Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = Al 2219 alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3340 KiB  
Article
Optimization of Flat-Rolling Parameters for Thermally Stable Alloy of Al-Cu-Mn System with Micro Additions of Si and Zr
by Alexander Koshmin, Stanislav Cherkasov, Anastasiya Fortuna, Yury Gamin and Alexander Churyumov
Metals 2023, 13(12), 2019; https://doi.org/10.3390/met13122019 - 16 Dec 2023
Cited by 2 | Viewed by 1412
Abstract
The phase composition, microstructure, and mechanical properties of flat-rolled experimental Al-Cu-Mn system alloy with Si and Zr additions have been studied. The experimental results have been compared with data for the AA2219 commercial alloy pertaining to the same alloying system. Hot deformation of [...] Read more.
The phase composition, microstructure, and mechanical properties of flat-rolled experimental Al-Cu-Mn system alloy with Si and Zr additions have been studied. The experimental results have been compared with data for the AA2219 commercial alloy pertaining to the same alloying system. Hot deformation of an experimental alloy causes the precipitation of ~100 nm sized dispersoids and refinement of the eutectic phase particles. The yield strength and relative elongation of the hot-deformed experimental alloy are 255 MPa and 8.6%, respectively. Subsequent cold deformation reduces the relative elongation by 3.5% and increases the yield strength by 50 MPa, while the ultimate tensile strength does not change. After long-term 350 °C exposure, the mechanical properties of the experimental alloy remain the same as those of the as-deformed one, whereas the yield strength of the 2219 alloy decreases by 2 times and the ultimate tensile strength by 1.4 times. Comparison of these experimental results with data for the 2219 alloy and other Al-Cu-Mn system alloys cited in this work and reported elsewhere suggests that a good thermal stability of Al-2Cu-2Mn-0.4Si-0.2Zr alloy rolled stock can be achieved through treatment using the regimes designed herein. Full article
Show Figures

Figure 1

19 pages, 15641 KiB  
Article
Effect of Heat Treatment States of Feedstock on the Microstructure and Mechanical Properties of AA2219 Layers Deposited by Additive Friction Stir Deposition
by Ming Zhang, Xianjue Ye, Yidi Li, Hui Wang, Ruilin Lai and Yunping Li
Materials 2023, 16(24), 7591; https://doi.org/10.3390/ma16247591 - 11 Dec 2023
Cited by 21 | Viewed by 2134
Abstract
This study is the first to research the microstructure and mechanical properties of the workpiece after additive friction stir deposition (AFSD) of the feedstock at different heat treatment stages. AA2219 aluminum alloys with three different heat treatment stages were selected as the feedstock, [...] Read more.
This study is the first to research the microstructure and mechanical properties of the workpiece after additive friction stir deposition (AFSD) of the feedstock at different heat treatment stages. AA2219 aluminum alloys with three different heat treatment stages were selected as the feedstock, and alloys with dense structure were successfully prepared by the additive friction stir deposition AFSD process. Experimental results show that AFSD exhibits an excellent ability to refine grains and improve the uniform distribution of precipitates in the second phase, thereby improving the plasticity of AA2219 alloy after the AFSD process. Because of the continuous dynamic recrystallization (CDRX) in the AA2219 alloy during AFSD, the grain size after the AFSD process is independent of the initial feedstock grain size for three samples. The equilibrium phase (θ) size is genetically related to the initial size of the second-phase particles in the feedstock. Due to grain refinement and dislocation strengthening, the yield strength of AA2219-casting increased significantly from 79.8 MPa to 124.1 MPa after AFSD. The yield strength of the AA2219-T4 decreases slightly from 151.8 MPa to 140.4 MPa after AFSD. The precipitation of the second phase leads to a decrease in solid solution strengthening and dislocation strengthening. However, grain refinement strengthening partially offsets this reduction. The yield strength of AA2219-T87 decreased from 398.5 MPa to 147.2 MPa after AFSD. As such, grain refinement strengthening and solid solution strengthening by the AFSD process are much smaller than the yield strength lost by precipitation strengthening and dislocation strengthening. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

15 pages, 14187 KiB  
Article
Microstructure Evolution and Mechanical Properties of Thick 2219 Aluminum Alloy Welded Joints by Electron-Beam Welding
by Zhilong Chang, Minghui Huang, Xiaobo Wang, Houqin Wang, Guangda Sun and Li Zhou
Materials 2023, 16(21), 7028; https://doi.org/10.3390/ma16217028 - 3 Nov 2023
Cited by 2 | Viewed by 1586
Abstract
In this study, 2219 aluminum alloy thick plate was joined by electron beam welding. Defect-free joints with excellent surface formation were obtained. There were significant differences in the microstructure along the thickness direction of the weld zone (WZ). The upper region of the [...] Read more.
In this study, 2219 aluminum alloy thick plate was joined by electron beam welding. Defect-free joints with excellent surface formation were obtained. There were significant differences in the microstructure along the thickness direction of the weld zone (WZ). The upper region of the WZ was mainly striated grains, while the lower region was fine equiaxed grains. The WZ of 2219 joint is composed of α-Al and Al-Cu eutectic. Fine equiaxed grains were formed in the partially melted zone (PMZ) due to the existence of high-melting nucleation particles including Ti-Al and Ti-Zr compounds. The eutectic microstructure in the PMZ and the heat-affected zone (HAZ) presented net-like and block-shape distribution. Due to the formation of fine grains and high content of Al-Cu eutectic, the WZ showed the highest microhardness (80 HV). Therefore, the 2219 joint obtained excellent mechanical properties. The tensile strength of the 2219 joint was equal to that of the base metal (BM), but the elongation of the 2219 joint significantly decreased to 15.1%, about 67.7% of that of BM. The fracture mode of the 2219 joint presented typical ductile fracture. Full article
Show Figures

Figure 1

20 pages, 11255 KiB  
Article
Structure Evolution and Mechanical Properties of Sheet Al–2Cu–1.5Mn–1Mg–1Zn (wt.%) Alloy Designed for Al20Cu2Mn3 Disperoids
by Nikolay Belov, Torgom Akopyan, Kirill Tsydenov, Nikolay Letyagin and Anastasya Fortuna
Metals 2023, 13(8), 1442; https://doi.org/10.3390/met13081442 - 11 Aug 2023
Cited by 4 | Viewed by 1771
Abstract
This work was focused on studying the possibility of increasing the strength of non-heat-treatable sheet alloy Al2Cu1.5Mn (wt.%) by the joint addition of 1% Mg and 1% Zn. The effect of these elements on the structure and mechanical properties of the new sheet [...] Read more.
This work was focused on studying the possibility of increasing the strength of non-heat-treatable sheet alloy Al2Cu1.5Mn (wt.%) by the joint addition of 1% Mg and 1% Zn. The effect of these elements on the structure and mechanical properties of the new sheet Al2Cu1.5Mn alloy designed for Al20Cu2Mn3 dispersoids has been studied by calculations and experimental methods. The obtained data on the phase composition, microstructure, and physical and mechanical properties of the new alloy for different processing routes (including hot rolling, cold rolling, and annealing) have been compared with those for the ternary Mg- and Zn-free alloy. It has been shown that the formation of nanosized Al20Cu2Mn3 dispersoids (~7 vol.%) provides for the preservation of the non-recrystallized grain structure after annealing at up to 400 °C (3 h), while Mg and Zn have a positive effect on the strength due to the formation of alloyed aluminum solid solution. As a result, cold-rolled sheets of the Al2Cu1.5Mn1Mg1Zn model alloy showed a substantially higher strength performance after annealing at 400 °C in comparison with the ternary reference alloy. In particular, the UTS is ~360 vs. ~300 MPa, and the YS is 280 vs. 230 MPa. For the example of the Al2Cu1.5Mn1Mg1Zn model alloy, it has been shown that the system is promising for designing new heat-resistant alloys as a sustainable alternative to the 2xxx alloys. The new alloy has an advantage over the commercial alloys (particularly, 2219, 2024, 2014), not only in manufacturability but also in thermal stability. The sheet production cycle for the model alloy is much shorter because the stages of homogenization, solution treatment, and water quenching are excluded. Full article
Show Figures

Figure 1

13 pages, 5131 KiB  
Article
Heat Treatment Optimization of 2219 Aluminum Alloy Fabricated by Wire-Arc Additive Manufacturing
by Jiannan Yang, Yunqiang Ni, Hui Li, Xuewei Fang and Bingheng Lu
Coatings 2023, 13(3), 610; https://doi.org/10.3390/coatings13030610 - 13 Mar 2023
Cited by 10 | Viewed by 3047
Abstract
Wire-arc additive manufacturing has generated significant interest in the aerospace industry for the fabrication of large aluminum alloy components such as alloy 2219 (Al-6.3Cu). However, its application is limited by the low strength of the deposited parts. In this study, the effect of [...] Read more.
Wire-arc additive manufacturing has generated significant interest in the aerospace industry for the fabrication of large aluminum alloy components such as alloy 2219 (Al-6.3Cu). However, its application is limited by the low strength of the deposited parts. In this study, the effect of heat-treatment parameters, including solution temperature, solution time, aging temperature, and aging time, on the mechanical properties was optimized by using the Taguchi method. The results show that the solution temperature is the most influential factor on ultimate tensile strength and yielding strength, while the aging time had the most significant effect on elongation. Thereafter, the best control factor for the maximum response variable was obtained. Microhardness and strength properties were greatly improved after optimized T6 heat treatment. The strengthening mechanism of this additively fabricated Al-6.3Cu alloy was investigated by microstructural analysis. Full article
(This article belongs to the Special Issue Recent Advances in Additive Manufacturing Techniques)
Show Figures

Figure 1

15 pages, 9764 KiB  
Article
Mechanical Properties and Tensile Failure Mechanism of Friction Stir Welded 2219-T6 and 5A06-H112 Joints
by Jinghong Gu, Wei Xue and Diqiu He
Metals 2023, 13(3), 578; https://doi.org/10.3390/met13030578 - 13 Mar 2023
Viewed by 1799
Abstract
Friction stir welding was employed to weld dissimilar 2219/5A06 Al alloys in this work. The influences of alloy positioning on the mechanical properties and fracture behavior of the joints were studied via fracture morphology observation and microstructural analysis. The results show that the [...] Read more.
Friction stir welding was employed to weld dissimilar 2219/5A06 Al alloys in this work. The influences of alloy positioning on the mechanical properties and fracture behavior of the joints were studied via fracture morphology observation and microstructural analysis. The results show that the difference in the plastic flow and thermal field in the welding process is caused by different basic material configurations, which results in the formation of a free strengthening phase zone and microstructural heterogeneity in the joint. The low-hardness texture component caused by the free strengthening phase zone and microstructural heterogeneity becomes crack initiation, and a crack tends to propagate along the grain boundaries. Finally, when the stronger 2219-T6 alloy was placed on the advancing side, the joints had better tensile properties. The average tensile strengths of the 2A5R and 5A2R joints can reach 79.8% (343 MPa) and 78.4% (337 MPa) of the 2219 base material, respectively. Full article
(This article belongs to the Section Welding and Joining)
Show Figures

Figure 1

11 pages, 4049 KiB  
Article
Study on High-Speed Machining of 2219 Aluminum Utilizing Nanoparticle-Enhanced Minimum Quantity Lubrication (MQL) Technique
by Sagil James and Mehrshad Mazaheri
Surfaces 2023, 6(1), 29-39; https://doi.org/10.3390/surfaces6010003 - 22 Jan 2023
Cited by 6 | Viewed by 2934
Abstract
High-speed machining processes are significantly affected by the accumulation of heat generated by friction in the cutting zone, leading to reduced tool life and poor quality of the machined product. The use of cutting fluids helps to draw the heat out of the [...] Read more.
High-speed machining processes are significantly affected by the accumulation of heat generated by friction in the cutting zone, leading to reduced tool life and poor quality of the machined product. The use of cutting fluids helps to draw the heat out of the area, owing to their cooling and lubricating properties. However, conventional cutting fluid usage leads to considerable damage to human health and the environment, in addition to increasing overall manufacturing costs. In recent years, minimum quantity lubrication (MQL) has been used as an alternative lubricating strategy, as it significantly reduces cutting fluid consumption and eliminates coolant treatment/disposal needs, thereby reducing operational costs. In this study, we investigated microstructural surface finishing and heat generation during the high-speed cutting process of 2219 aluminum alloy using an MQL nanofluid. 2219 aluminum alloy offers an enhanced strength-to-weight ratio and high fracture toughness and is commonly used in a wide range of aerospace and other high-temperature applications. However, there is no relevant literature on MQL-based high-speed machining of these materials. In this study, we examined flood coolant and five different MQL nanofluids made by synthesizing 0.2% to 2% concentrations of Al2O3 nanoparticles into ultra-food-grade mineral oil. The study results reveal the chemistry between the MQL of choice and the corresponding surface finishing, showing that the MQL nanofluid with a 0.5% concentration of nanoparticles achieved the most optimal machining result. Furthermore, increasing the nanoparticle concentration does result in any further improvement in the machining result. We also found that adding a 0.5% concentration of nanoparticles to the coolant helped to reduce the temperature at the workpiece–tool interface, obtaining a good surface finish. Full article
(This article belongs to the Collection Featured Articles for Surfaces)
Show Figures

Graphical abstract

17 pages, 3055 KiB  
Article
Unveiling Liquation and Segregation Induced Failure Mechanism in Thick Dissimilar Aluminum Alloy Electron-Beam Welds
by P. Mastanaiah, G. Madhusudan Reddy, Anirban Bhattacharya, Angshuman Kapil and Abhay Sharma
Metals 2022, 12(3), 486; https://doi.org/10.3390/met12030486 - 13 Mar 2022
Cited by 7 | Viewed by 3142
Abstract
This study presents new findings on the underlying failure mechanism of thick dissimilar electron-beam (EB) welds through a study on the AA 2219-AA 5083 pair. Contrary to the prior studies on EB welding of thin Al alloys, where liquation in the grain boundaries [...] Read more.
This study presents new findings on the underlying failure mechanism of thick dissimilar electron-beam (EB) welds through a study on the AA 2219-AA 5083 pair. Contrary to the prior studies on EB welding of thin Al alloys, where liquation in the grain boundaries (GBs) in the partially melted zone (PMZ) was not observed, the present investigation for thick EB welds reports both liquation and increased segregation of Cu in the PMZ. The work is thus directed towards understanding the unusual observation in the PMZ of thick EB weld through investigation of the microstructural variation across the various regions of the produced weld. The microstructural results are correlated with the mechanical properties of the weld, i.e., hardness variation and tensile response. Results of this investigation suggest that unlike the convention that EB welding produces sound dissimilar Al welds, the weld performance for thick EB Al welds is affected by the heat input, the associated cooling rates, and most importantly by the base material thickness. Extensive liquation and Cu segregation induced failure in the PMZ on the AA 2219 side of the dissimilar weld. The underlying failure mechanism is explained through a heat-transfer analysis. Beyond a certain plate thickness, the heat transfer changes from two to three-dimensional. As a result, retarded cooling promotes liquation and Cu segregation in thick EB welds. Full article
(This article belongs to the Special Issue Current Developments in Welding and Joining Technologies)
Show Figures

Figure 1

13 pages, 33281 KiB  
Article
Effects of Intercooling Intensity on Temperature Field and Microstructure of Large-Scale 2219 Al Alloy Billet Prepared by Internal Electromagnetic Stirring Casting
by Yang Qiu, Xintao Li, Mingyang Liu, Nan Zhou and Kaihong Zheng
Materials 2022, 15(5), 1809; https://doi.org/10.3390/ma15051809 - 28 Feb 2022
Cited by 4 | Viewed by 1884
Abstract
Internal electromagnetic stirring is an advanced melt treatment method, which can be used in direct chill casting to prepare large-scale Al alloy billets. Intercooling intensity is a primary parameter of internal electromagnetic stirring; its effects on temperature fields and microstructures have been investigated [...] Read more.
Internal electromagnetic stirring is an advanced melt treatment method, which can be used in direct chill casting to prepare large-scale Al alloy billets. Intercooling intensity is a primary parameter of internal electromagnetic stirring; its effects on temperature fields and microstructures have been investigated via numerical simulations and industrial experiments, respectively. The simulated results show an increase in the intercooling affected area and a decrease in sump depth with an increase in the intercooling heat transfer coefficient. The heat transfer coefficient should not exceed 500 W/(m2 °C) because the solid fraction of the intercooling end bottom may exceed 50%. The experiment’s results demonstrate that the average grain sizes in the edge, 1/2 radius, and center are 151 ± 13 μm, 159 ± 14 μm, and 149 ± 16 μm, respectively, under a liquid nitrogen flow rate of 160 L/min, which is much finer than that of 80 L/min and more homogeneous than that of 240 L/min. Furthermore, an experimental liquid nitrogen flow rate of 80 L/min, 160 L/min, and 240 L/min approximately correspond to the simulated heat transfer coefficient of 200 W/(m2 °C), 300 W/(m2 °C), and 400 W/(m2 °C), respectively. Full article
Show Figures

Figure 1

12 pages, 3568 KiB  
Article
Effect of Pre-Stretch on the Precipitation Behavior and the Mechanical Properties of 2219 Al Alloy
by Guo-Ai Li, Zheng Ma, Jian-Tang Jiang, Wen-Zhu Shao, Wei Liu and Liang Zhen
Materials 2021, 14(9), 2101; https://doi.org/10.3390/ma14092101 - 21 Apr 2021
Cited by 11 | Viewed by 2593
Abstract
The influence of pre-stretch on the mechanical properties of 2219 Al alloys sheets were systematically investigated, with the aim of examining the age-strengthening in parts draw-formed from as-quenched sheets. The precipitation was characterized based on differential scanning calorimetry (DSC) analysis and transmission electron [...] Read more.
The influence of pre-stretch on the mechanical properties of 2219 Al alloys sheets were systematically investigated, with the aim of examining the age-strengthening in parts draw-formed from as-quenched sheets. The precipitation was characterized based on differential scanning calorimetry (DSC) analysis and transmission electron microscope (TEM) observation of specimens of as-quenched and quenched-stretched condition to address the influence of pre-stretching. A tensile test was performed to evaluate the effect on mechanical properties. The introduction of pre-stretching endues increased yield strength (YS) and thus can be helpful to exert the potential of the alloy. Peak YS of 387.5 and 376.8 MPa are obtained when specimens pre-stretched for 10% are aged at 150 and 170 °C, respectively, much higher than that obtained in the non-stretched specimens (319.2 MPa). The precipitation of Guinier-Preston zone (G.P. zones) and the transition to θ″ shifts to a lower temperature when pre-stretched is performed. The high density of dislocations developed during the stretching contributes to the acceleration in precipitation. Quench-stretched specimens present a much quicker age-hardening response at the beginning stage, which endue higher peaked yield strength. The yield strength, however, decrease much more quickly due to the recovery that occurs during the aging processes. The study suggested the feasibility of aging draw-formed components of 2219 Al alloy to obtain high strength. Full article
(This article belongs to the Special Issue Applications of Al Alloys on Lightweight Structures)
Show Figures

Figure 1

16 pages, 6229 KiB  
Article
Microstructures and Tensile Fracture Behavior of 2219 Wrought Al–Cu Alloys with Different Impurity of Fe
by Daofen Xu, Changjun Zhu, Chengfu Xu and Kanghua Chen
Metals 2021, 11(1), 174; https://doi.org/10.3390/met11010174 - 19 Jan 2021
Cited by 21 | Viewed by 3787
Abstract
The Fe-rich intermetallic phases have a broadly detrimental effect on the mechanical properties of Al–Cu alloy. In this paper, the continuous evolution of Fe-rich intermetallics and their effects on mechanical properties, especially the tensile fracture behavior of 2219 wrought Al–Cu alloys as a [...] Read more.
The Fe-rich intermetallic phases have a broadly detrimental effect on the mechanical properties of Al–Cu alloy. In this paper, the continuous evolution of Fe-rich intermetallics and their effects on mechanical properties, especially the tensile fracture behavior of 2219 wrought Al–Cu alloys as a function of Fe content against different processing approaches (i.e., as-cast, homogenization, multidirectional forging, and solution-peak aging treatment) were investigated using optical microscopy, scanning electron microscopy, and tensile tests. The results indicated that needle-like Al7Cu2Fe or Al7Cu2(Fe, Mn) intermetallics mainly presented in the final microstructures of all alloys with various Fe contents. The size and number of Al7Cu2Fe/Al7Cu2(Fe, Mn) intermetallics increased with the increase of Fe content. The increase of Fe content had little influence on the ultimate tensile strength and yield strength, while obvious deterioration in the elongation, because fracture initiators mainly occurred at the Al7Cu2Fe/Al7Cu2(Fe, Mn) particles or particles–matrix interface. Therefore, the 2219 Al–Cu alloy with 0.2 wt.% Fe content presented relatively low tensile ductility. The tensile fracture mechanism has been discussed in detail. Full article
Show Figures

Figure 1

18 pages, 5961 KiB  
Article
The Study on Forming Property at High Temperature and Processing Map of 2219 Aluminum Alloy
by Xiang-Dong Jia, Yi-Ning Wang, Ying Zhou and Miao-Yan Cao
Metals 2021, 11(1), 77; https://doi.org/10.3390/met11010077 - 1 Jan 2021
Cited by 8 | Viewed by 2805
Abstract
2219 aluminum alloy is a kind of high-strength Al-Cu-Mn alloy that can be strengthened by heat treatment. Its mechanical property parameters and forming properties are greatly affected by the deformation rate, temperature and strain. Taking 2219 aluminum alloy extruded bar as the research [...] Read more.
2219 aluminum alloy is a kind of high-strength Al-Cu-Mn alloy that can be strengthened by heat treatment. Its mechanical property parameters and forming properties are greatly affected by the deformation rate, temperature and strain. Taking 2219 aluminum alloy extruded bar as the research object, the Gleeble-3500 thermomechanical simulator was used to analyze the thermal compression deformation behavior of 2219 aluminum alloy under different temperatures and strain rates. The results show that the deformation behavior of 2219 aluminum alloy under high temperatures is greatly influenced by the deformation temperature and strain rate, and the flow stress is the result of high-temperature softening, strain hardening and deformation rate hardening. According to the experiment results, the Arrhenius constitutive model and the exponential constitutive model considering the influence of temperature and strain rate, respectively, were established, and the predicted results of the two constitutive models were in good agreement with the test results. On this basis, the processing map of 2219 aluminum alloy was established. Under the same strain rate condition with an increase of the deformation temperature, the power dissipation efficiency increases gradually, and the driving force of 2219 aluminum alloy to change its microstructure increases gradually. At the same deformation temperature, the lower the strain rate, the less possibility of plastic instability. Full article
Show Figures

Figure 1

16 pages, 7789 KiB  
Article
Static Softening Behavior and Modified Kinetics of Al 2219 Alloy Based on a Double-Pass Hot Compression Test
by Lei Liu, Yunxin Wu, Hai Gong, Abdulrahaman Shuaibu Ahmad, Fang Dong and Huamin Yu
Materials 2020, 13(17), 3862; https://doi.org/10.3390/ma13173862 - 1 Sep 2020
Cited by 5 | Viewed by 2602
Abstract
In this paper, the static softening mechanism of a 2219 aluminum alloy was studied based on a double-pass isothermal compression test. For the experiment, different temperatures (623 K, 723 K, and 773 K), strain rates (0.1/s, 1/s, and 10/s), deformation ratios (20%, 30%, [...] Read more.
In this paper, the static softening mechanism of a 2219 aluminum alloy was studied based on a double-pass isothermal compression test. For the experiment, different temperatures (623 K, 723 K, and 773 K), strain rates (0.1/s, 1/s, and 10/s), deformation ratios (20%, 30%, and 40%), and insulation periods (5 s, 30 s, and 60 s) were used. Based on the double-pass flow stress curves obtained from the experiment, the step rate expressed by the equivalent dynamic recrystallization fraction is dependent on the deformation parameters, which increases with the increase in strain rate and insulation time, while it decreases with the increase in temperature and strain. Based on the microstructure observed using electron backscattered diffraction (EBSD), the static softening mechanism of the Al 2219 alloy is mainly static recovery and incomplete static recrystallization. A new expression for the static recrystallization fraction is proposed using the reduction rate of the sub-grain boundary. The dependent rule on the deformation parameters is consistent with the step rate, but it is of physical significance. In addition, the modified static recrystallization kinetics established by the new SRX fraction method was proven to have a good modeling and prediction performance under given deformation conditions. Full article
(This article belongs to the Special Issue Modeling of Materials Manufacturing Processes)
Show Figures

Figure 1

16 pages, 8766 KiB  
Article
Evolution of the Second-Phase Particles and Their Effect on Tensile Fracture Behavior of 2219 Al-xCu Alloys
by Daofen Xu, Kanghua Chen, Yunqiang Chen and Songyi Chen
Metals 2020, 10(2), 197; https://doi.org/10.3390/met10020197 - 29 Jan 2020
Cited by 25 | Viewed by 5474
Abstract
In this study, the continuous evolution of the second-phase particles across as-cast, homogenization, multi-directional forging (MDF), and solution-aging treatment and their effect on tensile fracture behavior of 2219 aluminum alloys with different Cu contents was examined by optical microscopy (OM), scanning electron microscopy [...] Read more.
In this study, the continuous evolution of the second-phase particles across as-cast, homogenization, multi-directional forging (MDF), and solution-aging treatment and their effect on tensile fracture behavior of 2219 aluminum alloys with different Cu contents was examined by optical microscopy (OM), scanning electron microscopy (SEM), and tensile tests. The results showed that the microstructure of as-cast 2219 aluminum alloy consisted of the α-Al matrix, Al2Cu coarse phase, and Fe-rich impurity phase. Severe segregation of Cu existed, and eutectic networks can be observed in the ingot. With an increase in Cu content, the eutectic networks became coarsen and thicker. During the complex improved process, the refinement mechanisms were fragmentation, dissolution, and diffusion of Al2Cu particles. Most fine Al2Cu particles were fully dissolved into the matrix and partial coarse particles were still retained after solution-aging treatment. Thus, the elongations of all the samples, undergoing solution treatment followed by water quenching, increased evidently. Then, the elongations decreased slightly due to the increase of precipitates. The fractography analysis of peak aged condition samples indicated that the fracture mode was diverted from a typical inter-granular fracture to a mainly trans-granular fracture with increase in Cu content from 5.56% to 6.52%. Fracture initiation mainly occurred by original microcrack propagation and microvoid nucleation at the coarse constituents. Full article
Show Figures

Figure 1

15 pages, 4066 KiB  
Article
Residual Stress Relief in 2219 Aluminium Alloy Ring Using Roll-Bending
by Hai Gong, Xiaoliang Sun, Yaoqiong Liu, Yunxin Wu, Yanan Wang and Yanjie Sun
Materials 2020, 13(1), 105; https://doi.org/10.3390/ma13010105 - 24 Dec 2019
Cited by 17 | Viewed by 3689
Abstract
Relieving the residual stress in components is essential to improve their service performance. In this study, a roll-bending process was proposed to reduce the quenching residual stress in a large-size 2219 Al alloy ring. The roll-bending effect on quenching residual stress was evaluated [...] Read more.
Relieving the residual stress in components is essential to improve their service performance. In this study, a roll-bending process was proposed to reduce the quenching residual stress in a large-size 2219 Al alloy ring. The roll-bending effect on quenching residual stress was evaluated via the finite element method (FEM) combined with experiment. The effect of radial feed quantity, friction coefficient, and roller rotational speed during the roll-bending process on quenching residual stress was analyzed. A set of optimized roll-bending parameters with radial feed quantity, friction coefficient, and roller rotational speed was obtained. The results reveal that the best reduction rates of circumferential and axial residual stress reached 61.72% and 86.24%, respectively. Furthermore, the difference of the residual stress reduction effect between the roll-bended ring and the three-roller bended beam was analyzed. Full article
Show Figures

Figure 1

Back to TopTop