CrossRef]
- O’Gorman, N.; Wright, D.; Poon, L.C.; Rolnik, D.L.; Syngelaki, A.; Wright, A.; Akolekar, R.; Cicero, S.; Janga, D.; Jani, J.; et al. Accuracy of competing-risks model in screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation. Ultrasound Obstet. Gynecol. 2017, 49, 751–755. [Google Scholar] [CrossRef]
- Ferrara, A. Increasing prevalence of gestational diabetes mellitus: A public health perspective. Diabetes Care 2007, 30 (Suppl. S2), S141–S146. [Google Scholar] [CrossRef]
- HAPO Study Cooperative Research Group; Metzger, B.E.; Lowe, L.P.; Dyer, A.R.; Trimble, E.R.; Chaovarindr, U.; Coustan, D.R.; Hadden, D.R.; McCance, D.R.; Hod, M.; et al. Hyperglycemia and adverse pregnancy outcomes. N. Engl. J. Med. 2008, 358, 1991–2002. [Google Scholar]
- Royal College of Obstetricians and Gynaecologists. Green-Top Guideline No. 63: Management of Women with Diabetes in Pregnancy; RCOG Press: London, UK, 2015. [Google Scholar]
- American College of Obstetricians and Gynecologists. Practice bulletin No. 190: Gestational diabetes mellitus. Obstet. Gynecol. 2018, 131, e49–e64. [Google Scholar] [CrossRef] [PubMed]
- Diabetes Canada Clinical Practice Guidelines Expert Committee. Diabetes and pregnancy. Can. J. Diabetes 2018, 42 (Suppl. S1), S255–S282. [Google Scholar] [CrossRef] [PubMed]
- Clausen, T.D.; Mathiesen, E.R.; Hansen, T.; Pedersen, O.; Jensen, D.M.; Lauenborg, J.; Damm, P. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: The role of intrauterine hyperglycemia. Diabetes Care 2008, 31, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Bláha, J.; Bartošová, T. Epidemiology and Definition of PPH Worldwide. Best Pract. Res. Clin. Anaesthesiol. 2022, 36, 325–339. [Google Scholar] [CrossRef]
- Hancock, A.; Weeks, A.D.; Lavender, D.T. Is Accurate and Reliable Blood Loss Estimation the “Crucial Step” in Early Detection of Postpartum Haemorrhage: An Integrative Review of the Literature. BMC Pregnancy Childbirth 2015, 15, 230. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists. Quantitative Blood Loss in Obstetric Haemorrhage: ACOG Committee Opinion No. 794. Obstet. Gynecol. 2019, 134, e150–e156. [Google Scholar] [CrossRef]
- Le Bihan, L.; Nowak, E.; Anouilh, F.; Tremouilhac, C.; Merviel, P.; Tromeur, C.; Robin, S.; Drugmanne, G.; Le Roux, L.; Couturaud, F.; et al. Development and Validation of a Predictive Tool for Postpartum Haemorrhage after Vaginal Delivery: A Prospective Cohort Study. Biology 2023, 12, 54. [Google Scholar] [CrossRef]
- Grobman, W.A.; Lai, Y.; Landon, M.B.; Spong, C.Y.; Leveno, K.J.; Rouse, D.J.; Varner, M.W.; Moawad, A.H.; Caritis, S.N.; Harper, M.; et al. Development of a nomogram for prediction of vaginal birth after cesarean delivery. Obstet. Gynecol. 2007, 109, 806–812. [Google Scholar] [CrossRef]
- Macones, G.A.; Hausman, N.; Edelstein, R.; Stamilio, D.M.; Marder, S.J. Predicting outcomes of trials of labor in women attempting vaginal birth after cesarean delivery: A comparison of multivariate methods with neural networks. Am. J. Obstet. Gynecol. 2001, 184, 409–416. [Google Scholar] [CrossRef]
- World Health Organization. Ethics and Governance of Artificial Intelligence for Health; WHO: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/9789240029200 (accessed on 15 July 2025).
- Organisation for Economic Co-Operation and Development (OECD). OECD Framework for the Classification of AI Systems: A Tool for Effective Policy Making; OECD: Paris, France, 2024; Available online: https://oecd.ai (accessed on 29 September 2025).
- U.S. Department of Health and Human Services. Standards for Privacy of Individually Identifiable Health Information (“HIPAA Privacy Rule”); 45 CFR Parts 160 and 164; HHS: Washington, DC, USA, 2013.
- U.S. Food and Drug Administration. Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning-Based Software as a Medical Device (SaMD)—Discussion Paper and Request for Feedback; FDA: Silver Spring, MD, USA, 2019. Available online: https://www.fda.gov/media/122535/download (accessed on 29 September 2025).
- U.S. Food and Drug Administration. Artificial Intelligence and Machine Learning (AI/ML) Software as a Medical Device (SaMD) Action Plan; FDA: Silver Spring, MD, USA, 2021. Available online: https://www.fda.gov/media/145022/download (accessed on 29 September 2025).
- European Union. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 (General Data Protection Regulation); OJ L 119; European Union: Brussels, Belgium, 2016; pp. 1–88. [Google Scholar]
- European Union. Regulation (EU) 2024/1689 of the European Parliament and of the Council of 13 June 2024 Laying Down Harmonised Rules on Artificial Intelligence (AI Act); OJ L; European Union: Brussels, Belgium, 2024. [Google Scholar]
- U.S. Food and Drug Administration. Investigational Device Exemptions (IDE) for Early Feasibility Medical Device Clinical Studies, Including Certain First in Human (FIH) Studies; Guidance for Industry and FDA Staff; FDA: Silver Spring, MD, USA, 2013.
- European Union. Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on Medical Devices; OJ L 117; European Union: Brussels, Belgium, 2017; pp. 1–175. [Google Scholar]
- Rivera, S.C.; Liu, X.; Chan, A.W.; Denniston, A.K.; Calvert, M.J.; SPIRIT-AI and CONSORT-AI Working Group. Guidelines for clinical trial protocols for interventions involving artificial intelligence: The SPIRIT-AI extension. Nat. Med. 2020, 26, 1351–1363. [Google Scholar] [CrossRef]
- Liu, X.; Cruz Rivera, S.; Moher, D.; Calvert, M.J.; Denniston, A.K.; CONSORT-AI and SPIRIT-AI Working Group. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: The CONSORT-AI extension. BMJ 2020, 370, m3164. [Google Scholar] [CrossRef]
Reference | Country | Data Source | Best-Performing AI Model | Performance Metrics | Clinical Utility |
---|---|---|---|---|---|
McCoy et al. (2025) [12] | USA | Internal: 124,777 CTGs; External: 552 CTGs | IncTime architecture | AUC: 0.85 (pH < 7.05); 0.89 (pH < 7.05 + base excess < −10); Sens: 90%, Spec: 48% (for PPV 30%) | DL system for intrapartum detection of foetal acidemia |
M’Barek et al. (2025) [13] | France | 27,662 CTGs | CNN with pretraining and combined FHR + UC inputs | AUC (Severe acidemia): 0.74–0.83. AUC (Moderate + Severe): 0.70–0.83. Improved vs. DeepCTG 1.0 by ~0.05 AUC | Improved detection of neonatal acidemia compared to traditional and earlier DL models |
Gumilar et al. (2025) [14] | Indonesia | 7 CTGs | GPT-4o | Mean performance scores (0–100 scale): SHDs: 80.43, GPT-4o: 77.86, Gemini: 57.14, Copilot: 47.29; CG4o surpassed others. | Promising tool for aiding less experienced clinicians in CTG interpretation. |
Roozbeh et al. (2025) [15] | Iran | 7166 deliveries | RF | RF: AUC 0.77, Acc 0.77, Prec 0.72 | Supports early identification of NFH risk using routine clinical data. |
Zhao et al. (2024) [16] | China | 552 CTGs | SE-TCN with CMFF (MHA) | Acc: 96.8%; Sens: 96.0%; Spec: 97.5%; Prec: 97.5%; F1-Score: 96.7% | Automates foetal acidosis diagnosis. |
Tarvonen et al. (2024) [17] | Finland | 4988 CTGs | SALKA | Cohen’s Kappa: 0.981; Sens: 0.981; PPV: 0.822; False-negative rate: 0.01 | Enables automated, real-time HRV detection comparable to experts, especially in neonatal acidemia cases. |
Mushtaq et al. (2024) [18] | India | 2126 CTGs | DNN | Acc 0.99; Sens 0.93; Spec 0.93; AUC 0.96, Precision 0.93 | High-performance, interpretable tool for CTG classification. |
Melaet et al. (2024) [19] | Netherlands | 678 CTGs (train n = 548; validation n = 87) | Patient-specific FHR predictor NN | AUC 0.96 for distinguishing normal vs. pathological segments | Enables earlier prediction of foetal compromise. |
Wahbah et al. (2024) [20] | Japan and USA | 70 pregnant women | BiLSTM-based DL framework with signal enhancement techniques | Subject-dependent accuracy: 94.2%, F1-score: 0.97; Subject-independent accuracy: 88.8%, F1-score: 0.96 | Enables accurate noninvasive foetal ECG extraction and foetal heart rate estimation. |
Mendis et al. (2024) [21] | Australia | 552 CTGs | FHR-LINet | 25% reduction in the time taken to detect foetal compromise compared to the state-of-the-art multimodal CNN | Enables earlier prediction of foetal compromise |
Li J et al. (2024) [22] | China | Source domain:16,355 CTGs; Target domain: 3351 CTG | DSSDA-MMEDI (GoogLeNet with MME, DI, and DGMI integration) | Acc: 80.14%, Sens: 74.52%, Spec: 83.22%, F1-score: 72.67%, Kappa: 57.08%, MCC: 57.13%, AUC: 0.8502 | Enables earlier prediction of foetal compromise. |
Das et al. (2023) [23] | Bangladesh | 125 CTGs | MLP with fuzzy annotations | Acc: 97.94%, ROC: 0.999 | Accurately identifies Early, Late, and Variable decelerations. |
Liang et al. (2023) [24] | China | 552 CTGs, enhanced to 4738 samples | 1D-CNN + BiGRU hybrid | Acc: 95.15%, Sens: 96.20%, Spec: 94.09%, F1-score: 95.20%, AUC: 99.29% | Real-time CTG classification and hypoxia risk detection |
Zhou Z et al. (2023) [25] | China | 552 CTGs | TGLCN | Acc: 89.80% | Improves classification accuracy and interpretability of CTG. |
Lee KS et al. (2023) [26] | South Korea | 5249 CTGs, 141,001 5-min samples | 2D ResNet CNN | Sens: 98.0%, Spec: 99.5%, F1-score: 98.7% | Enables real-time foetal health classification via mobile app and server; supports remote antepartum monitoring |
M’Barek I et al. (2023) [27] | France | 1527 CTGs | LR | AUC: CTU-UHB (0.743), Beaujon (0.739), SPaM (0.768–0.873); improved specificity (12% FPR vs. 25% obstetricians) | Enables earlier prediction of foetal compromise. |
Cao Z et al. (2023) [28] | China | 16,355 CTGs | CNN for CTG + LGBM for classification using multimodal features | Acc: 90.77%, AUC: 0.9201, Normal-F1: 0.9376, Abnormal-F1: 0.8223, Prec: 82.83%, Spec: 93.15% | Supports early and intelligent antepartum screening. |
Daydulo et al. (2022) [29] | Ethiopia | 552 CTGs | ResNet-50 with Morse wavelet transform | 1st stage labour: Acc 98.7%, Sens 97.0%, Spec 100% 2nd stage labour: Acc 96.1%, Sens 94.1%, Spec 97.7% | Reliable, automated FHR analysis for both early and late labour stages. |
Spairani et al. (2022) [30] | Italy | 14,000 ambulatory non-stress CTGs | Hybrid NN | Acc: 80.1%, AUC 0.81; Sens 69%; Spec 92%; | Enables earlier prediction of foetal compromise. |
Boudet et al. (2022) [31] | France | 635 CTGs | FSDop model (GRU with data augmentation and time delay correction) | Sens: 93.1%, PPV: 95.6%, Acc: 99.68%, AUC: 0.9992. | Improves detection of false maternal heart rate signals in CTG; enhances preprocessing for foetal monitoring and DL-based foetal distress detection. |
Frasch et al. (2021) [32] | USA | 36 CTGs | SSD (Single Shot MultiBox Detector) | Acc: 93.6%; Prec: 87%; Rec: 82.5% | Enables early detection of foetal compromise. |
Fotiadou et al. (2021) [33] | Netherlands | Private dataset: 28 CTGs Public: 68 CTGs | Ensemble of CNN-LSTM with HR reliability classifier | Private test set: MAE = 2.0 bpm, MSE = 49.4 bpm2, PPA = 97.3%, Coverage = 87.9% PhysioNet: MAE = 1.1 bpm, MSE = 6.9 bpm2, PPA = 99.6%, Coverage = 82%. | Improves monitoring robustness by identifying unreliable segments |
Liu LC et al. (2021) [34] | Taiwan | 323,922-min CTGs (2605 for training/validation; 634 for testing) | Modified FCN | AUC 0.892; κ 0.525; sensitivity 0.528; FPR 0.632 | Enables early detection of foetal compromise. |
Signorini MG et al. (2020) [35] | Italy | 120 CTGs | RF | AUC 0.974; Sens 0.891; Spec 0.870; PPV 0.891; NPV 0.899 | Provides an interpretable, early antenatal IUGR screening tool from routine CTG. |
Hoodbhoy et al. (2019) [36] | Pakistan | 2126 CTGs | XGBoost | XGBoost: Prec >92% for pathological class; high precision (>96%) for suspect and pathological in training data | Useful for identifying high-risk pregnancies in low-resource settings. |
Zhao Z et al. (2019) [37] | China & Turkey | 552 CTGs | 8-layer CNN using RP images | Acc: 98.69%, Sens: 99.29%, Spec: 98.10%, AUC: 98.70% | DL model for automated foetal hypoxia prediction in clinical settings |
Cömert et al. (2019) [38] | Turkey | 552 CTGs | SVM with a reduced feature set of 12 relevant features | Sens: 77.40%, Spec: 93.86% | Potential of combining feature selection algorithms with ML models to improve the prediction of foetal hypoxia. |
Zhao Z et al. (2019) [39] | China | 552 CTGs | 2D CNN with 5×5 kernel, 15 filters, image resolution 64×64 | Acc: 98.34%, Sens: 98.22%, Spec: 94.87%, Quality Index: 96.53%, AUC: 97.82% | Enables early detection of foetal compromise. |
Tang H et al. (2018) [40] | China | 24,360 twenty-minute FHR time-series samples | MKNet (CNN) | MKNet: Acc 94.7%; AUC 0.95; MKRNN: Acc 90.3%; AUC 0.91 | Real-time automated FHR interpretation on portable devices. |
Leonarduzzi R et al. (2015) [41] | France | 3049 CTG s | Sparse SVM with p = 0.25 | AUC: 0.71; Sens: 0.70; Spec: 0.70 | Improves foetal acidosis detection during labour via advanced signal complexity analysis. |
Maeda K et al. (2010) [42] | France | 29 CTGS | ANN | Acc: 86% (internal test on 29 cases); Sens, Spec, PPV, NPV: all 100% for neural index | Provides a fully numeric, objective FHR analysis framework. |
Salamalekis E et al. (2002) [43] | Greece | 61 CTGs | Self-Organising Map neural network | Sens 83.3%; Spec 97.9% for identifying acidemic fetuses (umbilical pH < 7.20) | Enables early detection of foetal compromise. |
Liszka-Hackzell JJ. et al. (2001) [44] | Sweden | 34 CTGS for training; 38 CTGs for testing | Hybrid SOM-BP model using CTG-derived feature vectors | High accuracy | Early demonstration of AI use in CTG pattern recognition. |
Kol S et al. (1995) [45] | Israel | Nonstress test records | ANN | Sens: 88.9%; FPR: 4.3% | Evaluates ANN for nonstress tests. |
Keith RD et al. (1994) [46] | United Kingdom | 50,000 five-minute CTG segments | Back-propagation NN on deceleration subtask | NN5 agreement with experts: ~75% vs. System 8000: ~47%; convergence in ~24 h for deceleration magnitude classification | Automated feature extraction to support an expert-system for real-time labour decision support |
Reference | Country | Data Source | Best-Performing AI Model | Performance Metrics | Predictors | Clinical Utility |
---|---|---|---|---|---|---|
Kloska A et al. (2025) [47] | Poland | 28 preterm, 22 term deliveries | Boosted Linear SVM | Acc 82%, Precision 83%, Recall 86%, F1-score 84% | CBC (WBC, PLT, Hb, HCT), CRP, BMI, parity, gestational diabetes, education level, etc. | Early detection of PTB using low-cost and routinely collected clinical data |
Ohtaka A et al. (2024) [48] | Japan | 30 preterm, 29 term deliveries | Xception CNN | Acc 0.718, AUC 0.704. VGG16: acc 0.654, Recall 0.808 | Segmented transvaginal ultrasound images of the cervix at admission | Image-based prediction of PTB in high-risk pregnancies |
Bitar G et al. (2024) [49] | USA | 12,440 deliveries | XGBoost | Derivation cohort AUC: 0.70; Validation cohort AUC: 0.63 | Multiple gestation, number of emergency department visits in the year prior to the index pregnancy, initial body mass index, gravidity, prior preterm delivery | Early detection of preterm birth using low-cost and routinely collected clinical data |
Ushida T et al. (2023) [50] | China | 31,157 infants <32 weeks GA and ≤1500 g | GBDT | AUROC: In-hospital death: 0.855; Short-term adverse outcomes: 0.750; Medium-term adverse outcomes: 0.701 | 12 antenatal variables: maternal age, gestational age, parity, delivery mode, diabetes, HDP, chorioamnionitis, PROM, ACS, foetal sex, birth weight, chorionicity | Improved predictive accuracy for mortality and neurological outcomes in extremely preterm infants using only antenatal variables. |
Andrade Júnior VL et al. (2023) [51] | Brazil | 524 singleton pregnancies (18–24 weeks) | SBELM (NN stacking) | At 10% FPR: AUC 0.808, Sens 47.3%, Spec 92.8%, PPV 32.7%, NPV 96.0%. | Cervical funneling, cervical length, index (CL/internal angle), previous PTB < 37 w, previous curettage, weight ≤ 58 kg, non-smoker status, absence of antibiotics use | Viable clinical tool for sPTB < 35 w screening during 2nd-trimester |
Kokkinidis I et al. (2023) [52] | Greece | 375 pregnant women (128 PTB) | Voting ensemble (XGBoost, RF, MLP) | AUC: 0.84, acc: 81%; F1-score: 0.70 | 32 features: demographics, social history, obstetric history, and clinical screening variables | Early detection of preterm birth using low-cost and routinely collected clinical data |
Khan W et al. (2023) [53] | United Arab Emirates | 3509 (deliveries | XGBoost | AUC 0.735 (parous), 0.723 (nulliparous) | 35 selected features including: prior PTB, caesarean history, pre-eclampsia, BMI at delivery, maternal age, placenta previa, amniotic infection, physical activity, smoking | Personalised PTB risk interpretation for parous and nulliparous women. |
Zhang Y et al. (2023) [54] | China | 5411 deliveries | AdaBoost | Acc 0.954, Recall 0.985, Precision 0.963, F1-score 0.969, AUC 0.93. | 21 EHR-derived features including parity, placenta previa, PPROM, diabetes, multiple gestation, etc. | Early detection of preterm birth using low-cost and routinely collected clinical data |
Sun Q et al. (2022) [55] | China | 9550 deliveries (4775 PTB, 4775 controls) | RF | Acc 0.816, AUC 0.891 (95% CI: 0.871–0.901), Sens 0.751, Spec 0.882 | Age, magnesium, fundal height, MPV, waist size, total cholesterol, triglycerides, WBC count, and several others from blood/urine/physical exams | Early detection of preterm birth using low-cost and routinely collected clinical data |
Wong K et al. (2022) [56] | Australia | ≈ 953,000 births, 8.6% PTB | MLP | At 5% FPR (90% spec): MLP AUC 86.43%, F1 50.44%, Sens 52.69%, PPV ≈ 48% | Maternal socio-demographics, chronic conditions, pregnancy complications, past obstetric history, family history | Early detection of preterm birth using low-cost and routinely collected clinical data |
Zhou Y et al. (2022) [57] | China | 65,565 deliveries | GAM | U-shaped FT4–PTB association (p < 0.001); low FT4: HR 1.34 (95% CI 1.13–1.59); high FT4: HR 1.41 (95% CI 1.13–1.76) | First-trimester maternal FT4 | Enables early risk stratification of PTB based on non-linear FT4 associations to inform surveillance and intervention planning. |
Park S et al. (2022) [58] | South Korea | 94 deliveries (38 PTB, 56 term deliveries) | SVM with bacterial risk scores and white blood cell (WBC) data | Sens: 71% (bacterial risk score only), 77% (with WBC data). Spec: 59% (bacterial risk score only), 67% (with WBC data) | Bacterial risk scores from cervicovaginal fluid, focusing on the ratios of Lactobacillus iners and Ureaplasma parvum | Potential for non-invasive prediction of PTB using cervicovaginal fluid bacterial profiles. |
Rawashdeh H et al. (2020) [59] | Australia | 274 cervical cerclage cases | RF (both classification and regression) | Classification task (delivery before 26 weeks): acc 95%, Sens 100%, G-mean 0.96, AUC 0.98. | Maternal age, parity, previous PTB/miscarriages, cervical length, cervical status, progesterone use, symptoms, multiple gestation, uterine anomalies, indication/type of cerclage | (1) Pre-cerclage counseling tool for PTB risk before 26 weeks, (2) Timeline prediction for delivery to optimise neonatal ICU preparedness and care planning. |
Gao C et al. (2019) [60] | USA | 25,689 deliveries | Ensemble of LSTM-WORD2VEC models (trained on 30 balanced datasets) | AUC 0.827, Sens 0.965, Spec 0.698, PPV 0.033. | Temporal EHR medical concepts (diagnoses, procedures, meds, labs) before 20 weeks GA | Early detection of preterm birth using low-cost and routinely collected clinical data |
Elaveyini U et al. (2011) [61] | India | 50 women with first trimester bleeding | ANN with 7 input neurons | acc: 70% | Maternal age, gestational age at bleeding, duration, amount, episodes of bleeding, presence of hematoma, placental location | PTB risk stratification in pregnancies with first trimester bleeding. |
Catley C et al. (2006) [62] | Canada | ~48,000 deliveries, verified on 19,710 deliveries | ANN with two hidden layers and weight elimination technique | Sens: 54.8%, Spec: 85.1–92.9%, AUC up to 0.73 | 8 obstetrical variables: maternal age, parity, previous term births, previous PTBs, multiple gestation, fetus’s gender, intention to breastfeed, smoking after 20 weeks | Early detection of preterm birth using low-cost and routinely collected clinical data |
Goodwin LK et al. (2001) [63] | USA | 19, 970 deliveries | Custom classifier (statistical + case-based + CART hybrid) | Custom classifier on femographic only (7 variables): AUC 0.72; All variables: AUC 0.75 | Maternal age and binary coding for county of residence, education, marital status, payer source, race, and religion demographic characteristics | Early detection of preterm birth using low-cost and routinely collected clinical data |
Woolery LK et al. (1994) [64] | USA | 18,890 deliveries | LERS (Rough Set Theory-based Rule Induction) | Acc (expert system using LERS rules): Database 1: 88.8% Database 2: 59.2%, Database 3: 53.4% | 214 variables including demographics, high-risk factors; medical and intervention history, ICD-9 codes | Early detection of preterm birth using low-cost and routinely collected clinical data |
Reference | Country | Data Source | Best-Performing AI Model | Performance Metrics | Predictors | Clinical Utility |
---|---|---|---|---|---|---|
Zheng W. et al. (2025) [65] | China | Sagittal T2-weighted placental MRI from 420 pregnancies (140 PE, 280 normotensive) | LR on fused radiomic + DL features | Dice (segmentation): 0.917; AUC (PE vs. normotensive): train 0.839, test 0.858, internal val 0.888, external val 0.843 | Radiomic wavelet, shape, texture features; five deep-learning components | Automated placental MRI analysis to identify PE and stratify FGR risk. |
Wang Z et al. (2025) [66] | China | GEO microarrays cohorts | RF | AUC 0.792 (test) | 11 IRDEGs (ADIPOR2, CD72, DDX17, FGF11, LCN6, NEDD4, NR1D1, NR2C1, RXRG, TMSB4X, VEGFA) | Blood-based 11-gene panel for early PE prediction and insight into immune dysregulation mechanisms |
Liu X et al. (2025) [67] | China | GEO microarray cohorts | XGBoost | AUC 0.792 | CRKL; STK31; HTRA4; EPHB3; PAPPA2 | Potential diagnostic biomarkers and targets for PE. |
Lv B et al. (2025) [68] | China | EHR data from 1040 women (PE incidence 6.8%) | XGBoost | Training AUC 0.963, F1 0.554; Test AUC 0.936, F1 0.488 | Pre-pregnancy BMI; pregnancies count; MAP; smoking; AFP MoM; conception method | Early PE risk stratification using routine antenatal data to guide aspirin prophylaxis and monitoring. |
da Silva SMS et al. (2025) [69] | Brazil | 30 pregnant women (15 PE, 15 controls) and 30 matched newborn samples | PLS-DA | Newborn vs. pregnant: 99.7% acc using 10 wavenumbers; PE vs. control (newborn): ≤63% acc even with 100 features; maternal PE vs. control: <55% accuracy | Wavenumbers corresponding to carotenoids, DNA/RNA (PO2−), collagen/proteins, lipids/fatty acids | Demonstrates feasibility of screening for hypertensive pregnancy via plasma Fourier-transform infrared (FT-IR) spectroscopy. |
Eberhard BW et al. (2024) [70] | USA | EHR data from 66,425 deliveries | Modified DeepHit deep survival NN | Time-dependent concordance index (Ctd): 0.839; Time-dependent AUC: 0.824; Overall survival AUC: 0.778 | Age; race/ethnicity; chronic hypertension; parity; SBP/DBP; heart rate; platelets; creatinine; engineered temporal features up to 20 weeks’ gestation | Early PE risk stratification using routine antenatal data to guide aspirin prophylaxis and monitoring |
Zhou T. et al. (2024) [71] | China | Retinal fundus photographs obtained before 20 weeks’ gestation in 1138 singleton pregnancies | Inception-ResNet-v2 CNN | AUC 0.883, Sens 0.722, Spec 0.934 | Retinal vascular features encoded in fundus score (reflecting microvascular changes), plus maternal age, BMI, parity, chronic hypertension, prepregnancy BMI category | Early PE risk stratification using routine antenatal data to guide aspirin prophylaxis and monitoring |
Vasilache I-A et al. (2024) [72] | Romania | EHR data from 210 singleton pregnancies | RF | PE acc 96.3%; IUGR 95.9%; early IUGR 96.2%; late IUGR 95.2%; PE + IUGR association 95.1% (sens/spec ≥ 90%) | Maternal age; BMI; nulliparity; conception type; smoking; history of PE/IUGR/preterm birth/autoimmune/CKD/DM/HTN; MAP; β-HCG, PAPP-A, PlGF, PP-13 (all MoM) | Early PE risk stratification using routine antenatal data to guide aspirin prophylaxis and monitoring |
Bülez A et al. (2024). [73] | Turkey | HER data from 10,307 women (1158 PE, 9194 controls) | LightGBM | Sens 73.7%; Spec 92.7%; Acc 90.6%; AUC 0.832 | Hemoglobin; age; AST; ALT; blood group; plus sociodemographics, vitals | Early PE risk stratification using routine antenatal data to guide aspirin prophylaxis and monitoring |
Kaya Y. et al. (2024) [74] | Turkey | EHR data from 100 women admitted in 1st trimester | XGBoost | Acc 70% (nulliparous), 72.7% (parous); AUC-ROC 0.64/0.767; Sens 80%/60%; Spec 60%/83.3% | Maternal age; BMI; smoking; history of DM, GDM, HTN, SLE-APS; gravida; parity; MAP; previous PE | Early PE risk stratification using routine antenatal data to guide aspirin prophylaxis and monitoring |
Tiruneh et al. (2024) [75] | Australia | EHR data from 48,250 women | RF | AUC 0.84, acc 0.79 | Maternal age; ethnicity; BMI; parity; prior PE history; nulliparity; history of GDM; pre-existing hypertension; diabetes; family history of hypertension/diabetes/PE; renal disease; smoking; PCOS | Early PE risk stratification using routine antenatal data to guide aspirin prophylaxis and monitoring |
Huang P et al. (2024) [76] | China | GEO datasets (80 PE, 77 controls); validation cohort (12 PE, 12 controls) | LR | AUC (3-gene model): 0.871; individual genes AUCs > 0.70 | CPOX, DEGS1, SH3BP5 gene expression | Provides a 3-gene blood-based diagnostic signature enabling early, noninvasive PE detection. |
Araújo DC et al. (2024) [77] | Brazil | EHR data from 132 women (65 severe PE, 67 controls) | LightGBM | AUROC 0.90 ± 0.10; Sens 0.95; Spec 0.79; Acc 0.87; Precision 0.82 | Neutrophils, mean corpuscular hemoglobin (MCH), aggregate index of systemic inflammation (AISI) | Supports third-trimester sPE diagnosis using routine CBC. |
Li T et al. (2024) [78] | nan | EHR data from 4644 pregnancies (49 preterm PE, 161 term PE cases) | Voting Classifie | All PE: AUC 0.831; DR10 0.513 Preterm PE: AUC 0.884; DR10 0.625 | Maternal age, height, pre-pregnancy weight, parity, conception method, history of PE/HTN/CKD/DM; MAP; UtA-PI; PAPP-A; PlGF | Early PE risk stratification using routine antenatal data to guide aspirin prophylaxis and monitoring |
Gil MM et al. (2024) [79] | Spain | EHR data from 10,110 1st trimester pregnancies | NN | Early PE DR 84.4%; AUC 0.920; Preterm PE DR 77.8%, AUC 0.913; All PE DR 55.7% (49.0–62.2), AUC 0.846 | Maternal factors, MAP, UtA-PI, PlGF | Enables non-MoM–based first-trimester screening for PE. |
Edvinsson C. et al. (2024) [80] | Sweeden | EHR data from 81 women (41 severe PE, 40 controls) | XGBoost | Test acc 0.82, AUC 0.85; Cross-val acc 0.88, AUC 0.91. | AST, uric acid, BMI | Early PE risk stratification using routine antenatal data to guide aspirin prophylaxis and monitoring |
Ansbacher-Feldman Z. et al. (2022) [81] | UK | EHR data from 60,789 1st trimester pregnancies | NN | PE: AUC 0.82; Preterm PE: AUC 0.91 | Maternal age, BMI, parity, prior PE, interpregnancy interval, race/ethnicity, IVF status; MAP; UtA-PI; PlGF; PAPP-A | Early PE risk stratification using routine antenatal data to guide aspirin prophylaxis and monitoring |
Villalaín C. et al. (2022) [82] | Spain | EHR data from 215 singleton early-onset PE cases | SVM | AUC 0.79; sens 77.3%; spec 80.1%; PPV 81.5%; NPV 76.2% | Age; BMI; prior PE; gestational age; SBP/DBP; platelets; creatinine; AST/ALT; sFlt-1, PlGF; Doppler indices; foetal biometry | Provides individualized risk of imminent delivery and severe complications in PE. |
Liu M et al. (2022) [83] | China | EHR data from 11,152 pregnancies | RF | AUROC 0.86 (95% CI 0.80–0.92), acc 0.74, precision 0.82, recall 0.42, F1 0.56; Brier score 0.17, calibration slope 0.92, intercept 0.20 | Age; BMI; weight; height; GA; parity; chronic HTN; prior DM; prior PE; MAP; free β-hCG; PAPP-A; uterine artery PI | Early PE risk stratification using routine antenatal data to guide aspirin prophylaxis and monitoring |
Bennett R et al. (2022) [84] | USA | Texas units (360,943 deliveries, 3.98% PE), Oklahoma units (84,632 deliveries, 5.58% PE), and MOMI cohort (31,431 deliveries, 8.73% PE) | Cost-sensitive DNN with focal loss & weighted cross-entropy | AUC Texas: 0.66; AUC Oklahoma: 0.64; AUC External (MOMI): 0.77 | Demographics, comorbidities, prenatal labs, BMI, BP spikes, and temporal features (varies by dataset) | Early PE risk stratification using routine antenatal data to guide aspirin prophylaxis and monitoring |
Hoffman MK et al. (2021) [85] | USA | EHR data from 20,032 pregnancies | NN | At a 10% FPR: detects 53% of all PE cases (vs 41% without biomarkers) and 75% of preterm PE (vs 53% without) | Age, BMI, parity, prior PE, MAP, UtA-PI, PlGF, PAPP-A | Enables non-MoM–based first-trimester screening for overall and preterm PE. |
Wang G. et al. (2021) [86] | China | EHR from 907 women with PE | RF | AUC 0.711 (95% CI 0.697–0.726); acc 0.817; sens 0.815; spec 0.984; PPV 0.777; NPV 0.807 | SBP, BUN, neutrophil count, glucose, D-Dimer (top five of 20 clinical and lab features) | Identifies high-risk women for targeted CVD prevention and monitoring after PE. |
Sufriyana H et al. (2020) [87] | Indonesia | EHR data 3318 PE/eclampsia, 19,883 controls | RF | AUROC (external validation): geographical split 0.88; temporal split 0.86 (95% CI 0.85–0.86) | 17 features from demographics and medical history over 24 months (e.g., age, parity, comorbidities, prior hospitalizations) | Early PE risk stratification using routine antenatal data to guide aspirin prophylaxis and monitoring |
Jhee JH et al. (2019) [88] | South Korea | EHR data from 11,006 pregnancies | SGB | AUC 0.924; acc 0.973 | SBP; DBP; BUN; creatinine; platelet count; WBC; calcium; UPCR; demographics, medical history, labs pattern-cluster features | Enables early prediction of late-onset PE. |
Reference | Country | Data Source | Best- Performing AI Model | Performance Metrics | Predictors | Clinical Utility |
---|---|---|---|---|---|---|
Bigdeli SK et al. (2025) [89] | Iran | EHR data from 16,730 pregnancies | RF | Insulin model: AUC 0.64; acc 0.62; precision 0.60; recall 0.63; GTT model: AUC 0.94; acc 0.89; precision 0.86; recall 0.92 | Demographics; medical history; clinical findings; first-trimester FBS, Hb, Hct, Cr, PLT, vit D3, NT sonographic markers | First-trimester GDM risk stratification |
Zhao M. et al. (2025) [90] | China | EHR data from 103,172 pregnancies (15,138 GDM; 88,034 controls) | MLP with NearMiss | AUC 0.943; acc 0.884 | BMI; age; age of menarche; higher education; folic acid supplementation; family history of DM; HGB; WBC; PLT; Scr; HBsAg; ALT; ALB; TBIL | First-trimester GDM risk stratification |
Zaky H et al. (2025) [91] | Qatar | EHR data from 138 pregnancies (63 GDM, 75 controls) | Stacking ensemble | Acc 88.8%; recall 92.1%; precision 87.3%; F1-score 89.6% | History of high glucose/diabetes, HbA1c%, glucose, insulin, NT-proBNP, lipids, electrolytes, blood counts, liver/renal markers, hormones, family history, vitamins | First-trimester GDM risk stratification |
Zhou H et al. (2025) [92] | China | 2D ultrasound images at 11–13 weeks: discovery (n = 305; 139 GDM, 166 controls) and independent validation (n = 110; 53 GDM, 57 controls) | Nomogram (radiomics + DLCNN + clinical) | Discovery AUC 0.93, Validation AUC 0.88 | Radiomics features; age; pre-pregnancy BMI; DLCNN score | First-trimester GDM risk stratification |
Chen M et al. (2024) [93] | China | EHR data from 588 women with two consecutive singleton deliveries and index-pregnancy GDM | LGB | AUROC 0.942 | First-trimester FPG, 1–2 h OGTT glucose, triglycerides, cholesterol, HbA1c, macrosomia, preterm birth, age > 35 y, abdominal circumference, gestational weight gain | First-trimester GDM risk stratification |
Kaya et al. (2024) [94] | Turkey | EHR data from 97 pregnancies | XGB Classifier | Acc 66.7%, AUC 0.55; sens 80%, spec 50% | Age; BMI; gravida; parity; previous birth weight; smoking; first-visit plasma glucose; family history of DM | First-trimester GDM risk stratification |
Cubillos G. et al. (2023) [95] | Chile | EHR data from 1611 pregnancies | MLP with optimised hyperparameters | Sens 0.82; Spec 0.72–0.74; Acc 0.73–0.75; AUCROC 0.81 | First-trimester fasting glycemia, age, BMI, weight, gravidity | First-trimester GDM risk stratification |
Hu X et al. (2023) [96] | China | EHR data from 735 pregnancies (training set) and 190 pregnancies (testing set) | XGBoost | AUC 0.946; acc 0.875 | 20 first-trimester variables (e.g., previous GDM, age, HbA1c, MAP, lipids, liver enzymes) | First-trimester GDM risk stratification |
Houri O et al. (2023) [97] | Israel | EHR data from 452 GDM pregnancies | NN | Acc: 82% at GDM diagnosis; 91% at delivery | Age; parity; gravidity; pre-pregnancy BMI; GCT; OGTT values; maternal weight (pre-preg, at diagnosis, at delivery); treatment type; glycemic control | First-trimester GDM risk stratification |
Kadambi et al. (2023) [98] | USA | Monitoring Mothers-to-be (nuMoM2b) EHR data | LR | AUC 0.74 | Maternal race; BMI at first visit; prepregnancy BMI; family history of GDM; hypertension; valvular heart disease; structural heart disease; coronary artery disease; cardiac arrhythmia; polycystic ovary syndrome | First-trimester GDM risk stratification |
Watanabe M. et al. (2023) [99] | Japan | EHR data from 82,698 GDM pregnancies | GBDT | AUC 0.67 for recurrent GDM; AUC 0.74 for new-onset GDM | 775 variables covering pre-pregnancy lifestyle, anthropometrics, smoking, diet, SF-8 QOL, K6 distress, lab values, etc. | First-trimester GDM risk stratification |
Zhou M et al. (2022) [100] | China | 492 GDM pregnancies with 2D ultrasound scans within 3 days before delivery | ANN | MAE 153.5 g; MAPE 4.7%; ANN vs. Hadlock: MAE 148.5 g vs. 192.2 g (p < 0.001) | Foetal biometry from ultrasound; maternal anthropometrics | Enhances foetal weight estimation accuracy in GDM |
Kumar M. et al. (2022) [101] | Singapore | S-PRESTO cohort (n = 222) | Gradient boosting classifier + linear SVM | AUC 0.93 | HbA1c, mean BP, fasting insulin, triglycerides/HDL ratio | Preconception risk stratification for GDM; deployable via web app |
Kumar M. et al. (2022) [102] | Singapore | GUSTO mother-offspring cohort (n = 909) | CatBoost | AUC 0.82 | mean arterial BP at booking; maternal age; previous history of GDM; ethnicity (Chinese/Indian vs. Malay) | First-trimester GDM risk stratification deployable via web app |
Yang J. et al. (2022) [103] | UK | OUH GDm-Health system: 1148 GDM pregnancies; external validation: 709 cases. | XGBoost regression | Internal (OUH): MSE 0.021, R2 0.482, MAE 0.112; External (RBH): MSE 0.020, R2 0.519, MAE 0.108 | Pre-/post-breakfast, post-lunch, post-dinner glucose readings; engineered “High-Readings” and “Gradients”; maternal age; gestational day; medication status | Predicts short-term hyperglycemia risk to guide timely clinical monitoring and intervention. |
Liao LD et al. (2022) [104] | USA | EHR data from 30,474 GDM pregnancies: discovery (n = 27,240) and validation (n = 3234) | Super learner (LASSO, CART, RF, XGBoost) | AUC 0.934 (discovery)/0.815 (validation) | Demographics, clinical history, OGTT/glucose challenge values, SMBG metrics, labs across four timepoints | Early triage for pharmacologic treatment of GDM |
Du Y. et al. (2022) [105] | Ireland | EHR data from 484 overweight/obese women | SVM | AUC-ROC 0.792; AUC-PR 0.485; balanced ACC 0.751 | Family history DM; weight; WBC; fasting glucose; insulin | First-trimester GDM risk stratification in overweight/obese women. |
Araya J. et al. (2021) [106] | Chile | EHR data from 39 pregnancies (33 NGT, 6 GDM) | Principal component analysis | Spontaneous clustering of GDM vs. NGT | FT4, TT3, TT4, TSH (1st & 2nd trimester); OGTT; diastolic blood pressure; prior GDM | Suggests thyroid hormone profiling may augment early GDM diagnosis beyond OGTT. |
Liu H et al. (2020) [107] | China | EHR data from 19,331 pregnancies | XGBoost | AUC 0.742 | Fasting plasma glucose; pre-pregnancy BMI; alanine aminotransferase; maternal age; waist circumference; weight gain; family history of diabetes | First-trimester GDM risk stratification |
Reference | Country | Data Source | Best-Performing AI Model | Performance Metrics | Predictors | Clinical Utility |
---|---|---|---|---|---|---|
Ahmadzia HK et al. (2024) [108] | USA | 228,438 deliveries | Gradient Boosting | ROC-AUC 0.833; PR-AUC 0.210 | 50 antepartum and intrapartum characteristics and hospital characteristics; top features: mode of delivery; oxytocin incremental dose for labour; intrapartum tocolytic use; presence of anaesthesia nurse; hospital type | Identification of high-risk PPH parturients to guide proactive interventions |
Wang M et al. (2024) [109] | China | 6144 caesarean deliveries | RF | MAE 21.7 mL (< 5.4% error); RMSE 33.75 mL (< 9.3% error) on test set. | 27 indicators: haemoglobin; WBC; platelets; PT; INR; APTT; TT; fibrinogen; Na; K; Cl; Ca; bilirubin; urea; creatinine; weight; height; infant weight; age; number of pregnancies; gestational week; blood pressures; complications; anaesthesia method; ASA class; emergency status; pregnancy days | Identification of high-risk PPH parturients during cesarian to guide proactive interventions |
Holcroft S. et al. (2024) [110] | Rwanda | 430 deliveries (108 PPH cases, 322 controls) | RF | Sens 80.7%, spec 71.3%, misclassification rate 12.19% | Haemoglobin level at labour; maternal age; no medical insurance; multiple foetuses; pre-labour bleeding; intrauterine foetal death; BMI; multiparity; history of PPH | Identifies women at high risk of PPH upon admission for targeted interventions |
Westcott JM et al. (2022) [111] | USA | 30,867 deliveries | GBDT | AUROC: 0.979, Acc: 98.1%, Sens: 76.3% | 497 variables including demographics, obstetric/medical/surgical/family history, vital signs, lab results, labour medication exposures, and delivery outcomes | Identification of high-risk PPH parturients to guide proactive interventions |
Liu J et al. (2022) [112] | China | 10,520 vaginal deliveries | LGB + LR | AUC 0.803, Brier 0.061, F-measure 0.845, Sens 0.694, Spec 0.800 | 49 clinical variables (16 known high-risk factors + TOCO features such as contraction frequency, Mean_Area intensity; haematocrit; shock index; WBC; gestational hypertension; neonatal weight; second stage labour time; amniotic fluid volume; BMI; etc.) | Identification of high-risk PPH parturients after vaginal delivery |
Akazawa M et al. (2021) [113] | Japan | 9894 vaginal deliveries (188 PPH cases) | LR | AUC 0.708; Acc 0.686; FPR 0.312; FNR 0.398 | 11 clinical variables: age; parity; maternal height; weight before pregnancy; weight on admission; gestational age; birthweight; baby sex; foetal position; oxytocin use; delivery mode | Identification of high-risk PPH parturients during vaginal delivery to guide proactive interventions |
Venkatesh KK et al. (2020) [114] | USA | 152,279 deliveries | XGBoost | AUC≈0.93 | 55 maternal risk factors available at labour admission (from literature and expert consensus) were included—e.g., maternal demographics (age, race), obstetric history/diagnoses (placenta previa, foetal macrosomia, pre-eclampsia), comorbidities (chronic hypertension, diabetes), and initial vital signs | Identification of high-risk PPH parturients to guide proactive interventions |
Reference | Country | Data Source | Best-Performing AI Model | Performance Metrics | Predictors | Clinical Utility |
---|---|---|---|---|---|---|
Borycka K et al. (2025) [115] | Czech Republic, Slovakia, Poland, Spain | Impedance spectroscopy and 3-D EAUS data from 152 deliveries | Ensemble tree-based ML model with 10-fold cross-validation | Overall acc 0.86; sens 0.67–0.95; spec 0.80–0.98 | Impedance-derived spectral features; age; BMI; parity; head circumference; mode of delivery; time since delivery | Non-invasive, bedside detection of OASI to guide early intervention and repair decisions |
Hu T et al. (2025) [116] | China | EHR data from 1191 vaginal deliveries (300 episiotomies) | SVM | SVM: Acc 0.793; Recall 0.981; Precision 0.790; F1 0.875; AUC 0.882. | Age; gestational age; parity; history of stillbirth; BMI; pregnancy complications; perineal length, elasticity, thickness, edema and skin tear; UC; duration of labour; shoulder dystocia; assisted breech; instrumental delivery; EFW; late deceleration; severe variable deceleration; amniotic fluid contamination; abnormal foetal position; working years of midwife; professional title; maternal cooperation | Decision support by predicting the risk of mediolateral episiotomy. |
Boie S et al. (2024) [117] | Denmark and Netherlands | EHR data from 1198 deliveries | XGBoost | AUROC:0.75, AUPRC: 0.39 | Maternal age, BMI, parity, cervical dilation, foetal station, oxytocin dosage, etc. | Individual risk assessment for caesarean delivery after active labour onset. |
Wong Ms et al. (2024) [118] | USA | EHR data from 37,932 deliveries | Ensemble model chosen via AutoML | AUC: 0.82 | Intrapartum clinical data (e.g., cervical dilation, FHR, uterine activity) | Supports dynamic prediction of mode of delivery during labour using real-time data. |
Kuanara et al. (2024) [119] | India | EHR data from 101 deliveries | DNN | Train: AUC 0.99; KS 0.98; error rate caesarean 0.02, vaginal 0.00; Test: error rate caesarean 0.20, vaginal 0.10 | Mother’s weight, height, age, GA, Hb, FHF amniotic fluid index, cervix length, child birth weight, pregnancy count | Clinical decision support in selecting mode of delivery. |
Xu J et al. (2024) [120] | China | EHR data from 100 deliveries in training set, 50 in validation set | GNB | Training AUC: 0.82, Validation AUC: 0.79, Acc: 80.9%, Sens: 72.7%, Spec: 75.0%, Precision: 84.2% F1 Score: 0.78 | Angle of progression, cervical length, subpubic arch angle, estimated foetal weight | May assist in early prediction of spontaneous vaginal delivery failure in term nulliparous women. |
Chen G et al. (2024) [121] | China and New Zealand | Retrospective image collection from 1124 parturients | UNet variants | Dice Coefficients (Segmentation Accuracy): 89.04–90.02% | Segmentation targets include pubic symphysis and foetal head from transperineal ultrasound images; used to compute angle of progression | Enables development of AI tools for objective, automated assessment of foetal head descent and prediction of delivery mode. |
Liu Ys et al. (2023) [122] | China | EHR data from 101 deliveries | XGBoost | MAE 13.49 h, RMSE 16.98 h | Age, BMI, gestational age, cervical length, foetal weight, BPD, Bishop score components, etc. | Potential to improve prediction of labour induction outcomes over traditional Bishop score |
Lodi et al. (2023) [123] | France | EHR data from 410 class III obese nulliparous women with attempted vaginal delivery | Probability Forest | AUC: 0.70, Acc: 0.66, Sens: 0.44, Spec: 0.87 | Initial maternal weight, labour induction | Support personalised counseling on delivery mode in late pregnancy in class III obese nulliparous women. |
Zhang R et al. (2023) [124] | China | EHR data from 2552 deliveries (training n = 2025; validation n = 527) | RF | Accuracy 0.8956; MCC 0.7530; AUC-ROC 0.9791; AUC-PRC 0.9579 | Age; maternal height; weight at delivery; weight gain; parity; assisted reproduction; abnormal blood glucose; hypertensive disorders; scarred uterus; PROM; placenta previa; abnormal foetal position; thrombocytopenia; floating foetal head; labour analgesia | Predicts likelihood of caesarean section to support clinicians in individualized delivery planning. |
D’Souza et al. (2023) [125] | Canada, UK, USA, Switzerland | EHR data from 1107 participants with singleton pregnancies and Bishop Score <4, undergoing induction of labour with dinoprostone vaginal insert | ML model not specified | AUROC: 0.73 | Parity, gestational age (37–41 weeks), maternal BMI, maternal age, maternal comorbidities, Bishop score | Prediction of successful labour induction in women with a low Bishop score. |
Myer R et al. (2022) [126] | Israel | EHR data from 73,667 deliveries (train: 48,084; validation: 12,016; test: 13,567) | XGBoost | XGBoost AUC: Training: 0.874, Validation: 0.839, Test: 0.840 | 13 features (e.g., maternal age, BMI, cervical dilation, effacement, labour onset, ultrasound-adjusted foetal biometry, parity) | Web calculator (BirthAI.org) to predict unplanned caesarean delivery for individualized counseling. |
Hu T et al. (2022) [127] | China | EHR data from 907 participants (primipara n = 495; multipara n = 312) | LR | Primipara: AUC 0.84; acc 90.3%; recall 0.986; precision 0.908; F1 0.943. Multipara: AUC 0.89; acc 97.1%; recall 0.993; precision 0.977; F1 0.982. | Age; height; weight; BMI; gestational age; previous caesareans; number of abortions; Bishop score; foetal weight; amniotic fluid index; amniotic fluid contamination; foetal head circumference; foetal abdominal circumference; biparietal diameter; femur length; uterine height; abdominal circumference; membrane status; labour analgesia | Allows clinicians to estimate probability of successful oxytocin-induced labour at admission. |
Ghi T et al. (2022) [128] | Europe, Asia, Africa | EHR data from 1219 term pregnancies in second stage of labour | Pattern-recognition feed-forward NN | Overall acc 90.4%; foetal occiput anterior (OA) acc 91.1%; non-OA acc 89.3%; F1-score 88.7%; PR-AUC 85.4%; Cohen’s κ = 0.81 | Transabdominal and transperineal ultrasound (TPU) images parameters for detection of foetal position | Rapid, automatic classification of foetal OA vs. non-OA on TPU to aid in labour wards. |
Islam Ms et al. (2022) [129] | Bangladesh and Saudi Arabia | Pakistan Demographic and Health Survey (PDHS) 2012–13 and 2017–18 datasets | HGSORF (Random Forest optimized with HGSO) | Acc: 98.33%, Sens: 98.33%, Spec: 98.33%, Precision: 98.34%, AUC: ~99% | 24 features including: maternal age, BMI, ANC visits, previous C-section, household size, domestic violence, husband’s education and occupation, etc | High-potential decision support system (DSS) for predicting CS likelihood; includes XAI tools (SHAP and LIME) to improve interpretability |
Chill Hh et al. (2021) [130] | Israel | EHR data from 98,463 deliveries (323 OASI cases) | CatBoost gradient boosting | AUC 0.756 | Parity; number of previous births; maternal weight; GA; birth weight; head circumference; induction method; duration of second stage | Stratification of women by OASI risk. |
Ullah Z et al. (2021) [131] | Saudi Arabia | EHR data from 80 deliveries | k-NN on enriched data | Acc: 84.38% | Age, delivery number, delivery time (premature, timely, latecomer), blood pressure status, FHR | Demonstrates potential of ML models to predict mode of delivery. |
Guedalia J et al. (2021) [132] | Israel | EHR data from 73,868 term deliveries in second stage of labour | Gradient Boosting | AUC: 0.761; Sens: 72.1%, OR: 5.3 for high-risk vs. low-risk group | Antepartum features and intrapartum data gathered during the first stage of labour | Enables early identification of high-risk deliveries for severe adverse neonatal outcomes. |
Tarimo Cs et al. (2021) [133] | Tanzania | EHR data from 21,578 deliveries | Boosting | Boosting model: AUC: 0.75, Acc: 0.74, Sens: 0.85, Spec: 0.59, PPV: 0.75, NPV: 0.73 | Maternal age, parity, gestational age, BMI, birth weight, PROM, multiple gestation, maternal education, marital status, occupation, alcohol use | Provides insight into early identification of candidates for labour induction using routine data. |
Meyer R et al. (2020) [134] | Israel | EHR data from 989 consecutive singleton TOLAC deliveries | RF | AUC-PR 0.351 ± 0.028, | Prior vaginal delivery, maternal height, prior arrest of descent, maternal weight, gestational age, etc. | Enhanced prediction of TOLAC success. |
Ricciardi C et al. (2020) [135] | Italy | EHR and CTG recordings from 370 deliveries | RF | Acc 91.1%, Sens 90.0%, Spec 92.2%, Precision 92.1%, AUCROC 96.7% | 17 features: gestational age, FHR metrics, (UCs, accelerations/decelerations, spectral power (LF/HF), entropy, Poincaré plot axes, etc. | Helps predict the type of delivery from intrapartum CTG signals |
Beksac Ms et al. (2018) [136] | Turkey | HER data from 800 deliveries (600 vaginal births and 200 caesarean sections) | ANN with back-propagation | Sens: 60.9%, Spec: 97.5%, PPV: 81.8%, NPV: 93.1%, Test Efficiency: 91.8% | Maternal age, gravida, parity, gestational age, labour induction type, presentation, risk factors | Provides a supportive decision tool to predict delivery mode. |
Fergus P et al. (2018) [137] | UK | CTG recordings from 506 vaginal and 46 caesarean deliveries | Ensemble model combining FLDA, RF, and SVM | Sens 87%, Spec 90%, AUC 96%, MSE 9% | 13 FHR features: including STV, SampEn, DFA, RMS, FD, SD1, SD2, SDRatio, RBL, accelerations, decelerations, etc. | Provides a supportive decision tool to predict delivery mode based on FHR alone. |
Macones Ga et al. (2001) [134] | USA | HER data from 400 women with prior caesarean delivery (100 failed TOLAC, 300 successful VBAC) | Multivariate LR | Sens 77%, Spec 65%, Acc 69% | Substance abuse, prior successful VBAC, cervical dilation at admission, need for labour augmentation | Enhanced prediction of TOLAC success. |
Devoe Ld et al. (1996) [138] | USA | EHR data from 200 term pregnancies with spontaneous labour (159 for training, 41 for testing) | Feedforward NN | Correlation with actual duration: r = 0.88 (NN), Compared to partogram: r = 0.35. | UC, EFW, foetal position, station, gestational age, maternal parity, age, height, weight, membrane status, cervical dilatation | Provides more accurate prediction of first-stage labour duration. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correia, V.; Mascarenhas, T.; Mascarenhas, M. Smart Pregnancy: AI-Driven Approaches to Personalised Maternal and Foetal Health—A Scoping Review. J. Clin. Med. 2025, 14, 6974. https://doi.org/10.3390/jcm14196974
Correia V, Mascarenhas T, Mascarenhas M. Smart Pregnancy: AI-Driven Approaches to Personalised Maternal and Foetal Health—A Scoping Review. Journal of Clinical Medicine. 2025; 14(19):6974. https://doi.org/10.3390/jcm14196974
Chicago/Turabian StyleCorreia, Vera, Teresa Mascarenhas, and Miguel Mascarenhas. 2025. "Smart Pregnancy: AI-Driven Approaches to Personalised Maternal and Foetal Health—A Scoping Review" Journal of Clinical Medicine 14, no. 19: 6974. https://doi.org/10.3390/jcm14196974
APA StyleCorreia, V., Mascarenhas, T., & Mascarenhas, M. (2025). Smart Pregnancy: AI-Driven Approaches to Personalised Maternal and Foetal Health—A Scoping Review. Journal of Clinical Medicine, 14(19), 6974. https://doi.org/10.3390/jcm14196974