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Abstract: This work was focused on studying the possibility of increasing the strength of non-heat-
treatable sheet alloy Al2Cu1.5Mn (wt.%) by the joint addition of 1% Mg and 1% Zn. The effect of these
elements on the structure and mechanical properties of the new sheet Al2Cu1.5Mn alloy designed for
Al20Cu2Mn3 dispersoids has been studied by calculations and experimental methods. The obtained
data on the phase composition, microstructure, and physical and mechanical properties of the new
alloy for different processing routes (including hot rolling, cold rolling, and annealing) have been
compared with those for the ternary Mg- and Zn-free alloy. It has been shown that the formation of
nanosized Al20Cu2Mn3 dispersoids (~7 vol.%) provides for the preservation of the non-recrystallized
grain structure after annealing at up to 400 ◦C (3 h), while Mg and Zn have a positive effect on the
strength due to the formation of alloyed aluminum solid solution. As a result, cold-rolled sheets of the
Al2Cu1.5Mn1Mg1Zn model alloy showed a substantially higher strength performance after annealing
at 400 ◦C in comparison with the ternary reference alloy. In particular, the UTS is ~360 vs. ~300 MPa,
and the YS is 280 vs. 230 MPa. For the example of the Al2Cu1.5Mn1Mg1Zn model alloy, it has been
shown that the system is promising for designing new heat-resistant alloys as a sustainable alternative
to the 2xxx alloys. The new alloy has an advantage over the commercial alloys (particularly, 2219,
2024, 2014), not only in manufacturability but also in thermal stability. The sheet production cycle for
the model alloy is much shorter because the stages of homogenization, solution treatment, and water
quenching are excluded.

Keywords: Al–Cu–Mn–Mg–Zn system; structure evolution; phase composition; annealing; Al20Cu2Mn3

dispersoids; mechanical properties; thermal stability

1. Introduction

Nowadays, aluminum ranks second in the world in terms of consumption among all
metals, being second only to steel. In the coming decades, the demand for aluminum will
continue to grow [1–3]. The latest developments in the automotive industry and the rapid
growth of cities and other application domains of aluminum as a replacement for copper in
electrical conductors will inevitably lead to an increase in aluminum consumption [4–7].

The use of aluminum alloys, in particular wrought ones, as a structural material has
increased in recent years due to its manufacturability, high specific strength, significant
ductility, excellent thermal conductivity, and attractive appearance [8–11]. Structural
aluminum alloys are also recyclable, thus reducing carbon dioxide emissions [9,12–15].
Popular construction aluminum-based materials are 2xxx grade alloys, but homogenization
annealing of ingot, heating the semi-finished wrought products up to 500–540 ◦C for
solutionizing treatment followed by water quenching, and aging are required for the
production of items from them [16–19]. Thus, the manufacturing routine for obtaining
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wrought semi-finished products is quite complex and requires special industrial equipment,
which makes the final product expensive [20,21]

To reduce the cost of deformed semi-finished products, it is advisable to simplify and
shorten the technological cycle of their production as much as possible [22–24], in particular,
using alloys that do not require quenching (so-called non-heat treatable alloys). New alloys
containing 1.5–2% Cu and 1.5–2% Mn [25–28] (hereinafter, wt%, unless otherwise indicated)
were proposed as an alternative to branded heat-treatable alloys of the 2xxx series. Such
alloys do not require homogenization and quenching, and hardening is achieved due to
the formation of Al20Cu2Mn3 dispersoids during annealing. These dispersoids provide
higher thermal stability compared to grade alloys [29–31]. It was also shown [25] that the
Al-2%Cu-2%Mn model alloy obtained in the form of cold-rolled sheets has higher thermal
stability and better processability for slab rolling as compared to the AA2219 grade alloy.
The proposed alloys have a tensile strength of about 300 MPa in the as-annealed state.

It was shown [32] that the presence of iron and silicon, which are the main impurities
in aluminum alloys, in an amount of up to 0.5–0.6%, reduces the mechanical properties of
the base model alloy, but only slightly. This provides the possibility of using secondary raw
materials in preparation (in particular, canned scrap) contaminated with these elements.
Since secondary raw materials, in addition to iron and silicon, also contain other impurities,
in particular, magnesium and zinc (the main elements in the 5xxx and 7xxx series alloys),
due account for the influence of these elements requires special attention. Therefore, the
aim of this work was to study the effect of the joint introduction of 1% Mg and 1% Zn
addition on the structure, phase composition, and mechanical properties of the non-heat
treatable Al-2%Cu-1.5%Mn base wrought alloy. It is shown that Mg and Zn have a positive
effect on the strength and heat resistance of the alloy. As a result, cold-rolled sheets of the
new Al2Cu1.5Mn1Mg1Zn model alloy showed a substantially higher strength performance
after annealing at 350–400 ◦C in comparison with the ternary reference Al2Cu1.5Mn alloy
or industrial 2219 type alloys.

2. Experimental

The main test materials of this study were 2 model alloys containing 2%Cu and
1.5%Mn: the base reference alloy (hereinafter referred to as 0Mg0Zn) and the alloy contain-
ing 1%Mg and 1%Zn (hereinafter referred to as 1Mg1Zn). The composition of the 1Mg1Zn
alloy was chosen according to the isothermal section of the Al–Cu–Mn–Mg–Zn system
calculated at 2%Cu, 1.5%Mn, and 400 ◦C (Figure 1).

The alloys were melted in a resistance furnace (GRAFICARBO) using a graphite-
chased crucible. To obtain the selected composition, we used pure metals (99.85% alu-
minum, 99.9% copper, 99.9% magnesium, 99.9% zinc, and Al–10%Mn master alloy. When
the material batch had melted, we held it for about 10 min for homogenization and then
poured it into a flat graphite mold 10 mm× 40 mm × 180 mm in size at 750 ◦C. The cooling
rate during solidification was approximately 20 K/s. The chemical composition of the
experimental alloys according to spectral analysis (Oxford Instruments, Oxfordshire, UK)
is given in Table 1. It can be seen that the actual compositions were close to the target ones.

Table 1. Chemical compositions of experimental alloys.

Alloy Designation
Concentration, wt.%

Cu Mn Mg Zn Fe Si

0Mg0Zn 2.06 1.46 0.03 0.03 0.11 0.08 balance

1Mg1Zn 2.07 1.44 1.02 1.11 0.12 0.08 balance

Ingots of experimental alloys were subjected to hot rolling at 400 ◦C. Before rolling,
the ingots were annealed at 400 ◦C and held for 1 h. Then, the ingots were rolled to a
thickness of 2 mm (compression ratio of 80%). Then, the hot-rolled sheets were annealed
at 350 ◦C for 3 h, and then cold-rolled to a thickness of 0.5 mm (compression ratio 75%).
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The cold-rolled sheet products were prepared using a laboratory-scale rolling mill machine
(Chinetti LM160). To evaluate the effect of annealing on the structure and hardness, the
semi-finished products were further subjected to stepwise annealing in accordance with
the processing route shown in Table 2.
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with marked experimental alloys.

Table 2. Processing routes for experimental alloys.

Process Obtained Product Designation

Casting Ingot 10 mm × 40 mm × 180 mm F

Hot rolling (at 400 ◦C) of the foundry ingot (10 mm × 40 mm × 180 mm) Sheet 2 mm in thickness HR

HR + 300 ◦C, 3 h

Annealed hot rolled sheet

HR300

HR300 + 350 ◦C, 3 h HR350

HR350 + 400 ◦C, 3 h HR400

HR400 + 450 ◦C, 3 h HR450

HR450 + 500 ◦C, 3 h HR500

Cold rolling of the rolled sheet (from HR350, sheet 0.5 mm) Sheet 0.5 mm in thickness CR

CR + 350 ◦C, 3 h
Annealed cold rolled sheet

CR350

CR + 400 ◦C, 3 h CR400

The microstructure was examined by optical microscopy (OM, Axio Observer MAT),
transmission electron microscopy (TEM, JEM-2100), scanning electron microscopy (SEM,
TESCAN VEGA 3), and electron microprobe analysis (EMPA, OXFORD AZtec). The
samples were prepared using mechanical and electrolytic polishing. Electrolytic polishing
was carried out at a voltage of 12 V in an electrolyte (6 C2H5OH, 1 HClO4, and 1 glycerine).
Initial microstructural observations were carried out using OM, and detailed studies were
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then performed using SEM and TEM. Thin foils for TEM were prepared by ion thinning
with the PIPS technique (Precision Ion Polishing System, Gatan, Pleasanton, USA) and
studied at 160 kV. X-ray diffraction (XRD) data were obtained using CuKα radiation and
treated with a software package [33]. The objects of the XRD study were polished samples
of the 0Mg0Zn and 1Mg1Zn alloys cut from part of the cold-rolled sheets in the state CR400
(Table 2).

The Vickers hardness (HV) was measured using a DUROLINE MH-6 setup (METKON
Instruments, Bursa, TURKEY) with a load of 1 kg and a dwell time of 10 s. At least five
measurements were performed for each sample. The specific electrical conductivity (EC) of
the ingots and hot-rolled sheets (2 mm) was determined using the eddy current method
with a VE-26NP eddy structure scope. Room-temperature tensile tests were conducted
for the cold-rolled sheets (0.5 mm) using an Instron 5966 machine. The loading rate was
10 mm/min.

The phase composition of the Al–Cu–Mn–Mg–Zn (Fe,Si) system (isothermal sections,
fractions of phases, and (Al) composition in the experimental alloys) was calculated using
Thermo-Calc software (TTAL5 database [34].

3. Experimental Results
3.1. Phase Composition and Microstructure of the Ingots

The existence of a tiny quantity of Cu-containing phase crystals created as a result of
nonequilibrium solidification is a common feature of the alloys’ as-cast structures. These
crystals are located along the boundaries of the dendritic cells in the primary crystals of the
aluminum solid solution (hereinafter (Al)). In the reference alloy, they are represented by
the Al2Cu phase (Figure 2a), and in the 1Mg1Zn alloy, by the Al2CuMg phase (Figure 2b). In
addition, a small amount of Fe-containing phase crystals is present in the as-cast structure
due to the presence of iron impurities in primary aluminum used for alloy preparation
(Table 1). According to the EDS data, they are identified as Al15(Mn,Fe)3Si2 in the base alloy
(Figure 2a), and as Al6(Mn,Fe) in the 1Mg1Zn alloy (Figure 2b). Almost the entire amount
of manganese in both alloys is in (Al). Zinc (in the 1Mg1Zn alloy) is completely dissolved
in (Al), while magnesium and copper are partially dissolved (because they form eutectic
particles of the Al2Cu and Al2CuMg phases). In general, the microstructure of the alloy
with magnesium and zinc additions differs but only a little from the microstructure of the
base alloy, the ingots of which, as was shown earlier [26–28,32], have a sufficiently high
deformation processability.

3.2. Microstructure and Phase Composition of Hot-Rolled Sheets

Sheets of the alloys were obtained by hot rolling. Analysis of the microstructure of
the hot-rolled sheets showed that the particles of Fe-containing phases formed during
casting (Figure 2) and were preserved after rolling (Figure 3) due to the low solubility of
iron in (Al). The number of Al2Cu and Al2CuMg particles somewhat decreased, since
magnesium and copper partially dissolved in (Al) during heating at 400 ◦C (before and
during rolling). In addition, heating at this temperature led to both partial decomposition
of (Al) and the formation of Al20Cu2Mn3 phase dispersoids, the size of which, according
to [26–28,32], does not exceed 100 nm, and therefore they cannot be detected in Figure 3.
Annealing of the hot-rolled sheets at 300 ◦C and 350 ◦C had almost no effect on their
structure. After 3 h of annealing at 400 ◦C (state HR400, see Table 2), almost complete
dissolution of copper, magnesium, and zinc (the last two elements in the 1Mg1Zn alloy)
took place. XRD analysis confirms the presence of the Al20Cu2Mn3 compound in both
alloys in about the same quantity (Figure 4). With an increase in the annealing temperature
to 500 ◦C, the phase composition of the alloys did not change qualitatively; however, the
Al20Cu2Mn3 dispersoids coarsened. Therefore, the latter is detected in the structure by the
SEM method, which is shown in Figure 5.
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3.3. Hardness and Electrical Resistivity of Hot-Rolled Sheets

As can be seen from Figure 6a, magnesium and zinc additions have a hardening effect
for all states of the processed alloy. The greatest difference in the hardness compared to the
reference alloy is observed in the as-cast state (~20 HV). After hot rolling, it decreases to
13 HV, and after annealing at 300 ◦C to 7 HV. As the annealing temperature increases, the
difference in the hardness values starts to increase, reaching 16 HV in the HR500 condition.
The reason for the increase in hardness in the 1Mg1Zn alloy is explained in the Discussion
section, where it is shown that the obtained result is due to the solid solution hardening.

Changes in the EC value agree well with the changes occurring in the microstructure,
i.e., primarily dissolution and precipitation. Since manganese has the strongest influence
on the EC, the difference between the alloys in the EC is smaller than the difference in the
hardness. It can be seen from Figure 6b that both alloys have the lowest EC values in the
as-cast state, since all the manganese is in (Al). After hot rolling and subsequent annealing
at up to 450 ◦C inclusively, the concentration of Mn in (Al) decreases, and the EC values
increase accordingly. The decrease in the EC in the HR500 state is caused by an increase
in the concentration of Mn in (Al) at an elevated annealing temperature. The latter fact is
consistent with previous studies of the Al–Cu–Mn alloys [26–28,32].

3.4. SEM and TEM Structure of Cold-Rolled Sheets

Taking into account that in order to increase the strength properties, it is necessary
to obtain a minimum size of the Al20Cu2Mn3 phase dispersoids (preferably not larger
than 100 nm [26–28,32]), the initial hot-rolled sheets were preliminarily annealed at 350 ◦C
for 3 h before cold rolling. This annealing proved to be sufficient to obtain high-quality
cold-rolled sheets with a thickness of 0.5 mm (compression ratio 75%). Since inclusions of
eutectic Cu-containing particles still remain in the structure of the hot-rolled sheets, they are
detected in the structure after cold rolling along with the Fe-containing phases (Figure 7a,b).
In this case, the morphology of these particles is improved due to their fragmentation
during deformation. Figure 7c,d illustrate that both alloys, after annealing at 400 ◦C, have
a non-recrystallized structure.
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Cold rolling leads to an increase in the dislocation density and the formation of
a cell structure, which can be seen in the example of the 1Mg1Zn alloy in Figure 8a.
Dispersoids of the Al20Cu2Mn3 phase with a size not exceeding 100 nm (Figure 8b) are
also detected. Annealing at 350 ◦C leads to the formation of subgrains about 1 µm in
size with partial preservation of the cell dislocation structure (Figure 8c). The amount of
Al20Cu2Mn3 dispersoids increases, and they are more clearly detected (Figure 8d). After
annealing at 400 ◦C, a completely non-recrystallized structure is preserved in both alloys
(Figure 7c,d). The subgrain size in the 1Mg1Zn alloy remains at about 1 µm (Figure 8e),
the dislocation density still being quite high in some regions (Figure 8f). The size of
most dispersoids remains at less than 100 nm, with only a few of them growing up to
150–200 nm (Figure 8g). Obviously, Al20Cu2Mn3 disperoids prevent recrystallization and
subgrain growth (Figure 8h).
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3.5. Mechanical Properties of Cold-Rolled Sheets

Table 3 presents the results of tensile testing of cold-formed sheets in the initial state
(CR) and after single-stage 3-h annealing at 350 ◦C (CR350) and 400 ◦C (CR400). It can
be seen from the results that magnesium and zinc addition in the CR state significantly
increases the tensile strength and yield strength, while the elongation remains at the same
low level as for the base alloy. However, the CR350 and CR400 states in which a relatively
stable structure is formed are more indicative. Annealing reduces the strength and increases
the ductility of both alloys; however, the degree of change varies greatly. The strength
properties of the 1Mg1Zn alloy are approximately 15% higher than those in the base alloy
with close plasticity (examples of engineering stress–strain curves are given in Figure 9).
Since there is almost no difference in the mechanical properties between the CR350 and
CR400 states, the latter seems to be preferable since it exhibits a greater stabilization of
the structure.

Table 3. Mechanical properties of cold rolled sheets (0.5 mm).

Alloy 1 Heat Treatment Process 2 HV, MPa UTS, MPa YS, MPa El, %

0Mg0Zn

CR 102.4 345 339 0.6

CR350 84.4 297 238 4.8

CR400 84.2 304 231 7.1

1Mg1Zn

CR 122.9 422 417 1.6

CR350 96.1 346 279 5.5

CR400 100.6 358 280 6.0

Average deviations 1.5 8 4 0.5
1 See in Table 1, 2 see in Table 2.
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Fracture surface analysis of the alloys showed a dimple structure both in the initial
and as-annealed states (Figure 10). However, the number of dimples in the as-annealed
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state (Figure 10c,d) is much larger, and their size is smaller, which is obviously associated
with a greater deformation before fracture.
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4. Discussion

The experimental results show that the joint addition of 1%Mg and 1%Zn to the base
alloy significantly increases the UTS and YS of the cold-rolled sheets annealed at 400 ◦C
(Figure 11). At the same time, the plasticity decreases, but only a little. To explain this effect,
we analyzed the differences in the structure and phase composition between the 0Mg0Zn
and 1Mg1Zn alloys.

Previous studies of the related Al–Cu–Mn alloys [25] suggest that annealing at 400 ◦C
or higher makes it possible to obtain a close-to-equilibrium state. Calculations of the
equilibrium phase composition were carried out for the test alloys (the iron impurity was
not taken into account). As can be seen from Table 4, the amount of the Al20Cu2Mn3 phase
in all the alloys is approximately the same (about 6.5 wt.%). It follows from this fact that
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magnesium and zinc addition should not affect the number of nanosized dispersoids of this
ternary compound, which are formed during the deformation heat treatment and determine
the strength and heat resistance of the base alloy [25]. According to the calculations,
magnesium and zinc in the 1Mg1Zn alloy are completely dissolved in (Al) at 400 ◦C or
higher temperatures (Table 5). This is the main difference in the phase composition between
the 0Mg0Zn and 1Mg1Zn alloys.

Table 4. Calculated fractions of phases for experimental alloys at various temperatures.

Alloy 1 T, ◦C Fractions of Precipitates, wt.%

Al20 Al15 Al2Cu Mg2Si S (Al)

0Mg0Zn 350 6.63 0.99 0.45 – – balance

400 6.55 0.95 – – – balance

450 6.25 0.92 – – – balance

1Mg1Zn 350 6.66 0.94 – 0.04 1.30 balance

400 6.51 0.97 – 0.02 0.15 balance

450 6.18 0.99 – – – balance
1 See in Table 1.
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Table 5. Calculated composition of aluminum solid solution for experimental alloys at various
temperatures.

Alloy 1 T, ◦C Concentration in (Al), wt.%

Cu Mn Mg Zn Si Fe

0Mg0Zn 350 0.87 0.02 0.03 0.03 <0.01 <0.01

400 1.14 0.06 0.03 0.03 0.01 <0.01

450 1.19 0.13 0.03 0.03 0.01 <0.01

1Mg1Zn 350 0.51 0.04 0.85 1.21 <0.01 <0.01

400 1.09 0.05 1.07 1.20 <0.01 <0.01

450 1.21 0.12 1.10 1.20 0.01 <0.01
1 See in Table 1.

Assuming that different strengthening mechanisms, such as solid solution strengthen-
ing (σss), grain boundary strengthening (σgb), dislocations strengthening (σρ), and second
phase strengthening (σpp) have independent contributions in the YS of the alloy, the latter
can be calculated as follows [35]:

YS = σ0 + σss + σgb + σpp, (1)

The base yield strength, σ0 (~20 MPa).
The solid solution strengthening σss caused by Zn and Mg can be determined as

follows [36]:
σss = kiCi

2/3, (2)

where ki is the coefficient describing the effect of atomic solute on solid solution strengthen-
ing; the corresponding strengthening coefficients of Zn, Mg, and Cu are 3.085, 20.081, and
12.431, respectively [37]; Ci is the weight percentage of atomic solute in the matrix. Taking
into account that for the 1Mg1Zn alloy in question CZn = 1.20 wt.%, CMg = 1.07 wt.%, and
Ccu = 1.09 wt.% (Table 5), σssZn is ~3.5 MPa, σssMg is ~21 MPa, σssCu is ~13.1 MPa, and the
total σss is ~37.6.

The contribution of grain boundary strengthening to the YS can be calculated using
the Hall–Patch equation which can be expressed as [38].

σgb = σ0 + kD−1/2, (3)

where σ0 is the intrinsic resistance of the lattice to dislocation motion, which is approx-
imately 20 MPa for most aluminum alloys; k = 0.14 MPa·m1/2 is the Hall–Petch coeffi-
cient [38], and D is the average grain or sub-grain sizes. From the structural analysis data,
the average size of sub-grain boundaries is 0.45 µm (Figure 8). From the latter fact, the
value of σgb is ~228 MPa.

The strengthening effect caused by the Al20 phase can be assessed using the fol-
lowing modified Orowan equations for rod-like particles of diameter Dr and length
lr (>>Dr) [39,40]:

σpp = 0.15G
b

Dr

(
fv

1
2 + 1.84 fv + 1.84 fv

3
2

)
ln

1.316Dr

r0
(4)

where G = 25.4 GPa is the shear modulus; b = 0.286 nm is the Burgers vector; fv is the
volume fraction of the dispersed phase; Dr is the rod diameter (according to metallographic
analysis, Dr is 40 nm); and r0 is the inner cut-off radius for the calculation of the dislocation
line tension. According to the aforementioned calculation (Equation (4)), the increase in the
yield strength is 10.5 MPa.

According to the calculations, the total value of the YS is 296 MPa, which is quite close
to the experimental data of 280 MPa (taking into account the measurement error, Figure 12).
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According to Table 3, the difference in the YS between the 0Mg0Zn and 1Mg1Zn alloys
is about 42 MPa, which is very close to the calculated data of solid solution hardening:
σss is ~37.6 MPa. Thus, the results show that the addition of 1% magnesium and zinc to
the base alloy can be considered a promising method of increasing the strength of rolled
sheets while maintaining the main advantage, namely, the exclusion of homogenization
and quenching operations from the process route.
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The experimental results show that despite both the commercial (2xxx) and experi-
mental alloys having the same alloying system (Al–Cu–Mn(–Mg)), their properties and
microstructure constitutions are very different. This circumstance stems from the fact that
the commercial alloys were designed for a maximum number of precipitates forming at
aging [41,42], while the model alloy Al2Cu1.5Mn1Mg1Zn provides a high fraction (much
higher than those for the commercial alloys) of Al20Cu2Mn3 dispersoids.

Recently, several works were published where authors argued that the increase in
the thermal stability of the 2xxx alloys is possible via microalloying with Ag [43], Sc,
and Zr [44–46]. Although this way can lead to some increase in heat resistance through
stabilization of the θ′ phase, it is limited in terms of temperature. For instance, work [45]
studied the influence of Sc and Zr micro additions on the high-temperature strength of the
AA2219-type composition. However, no temperatures higher than 280 ◦C are considered in
this study. Moreover, the high cost of Sc limits the wide industrial application of such alloys.

From the data obtained, one can conclude that the Al2Cu1.5Mn1Mg1Zn-based model
alloy is very promising for the designing of new wrought heat-resistant aluminum alloys.
The new alloy is notably superior to commercial ones (particularly, 2219, 2024, 2014)
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in thermal stability (toward softening at heating up to 400 ◦C) and provides a much
shorter technological routine (the stages of homogenization, solution treatment, and water
quenching are excluded) to obtain the wrought products. In addition, the new alloys can
be prepared from secondary raw materials containing a typical set of elements (i.e., Cu, Mg,
Zn, Mn, Fe, and Si) [32].

5. Summary

Sheet model alloys Al2Cu1.5Mn and Al2Cu1.5Mn1Mg1Zn (wt.%) designed for Al20Cu2Mn3
dispersoids were compared in phase composition, microstructure, and mechanical prop-
erties after different processing routes (including hot rolling, cold rolling, and annealing).
The conclusions are shown in the following points:

1. It was shown using calculation and experimental methods that the alloys contain ap-
proximately equal volume fractions (~7 vol.%) of Al20Cu2Mn3 dispersoids after annealing
at 350–450 ◦C. The main difference between them is in the composition of the aluminum
solid solution (Al), because Mg and Zn are almost fully dissolved in (Al);

2. The formation of nanosized Al20Cu2Mn3 dispersoids was found to provide for the
preservation of the fiber-like (non-recrystallized) grain structure after annealing at up to
400 ◦C for (3 h), despite a high cold-rolling reduction ratio (80%);

3. The Al2Cu1.5Mn1Mg1Zn model alloy showed a substantially higher strength
performance after annealing at 400 ◦C in comparison with the reference ternary alloy. In
particular, the UTS is ~360 vs. ~300 MPa, and the YS is 280 vs. 230 MPa. This indicates a
positive effect of Mg and Zn dissolved in (Al) on the strength;

4. Summing up the results, the Al2Cu1.5Mn1Mg1Zn model alloy shows potential
to become the basis for designing new high-tech heat-resistant alloys as a sustainable
alternative to the 2xxx alloys.
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