Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = AnnAGNPS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1943 KiB  
Review
A Bibliometric Analysis and Visualization of the Assessment of Non-Point Source Pollution Control
by Qijie Geng, Changkun Lin, Shan Li and Fei Guo
Water 2025, 17(14), 2056; https://doi.org/10.3390/w17142056 - 9 Jul 2025
Viewed by 441
Abstract
Non-point source (NPS) pollution continues to pose threats to ecosystems and NPS pollution control represents a significant global challenge. This study presents a bibliometric analysis of 1328 studies on the assessment of NPS pollution control, collected from the Web of Science (WOS) Core [...] Read more.
Non-point source (NPS) pollution continues to pose threats to ecosystems and NPS pollution control represents a significant global challenge. This study presents a bibliometric analysis of 1328 studies on the assessment of NPS pollution control, collected from the Web of Science (WOS) Core Collection database for the period between January 1993 and April 2025. The analysis encompassed multiple dimensions, including annual publication volume, most prolific authors and journals, top funding organizations, and keyword co-occurrence. Results reveal a consistently accelerating publication trend, with China and the United States emerging as the most prominent contributors. The findings highlight a distinct evolution in research focus—from early efforts centered on pollutant source tracing and model-based simulations of best management practices (BMPs), such as SWAT and AnnAGNPS, to more holistic, multidimensional assessments that integrate economic, environmental, ecological, and social dimensions to support multi-objective optimization. Future directions are expected to emphasize non-structural measures and promote the development of globally standardized evaluation frameworks for NPS control strategies, thereby enhancing cross-regional comparability and aligning with the United Nations Sustainable Development Goals (UNSDGs). Full article
(This article belongs to the Special Issue Non-Point Source Pollution and Water Resource Protection)
Show Figures

Figure 1

18 pages, 4545 KiB  
Article
Impact of Riparian Buffer Zone Design on Surface Water Quality at the Watershed Scale, a Case Study in the Jinghe Watershed in China
by Cong Liu, Liqin Qu, John Clausen, Tingwu Lei and Xiusheng Yang
Water 2023, 15(15), 2696; https://doi.org/10.3390/w15152696 - 26 Jul 2023
Cited by 8 | Viewed by 4576
Abstract
This study was conducted to evaluate the impact of riparian buffer zones on water quality in the Jinghe watershed, China. To evaluate the effectiveness of riparian buffers in reducing sediments and nutrients in surface runoff, we employed two validated models: the agricultural non-point [...] Read more.
This study was conducted to evaluate the impact of riparian buffer zones on water quality in the Jinghe watershed, China. To evaluate the effectiveness of riparian buffers in reducing sediments and nutrients in surface runoff, we employed two validated models: the agricultural non-point source pollution model (AnnAGNPS) and the riparian ecosystem management model (REMM). The AnnAGNPS was used to divide the catchment into homogeneous drainage areas and generate upland loadings for the REMM. The REMM model was then utilized to assess the impact of different riparian buffer designs on sediments and nutrient reduction in surface runoff. We tested five designs, including the recommended standard design by the United States Department of Agriculture (USDA). This design with 20 m herbaceous perennials next to the field (Zone 3), followed by a 20 m wide harvestable deciduous forest in the middle (Zone 2), and a 10 m wide non-harvestable deciduous forest adjacent to the river (Zone 1). We also evaluated alternative designs, such as removing Zone 3, removing Zone 2, and reducing the widths of the buffer zones further. For the entire Jinghe watershed, we calculated, compared, and analyzed the annual totals of water inflow, sediment yields, and dissolved nitrogen in surface runoff into and out of Zone 1, 2, and 3 for all the designs. The analysis indicated that the removal efficiency of sediments ranged from 85.7% to 90.8%, and the removal efficiency of dissolved nitrogen in surface runoff ranged from 85.4% to 91.9% for all the designs. It is also indicated that riparian buffer zones are highly effective in reducing sediments and nutrients in agricultural runoff, even with reduced buffer widths. This finding underscores the importance of implementing riparian buffer zones as a valuable approach in the agricultural intensive watershed with constraints for allocating for the creation of standard riparian buffers. Full article
(This article belongs to the Special Issue Water Quality Assessment and Modelling)
Show Figures

Figure 1

27 pages, 9664 KiB  
Article
Spatial Optimization of Conservation Practices for Sediment Load Reduction in Ungauged Agricultural Watersheds
by Racha ElKadiri, Henrique G. Momm, Ronald L. Bingner and Katy Moore
Soil Syst. 2023, 7(1), 4; https://doi.org/10.3390/soilsystems7010004 - 13 Jan 2023
Cited by 3 | Viewed by 2818
Abstract
Conservation practices (CPs) are used in agricultural watersheds to reduce soil erosion and improve water quality, leading to a sustainable management of natural resources. This is especially important as more pressure is applied on agricultural systems by a growing population and a changing [...] Read more.
Conservation practices (CPs) are used in agricultural watersheds to reduce soil erosion and improve water quality, leading to a sustainable management of natural resources. This is especially important as more pressure is applied on agricultural systems by a growing population and a changing climate. A challenge persists, however, in optimizing the implementation of these practices given their complex, non-linear, and location-dependent response. This study integrates watershed modeling using the Annualized Agricultural Non-Point-Source model and a GIS-based field scale localization and characterization of CPs. The investigated practices are associated with the implementation of riparian buffers, sediment basins, crop rotations, and the conservation reserve program. A total of 33 conservation scenarios were developed to quantify their impact on sediment erosion reduction. This approach was applied in an ungauged watershed as part of the Mississippi River Basin initiative aiming at reducing one of the largest aquatic dead zones in the globe. Simulation results indicate that the targeted approach has a significant impact on the overall watershed-scale sediment load reduction. Among the different evaluated practices, riparian buffers were the most efficient in sediment reduction. Moreover, the study provides a blueprint for similar investigations aiming at building decision-support systems and optimizing the placement of CPs in agricultural watersheds. Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation)
Show Figures

Figure 1

24 pages, 8786 KiB  
Article
Riparian Zone Nitrogen Management through the Development of the Riparian Ecosystem Management Model (REMM) in a Formerly Glaciated Watershed of the US Northeast
by Marzia Tamanna, Soni M. Pradhanang, Arthur J. Gold, Kelly Addy and Philippe G. Vidon
Agriculture 2021, 11(8), 743; https://doi.org/10.3390/agriculture11080743 - 5 Aug 2021
Cited by 3 | Viewed by 3042
Abstract
The Riparian Ecosystem Management Model (REMM) was developed, calibrated and validated for both hydrologic and water quality data for eight riparian buffers located in a formerly glaciated watershed (upper Pawcatuck River Watershed, Rhode Island) of the US Northeast. The Annualized AGricultural Non-Point Source [...] Read more.
The Riparian Ecosystem Management Model (REMM) was developed, calibrated and validated for both hydrologic and water quality data for eight riparian buffers located in a formerly glaciated watershed (upper Pawcatuck River Watershed, Rhode Island) of the US Northeast. The Annualized AGricultural Non-Point Source model (AnnAGNPS) was used to predict the runoff and sediment loading to the riparian buffer. Overall, results showed REMM simulated water table depths (WTDs) and groundwater NO3-N concentrations at the stream edge (Zone 1) in good agreement with measured values. The model evaluation statistics showed that, hydrologically REMM performed better for site 1, site 4, and site 8 among the eight buffers, whereas REMM simulated better groundwater NO3-N concentrations in the case of site 1, site 5, and site 7 when compared to the other five sites. The interquartile range of mean absolute error for WTDs was 3.5 cm for both the calibration and validation periods. In the case of NO3-N concentrations prediction, the interquartile range of the root mean square error was 0.25 mg/L and 0.69 mg/L for the calibration and validation periods, respectively, whereas the interquartile range of d for NO3-N concentrations was 0.20 and 0.48 for the calibration and validation period, respectively. Moreover, REMM estimation of % N-removal from Zone 3 to Zone 1 was 19.7%, and 19.8% of N against actual measured 19.1%, and 26.6% of N at site 7 and site 8, respectively. The sensitivity analyses showed that changes in the volumetric water content between field capacity and saturation (soil porosity) were driving water table and denitrification. Full article
Show Figures

Figure 1

21 pages, 8151 KiB  
Article
Integrated Technology for Evaluation and Assessment of Multi-Scale Hydrological Systems in Managing Nonpoint Source Pollution
by Henrique Momm, Ron Bingner, Robert Wells, Katy Moore and Glenn Herring
Water 2021, 13(6), 842; https://doi.org/10.3390/w13060842 - 19 Mar 2021
Cited by 5 | Viewed by 2886
Abstract
Conservation agencies need information to guide planning activities and allocation of limited mitigation resources at regional scales. Utilization of hydrological modeling tools at sub-watershed scales can adequately represent existing conditions, but information on a few discrete uncoordinated efforts cannot be scaled up to [...] Read more.
Conservation agencies need information to guide planning activities and allocation of limited mitigation resources at regional scales. Utilization of hydrological modeling tools at sub-watershed scales can adequately represent existing conditions, but information on a few discrete uncoordinated efforts cannot be scaled up to the entire region. Conversely, large scale modeling studies suffer from overgeneralization caused by needed lumping of information. In this study, a multiscale and standardized procedure was sought to characterize water and nonpoint source pollution spatiotemporal dynamics at basin-scale but through detailed field-scale analysis. The AnnAGNPS watershed pollution model was enhanced with new capabilities for simulation of large areas based on an Integrated Technology for Evaluation and Assessment of Multi-scale-hydrological Systems (ITEAMS) approach. Comparisons between the standard and proposed ITEAMS approach indicated no difference in streamflow and small underestimation of suspended sediments during high intensity rainfall events. The ITEAMS approach was applied to a basin with a total area of 3,268,691 ha which was discretized into 469,628 sub-catchments with an average size of 6.8 ha. The resulting 366 linked AnnAGNPS simulations were executed hierarchically generating estimates of water and suspended sediment yield and loads. This pilot study revealed the ITEAMS approach is a viable alternative for modeling and simulating large areas but at high spatiotemporal resolution. Full article
Show Figures

Figure 1

20 pages, 6226 KiB  
Article
Evaluation of AnnAGNPS Model for Runoff Simulation on Watersheds from Glaciated Landscape of USA Midwest and Northeast
by Marzia Tamanna, Soni M. Pradhanang, Arthur J. Gold, Kelly Addy, Philippe G. Vidon and Ronald L. Bingner
Water 2020, 12(12), 3525; https://doi.org/10.3390/w12123525 - 15 Dec 2020
Cited by 10 | Viewed by 5025
Abstract
Runoff modeling of glaciated watersheds is required to predict runoff for water supply, aquatic ecosystem management and flood prediction, and to deal with questions concerning the impact of climate and land use change on the hydrological system and watershed export of contaminants of [...] Read more.
Runoff modeling of glaciated watersheds is required to predict runoff for water supply, aquatic ecosystem management and flood prediction, and to deal with questions concerning the impact of climate and land use change on the hydrological system and watershed export of contaminants of glaciated watersheds. A widely used pollutant loading model, Annualized Agricultural Non-Point Source Pollution (AnnAGNPS) was applied to simulate runoff from three watersheds in glaciated geomorphic settings. The objective of this study was to evaluate the suitability of the AnnAGNPS model in glaciated landscapes for the prediction of runoff volume. The study area included Sugar Creek watershed, Indiana; Fall Creek watershed, New York; and Pawcatuck River watershed, Rhode Island, USA. The AnnAGNPS model was developed, calibrated and validated for runoff estimation for these watersheds. The daily and monthly calibration and validation statistics (NSE > 0.50 and RSR < 0.70, and PBIAS ± 25%) of the developed model were satisfactory for runoff simulation for all the studied watersheds. Once AnnAGNPS successfully simulated runoff, a parameter sensitivity analysis was carried out for runoff simulation in all three watersheds. The output from our hydrological models applied to glaciated areas will provide the capacity to couple edge-of-field hydrologic modeling with the examination of riparian or riverine functions and behaviors. Full article
Show Figures

Figure 1

19 pages, 6208 KiB  
Article
Using AnnAGNPS to Simulate Runoff, Nutrient, and Sediment Loads in an Agricultural Catchment with an On-Farm Water Storage System
by Juan D. Pérez-Gutiérrez, Joel O. Paz, Mary Love M. Tagert, Lindsey M. W. Yasarer and Ronald L. Bingner
Climate 2020, 8(11), 133; https://doi.org/10.3390/cli8110133 - 12 Nov 2020
Cited by 3 | Viewed by 3314
Abstract
On-farm water storage (OFWS) systems are best management practices that consist of a tailwater recovery (TWR) ditch used with a storage pond to provide irrigation water and improve downstream water quality. These systems have been increasingly implemented in the southeastern US, but the [...] Read more.
On-farm water storage (OFWS) systems are best management practices that consist of a tailwater recovery (TWR) ditch used with a storage pond to provide irrigation water and improve downstream water quality. These systems have been increasingly implemented in the southeastern US, but the individual and cumulative effects of these systems on a watershed scale are unknown. In this study, the runoff, nutrient, and sediment loads entering a TWR ditch in an agricultural catchment were quantified, and contributing sources were identified using the annualized agricultural non-point source (AnnAGNPS) model. Fields with larger areas and soils with a high runoff potential produced more runoff. The volume of runoff exceeded the TWR ditch storage volume approximately 110 times, mostly during the winter and spring seasons. During years when corn and winter wheat were planted, NO3–N loads increased because these crops need nitrogen fertilization to grow. Planting winter wheat in priority subwatersheds reduced the total phosphorous (TP) and sediment loads by about 19% and 13%, respectively, at the TWR ditch inlet. Planting winter wheat can reduce runoff, TP, and sediment loads but also result in higher NO3–N loads. AnnAGNPS simulations quantified the benefits of an OFWS system to advance the understanding of their impact on water availability and quality at a watershed scale. Full article
Show Figures

Figure 1

33 pages, 788 KiB  
Review
Review of Watershed-Scale Water Quality and Nonpoint Source Pollution Models
by Lifeng Yuan, Tadesse Sinshaw and Kenneth J. Forshay
Geosciences 2020, 10(1), 25; https://doi.org/10.3390/geosciences10010025 - 11 Jan 2020
Cited by 113 | Viewed by 13468
Abstract
Watershed-scale nonpoint source (NPS) pollution models have become important tools to understand, evaluate, and predict the negative impacts of NPS pollution on water quality. Today, there are many NPS models available for users. However, different types of models possess different form and structure [...] Read more.
Watershed-scale nonpoint source (NPS) pollution models have become important tools to understand, evaluate, and predict the negative impacts of NPS pollution on water quality. Today, there are many NPS models available for users. However, different types of models possess different form and structure as well as complexity of computation. It is difficult for users to select an appropriate model for a specific application without a clear understanding of the limitations or strengths for each model or tool. This review evaluates 14 more commonly used watershed-scale NPS pollution models to explain how and when the application of these different models are appropriate for a given effort. The models that are assessed have a wide range of capacities that include simple models used as rapid screening tools (e.g., Long-Term Hydrologic Impact Assessment (L-THIA) and Nonpoint Source Pollution and Erosion Comparison Tool (N-SPECT/OpenNSPECT)), medium-complexity models that require detail data input and limited calibration (e.g., Generalized Watershed Loading Function (GWLF), Loading Simulation Program C (LSPC), Source Loading and Management Model (SLAMM), and Watershed Analysis Risk Management Frame (WARMF)), complex models that provide sophisticated simulation for NPS pollution processes with intensive data and rigorous calibration (e.g., Agricultural Nonpoint Source pollution model (AGNPS/AnnAGNPS), Soil and Water Assessment Tool (SWAT), Stormwater Management Model (SWMM), and Hydrologic Simulation Program Fortran (HSPF)), and modeling systems that integrate various sub-models and tools, and contain the highest complexity to solve all phases of hydrologic, hydraulic, and chemical dynamic processes (e.g., Automated Geospatial Watershed Assessment Tool (AGWA), Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) and Watershed Modeling System (WMS)). This assessment includes model intended use, components or capabilities, suitable land-use type, input parameter type, spatial and temporal scale, simulated pollutants, strengths and limitations, and software availability. Understanding the strengths and weaknesses of each watershed-scale NPS model will lead to better model selection for suitability and help to avoid misinterpretation or misapplication in practice. The article further explains the crucial criteria for model selection, including spatial and temporal considerations, calibration and validation, uncertainty analysis, and future research direction of NPS pollution models. The goal of this work is to provide accurate and concise insight for watershed managers and planners to select the best-suited model to reduce the harm of NPS pollution to watershed ecosystems. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

16 pages, 1266 KiB  
Article
Multivariate Statistical Analysis of Surface Enhanced Raman Spectra of Human Serum for Alzheimer’s Disease Diagnosis
by Elena Ryzhikova, Nicole M. Ralbovsky, Lenka Halámková, Dzintra Celmins, Paula Malone, Eric Molho, Joseph Quinn, Earl A. Zimmerman and Igor K. Lednev
Appl. Sci. 2019, 9(16), 3256; https://doi.org/10.3390/app9163256 - 9 Aug 2019
Cited by 52 | Viewed by 5897
Abstract
Alzheimer’s disease (AD) is the most common form of dementia worldwide and is characterized by progressive cognitive decline. Along with being incurable and lethal, AD is difficult to diagnose with high levels of accuracy. Blood serum from Alzheimer’s disease (AD) patients was analyzed [...] Read more.
Alzheimer’s disease (AD) is the most common form of dementia worldwide and is characterized by progressive cognitive decline. Along with being incurable and lethal, AD is difficult to diagnose with high levels of accuracy. Blood serum from Alzheimer’s disease (AD) patients was analyzed by surface-enhanced Raman spectroscopy (SERS) coupled with multivariate statistical analysis. The obtained spectra were compared with spectra from healthy controls (HC) to develop a simple test for AD detection. Serum spectra from AD patients were further compared to spectra from patients with other neurodegenerative dementias (OD). Colloidal silver nanoparticles (AgNPs) were used as the SERS-active substrates. Classification experiments involving serum SERS spectra using artificial neural networks (ANNs) achieved a diagnostic sensitivity around 96% for differentiating AD samples from HC samples in a binary model and 98% for differentiating AD, HC, and OD samples in a tertiary model. The results from this proof-of-concept study demonstrate the great potential of SERS blood serum analysis to be developed further into a novel clinical assay for the effective and accurate diagnosis of AD. Full article
(This article belongs to the Special Issue Surfaced Enhanced Raman Scattering (SERS) in Disease Diagnosis)
Show Figures

Figure 1

23 pages, 4718 KiB  
Article
Modelling Runoff and Sediment Loads in a Developing Coastal Watershed of the US-Mexico Border
by Napoleon Gudino-Elizondo, Trent W. Biggs, Ronald L. Bingner, Eddy J. Langendoen, Thomas Kretzschmar, Encarnación V. Taguas, Kristine T. Taniguchi-Quan, Douglas Liden and Yongping Yuan
Water 2019, 11(5), 1024; https://doi.org/10.3390/w11051024 - 16 May 2019
Cited by 16 | Viewed by 5215
Abstract
Urbanization can increase sheet, rill, gully, and channel erosion. We quantified the sediment budget of the Los Laureles Canyon watershed (LLCW), which is a mixed rural-urbanizing catchment in Northwestern Mexico, using the AnnAGNPS model and field measurements of channel geometry. The model was [...] Read more.
Urbanization can increase sheet, rill, gully, and channel erosion. We quantified the sediment budget of the Los Laureles Canyon watershed (LLCW), which is a mixed rural-urbanizing catchment in Northwestern Mexico, using the AnnAGNPS model and field measurements of channel geometry. The model was calibrated with five years of observed runoff and sediment loads and used to evaluate sediment reduction under a mitigation scenario involving paving roads in hotspots of erosion. Calibrated runoff and sediment load had a mean-percent-bias of 28.4 and − 8.1, and root-mean-square errors of 85% and 41% of the mean, respectively. Suspended sediment concentration (SSC) collected at different locations during one storm-event correlated with modeled SSC at those locations, which suggests that the model represented spatial variation in sediment production. Simulated gully erosion represents 16%–37% of hillslope sediment production, and 50% of the hillslope sediment load is produced by only 23% of the watershed area. The model identifies priority locations for sediment control measures, and can be used to identify tradeoffs between sediment control and runoff production. Paving roads in priority areas would reduce total sediment yield by 30%, but may increase peak discharge moderately (1.6%–21%) at the outlet. Full article
(This article belongs to the Special Issue Modeling of Soil Erosion and Sediment Transport)
Show Figures

Graphical abstract

17 pages, 3013 KiB  
Article
Modelling Ephemeral Gully Erosion from Unpaved Urban Roads: Equifinality and Implications for Scenario Analysis
by Napoleon Gudino-Elizondo, Trent W. Biggs, Ronald L. Bingner, Yongping Yuan, Eddy J. Langendoen, Kristine T. Taniguchi, Thomas Kretzschmar, Encarnacion V. Taguas and Douglas Liden
Geosciences 2018, 8(4), 137; https://doi.org/10.3390/geosciences8040137 - 17 Apr 2018
Cited by 24 | Viewed by 5474
Abstract
Modelling gully erosion in urban areas is challenging due to difficulties with equifinality and parameter identification, which complicates quantification 0of management impacts on runoff and sediment production. We calibrated a model (AnnAGNPS) of an ephemeral gully network that formed on unpaved roads following [...] Read more.
Modelling gully erosion in urban areas is challenging due to difficulties with equifinality and parameter identification, which complicates quantification 0of management impacts on runoff and sediment production. We calibrated a model (AnnAGNPS) of an ephemeral gully network that formed on unpaved roads following a storm event in an urban watershed (0.2 km2) in Tijuana, Mexico. Latin hypercube sampling was used to create 500 parameter ensembles. Modelled sediment load was most sensitive to the Soil Conservation Service (SCS) curve number, tillage depth (TD), and critical shear stress (τc). Twenty-one parameter ensembles gave acceptable error (behavioural models), though changes in parameters governing runoff generation (SCS curve number, Manning’s n) were compensated by changes in parameters describing soil properties (TD, τc), resulting in uncertainty in the optimal parameter values. The most suitable parameter combinations or “behavioural models” were used to evaluate uncertainty under management scenarios. Paving the roads increased runoff by 146–227%, increased peak discharge by 178–575%, and decreased sediment load by 90–94% depending on the ensemble. The method can be used in other watersheds to simulate runoff and gully erosion, to quantify the uncertainty of model-estimated impacts of management activities on runoff and erosion, and to suggest critical field measurements to reduce uncertainties in complex urban environments. Full article
(This article belongs to the Special Issue Soil Hydrology and Erosion)
Show Figures

Figure 1

19 pages, 1784 KiB  
Article
Evaluation of the AnnAGNPS Model for Predicting Runoff and Nutrient Export in a Typical Small Watershed in the Hilly Region of Taihu Lake
by Chuan Luo, Zhaofu Li, Hengpeng Li and Xiaomin Chen
Int. J. Environ. Res. Public Health 2015, 12(9), 10955-10973; https://doi.org/10.3390/ijerph120910955 - 2 Sep 2015
Cited by 11 | Viewed by 5101
Abstract
The application of hydrological and water quality models is an efficient approach to better understand the processes of environmental deterioration. This study evaluated the ability of the Annualized Agricultural Non-Point Source (AnnAGNPS) model to predict runoff, total nitrogen (TN) and total phosphorus (TP) [...] Read more.
The application of hydrological and water quality models is an efficient approach to better understand the processes of environmental deterioration. This study evaluated the ability of the Annualized Agricultural Non-Point Source (AnnAGNPS) model to predict runoff, total nitrogen (TN) and total phosphorus (TP) loading in a typical small watershed of a hilly region near Taihu Lake, China. Runoff was calibrated and validated at both an annual and monthly scale, and parameter sensitivity analysis was performed for TN and TP before the two water quality components were calibrated. The results showed that the model satisfactorily simulated runoff at annual and monthly scales, both during calibration and validation processes. Additionally, results of parameter sensitivity analysis showed that the parameters Fertilizer rate, Fertilizer organic, Canopy cover and Fertilizer inorganic were more sensitive to TN output. In terms of TP, the parameters Residue mass ratio, Fertilizer rate, Fertilizer inorganic and Canopy cover were the most sensitive. Based on these sensitive parameters, calibration was performed. TN loading produced satisfactory results for both the calibration and validation processes, whereas the performance of TP loading was slightly poor. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for the planning and management of watersheds. Full article
Show Figures

Figure 1

30 pages, 1569 KiB  
Article
A Multi-Criteria Model Selection Protocol for Practical Applications to Nutrient Transport at the Catchment Scale
by Ye Tuo, Gabriele Chiogna and Markus Disse
Water 2015, 7(6), 2851-2880; https://doi.org/10.3390/w7062851 - 15 Jun 2015
Cited by 20 | Viewed by 7702
Abstract
Process-based models are widely used to investigate nutrient dynamics for water management purposes. Simulating nutrient transport and transformation processes from agricultural land into water bodies at the catchment scale are particularly relevant and challenging tasks for water authorities. However, few practical methods guide [...] Read more.
Process-based models are widely used to investigate nutrient dynamics for water management purposes. Simulating nutrient transport and transformation processes from agricultural land into water bodies at the catchment scale are particularly relevant and challenging tasks for water authorities. However, few practical methods guide inexperienced modelers in the selection process of an appropriate model. In particular, data availability is a key aspect in a model selection protocol, since a large number of models contain the functionalities to predict nutrient fate and transport, yet a smaller number is applicable to specific datasets. In our work, we aim at providing a model selection protocol fit for practical application with particular emphasis on data availability, cost-benefit analysis and user’s objectives. We select for illustrative purposes five process-based models with different complexity as “candidates” models: SWAT (Soil and Water Assessment Tool), SWIM (Soil and Water Integrated Model), GWLF (Generalized Watershed Loading Function), AnnAGNPS (Annualized Agricultural Non-Point Source Pollution model) and HSPF (Hydrological simulation program-FORTRAN). The models are described in terms of hydrological and chemical output and input requirements. The model selection protocol considers data availability, model characteristics and user’s objectives and it is applied to hypothetical scenarios. This selection method is particularly formulated to choose process-based models for nutrient modeling, but it can be generalized for other applications which are characterized by a similar degree of complexity. Full article
Show Figures

Graphical abstract

21 pages, 1461 KiB  
Article
Assessment of Runoff and Sediment Yields Using the AnnAGNPS Model in a Three-Gorge Watershed of China
by Lizhong Hua, Xiubin He, Yongping Yuan and Hongwei Nan
Int. J. Environ. Res. Public Health 2012, 9(5), 1887-1907; https://doi.org/10.3390/ijerph9051887 - 16 May 2012
Cited by 17 | Viewed by 7416
Abstract
Soil erosion has been recognized as one of the major threats to our environment and water quality worldwide, especially in China. To mitigate nonpoint source water quality problems caused by soil erosion, best management practices (BMPs) and/or conservation programs have been adopted. Watershed [...] Read more.
Soil erosion has been recognized as one of the major threats to our environment and water quality worldwide, especially in China. To mitigate nonpoint source water quality problems caused by soil erosion, best management practices (BMPs) and/or conservation programs have been adopted. Watershed models, such as the Annualized Agricultural Non-Point Source Pollutant Loading model (AnnAGNPS), have been developed to aid in the evaluation of watershed response to watershed management practices. The model has been applied worldwide and proven to be a very effective tool in identifying the critical areas which had serious erosion, and in aiding in decision-making processes for adopting BMPs and/or conservation programs so that cost/benefit can be maximized and non-point source pollution control can be achieved in the most efficient way. The main goal of this study was to assess the characteristics of soil erosion, sediment and sediment delivery of a watershed so that effective conservation measures can be implemented. To achieve the overall objective of this study, all necessary data for the 4,184 km2 Daning River watershed in the Three-Gorge region of the Yangtze River of China were assembled. The model was calibrated using observed monthly runoff from 1998 to 1999 (Nash-Sutcliffe coefficient of efficiency of 0.94 and R2 of 0.94) and validated using the observed monthly runoff from 2003 to 2005 (Nash-Sutcliffe coefficient of efficiency of 0.93 and R2 of 0.93). Additionally, the model was validated using annual average sediment of 2000–2002 (relative error of −0.34) and 2003–2004 (relative error of 0.18) at Wuxi station. Post validation simulation showed that approximately 48% of the watershed was under the soil loss tolerance released by the Ministry of Water Resources of China (500 t·km−2·y−1). However, 8% of the watershed had soil erosion of exceeding 5,000 t·km−2·y−1. Sloping areas and low coverage areas are the main source of soil loss in the watershed. Full article
Show Figures

Figure 1

19 pages, 450 KiB  
Article
Assessing the Long Term Impact of Phosphorus Fertilization on Phosphorus Loadings Using AnnAGNPS
by Yongping Yuan, Ronald L. Bingner, Martin A. Locke, Jim Stafford and Fred D. Theurer
Int. J. Environ. Res. Public Health 2011, 8(6), 2181-2199; https://doi.org/10.3390/ijerph8062181 - 14 Jun 2011
Cited by 10 | Viewed by 8546
Abstract
High phosphorus (P) loss from agricultural fields has been an environmental concern because of potential water quality problems in streams and lakes. To better understand the process of P loss and evaluate the effects of different phosphorus fertilization rates on phosphorus losses, the [...] Read more.
High phosphorus (P) loss from agricultural fields has been an environmental concern because of potential water quality problems in streams and lakes. To better understand the process of P loss and evaluate the effects of different phosphorus fertilization rates on phosphorus losses, the USDA Annualized AGricultural Non-Point Source (AnnAGNPS) pollutant loading model was applied to the Ohio Upper Auglaize watershed, located in the southern portion of the Maumee River Basin. In this study, the AnnAGNPS model was calibrated using USGS monitored data; and then the effects of different phosphorus fertilization rates on phosphorus loadings were assessed. It was found that P loadings increase as fertilization rate increases, and long term higher P application would lead to much higher P loadings to the watershed outlet. The P loadings to the watershed outlet have a dramatic change after some time with higher P application rate. This dramatic change of P loading to the watershed outlet indicates that a “critical point” may exist in the soil at which soil P loss to water changes dramatically. Simulations with different initial soil P contents showed that the higher the initial soil P content is, the less time it takes to reach the “critical point” where P loadings to the watershed outlet increases dramatically. More research needs to be done to understand the processes involved in the transfer of P between the various stable, active and labile states in the soil to ensure that the model simulations are accurate. This finding may be useful in setting up future P application and management guidelines. Full article
(This article belongs to the Special Issue Soil Pollution: Prevention and Mitigation)
Show Figures

Back to TopTop