Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = Ackermannviridae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9892 KiB  
Article
Isolation and Characterization of Novel Escherichia coli O157:H7 Phage SPEC13 as a Therapeutic Agent for E. coli Infections In Vitro and In Vivo
by Md. Sharifull Islam, Jie Fan, Md Suzauddula, Ishatur Nime and Fan Pan
Biomedicines 2024, 12(9), 2036; https://doi.org/10.3390/biomedicines12092036 - 6 Sep 2024
Cited by 2 | Viewed by 3656
Abstract
Escherichia coli O157:H7 is a recognized food-borne pathogen causing severe food poisoning at low doses. Bacteriophages (phages) are FDA-approved for use in food and are suggested as natural preservatives against specific pathogens. A novel phage must be identified and studied to develop a [...] Read more.
Escherichia coli O157:H7 is a recognized food-borne pathogen causing severe food poisoning at low doses. Bacteriophages (phages) are FDA-approved for use in food and are suggested as natural preservatives against specific pathogens. A novel phage must be identified and studied to develop a new natural preservative or antimicrobial agent against E. coli O157:H7. The phage SPEC13 displayed broad host range and was classified within the Ackermannviridae family based on its observed characteristics by a TEM and genome analysis. In 10 min, this phage achieves a remarkable 93% adsorption rate with the host. Its latency period then lasts about 20 min, after which it bursts, releasing an average of 139 ± 3 PFU/cell. It exhibited robustness within a pH range of 4 to 12, indicating resilience under diverse environmental circumstances. Furthermore, SPEC13 demonstrated stability at an ambient temperature up to 60 °C. A whole genome and phylogenetics analysis revealed that SPEC13 is a novel identified phage, lacking a lysogenic life cycle, antibiotic resistance genes, or genes associated with virulence, thereby presenting a promising biological agent for therapeutic application. Animal studies showed that SPEC13 effectively controlled the growth of harmful bacteria, resulting in a significant improvement in colon health, marked by reduced swelling (edema) and tissue damage (mucosal injury). The introduction of SPEC13 resulted in a substantial decrease in quantities of E. coli O157:H7, reducing the bacterial load to approximately 5 log CFU/g of feces. In conclusion, SPEC13 emerges as a promising inclusion in the array of phage therapy, offering a targeted and efficient approach for addressing bacterial infections. Full article
(This article belongs to the Special Issue Drug-Resistant Bacterial Infections and Alternative Therapies)
Show Figures

Figure 1

15 pages, 2355 KiB  
Article
Engineering of Salmonella Phages into Novel Antimicrobial Tailocins
by Cedric Woudstra, Anders Nørgaard Sørensen and Lone Brøndsted
Cells 2023, 12(22), 2637; https://doi.org/10.3390/cells12222637 - 16 Nov 2023
Cited by 5 | Viewed by 2690
Abstract
Due to the extensive use of antibiotics, the increase of infections caused by antibiotic-resistant bacteria is now a global health concern. Phages have proven useful for treating bacterial infections and represent a promising alternative or complement to antibiotic treatment. Yet, other alternatives exist, [...] Read more.
Due to the extensive use of antibiotics, the increase of infections caused by antibiotic-resistant bacteria is now a global health concern. Phages have proven useful for treating bacterial infections and represent a promising alternative or complement to antibiotic treatment. Yet, other alternatives exist, such as bacteria-produced non-replicative protein complexes that can kill their targeted bacteria by puncturing their membrane (Tailocins). To expand the repertoire of Tailocins available, we suggest a new approach that transforms phages into Tailocins. Here, we genetically engineered the virulent Ackermannviridae phage S117, as well as temperate phages Fels-1, -2 and Gifsy-1 and -2, targeting the food pathogen Salmonella, by deleting the portal vertex or major capsid gene using CRISPR-Cas9. We report the production of Tailocin particles from engineered virulent and temperate phages able to kill their native host. Our work represents a steppingstone that taps into the huge diversity of phages and transforms them into versatile puncturing new antimicrobials. Full article
(This article belongs to the Special Issue Bacteriophages and Their Enzymes as Antibacterial Agents)
Show Figures

Figure 1

17 pages, 2327 KiB  
Article
SW16-7, a Novel Ackermannviridae Bacteriophage with Highly Effective Lytic Activity Targets Salmonella enterica Serovar Weltevreden
by Jialiang Xu, Jia Li, Yi Yan, Pengjun Han, Yigang Tong and Xu Li
Microorganisms 2023, 11(8), 2090; https://doi.org/10.3390/microorganisms11082090 - 15 Aug 2023
Cited by 3 | Viewed by 1853
Abstract
Salmonella enterica serovar Weltevreden is a foodborne pathogen commonly transmitted through fresh vegetables and seafood. In this study, a lytic phage, SW16-7, was isolated from medical sewage, demonstrating high infectivity against S. Weltevreden, S. London, S. Meleagridis, and S. Give [...] Read more.
Salmonella enterica serovar Weltevreden is a foodborne pathogen commonly transmitted through fresh vegetables and seafood. In this study, a lytic phage, SW16-7, was isolated from medical sewage, demonstrating high infectivity against S. Weltevreden, S. London, S. Meleagridis, and S. Give of Group O:3. In vitro inhibition assays revealed its effective antibacterial effect for up to 12 h. Moreover, analysis using the Comprehensive Antibiotic Resistance Database (CARD) and the Virulence Factor Database (VFDB) showed that SW16-7’s genome does not contain any virulence factors or antibiotic resistance genes, indicating its potential as a promising biocontrol agent against S. Weltevreden. Additionally, a TSP gene cluster was identified in SW16-7’s genome, with TSP1 and TSP2 showing a high similarity to lysogenic phages ε15 and ε34, respectively, in the C-terminal region. The whole-genome phylogenetic analysis classified SW16-7 within the Ackermannviridae family and indicated a close relationship with Agtrevirus, which is consistent with the ANI results. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

11 pages, 4671 KiB  
Brief Report
Genomic Analysis of Two Novel Bacteriophages Infecting Acinetobacter beijerinckii and halotolerans Species
by Marta Gomes, Rita Domingues, Dann Turner and Hugo Oliveira
Viruses 2023, 15(3), 643; https://doi.org/10.3390/v15030643 - 28 Feb 2023
Cited by 3 | Viewed by 2529
Abstract
Bacteriophages are the most diverse genetic entities on Earth. In this study, two novel bacteriophages, nACB1 (Podoviridae morphotype) and nACB2 (Myoviridae morphotype), which infect Acinetobacter beijerinckii and Acinetobacter halotolerans, respectively, were isolated from sewage samples. The genome sequences of nACB1 [...] Read more.
Bacteriophages are the most diverse genetic entities on Earth. In this study, two novel bacteriophages, nACB1 (Podoviridae morphotype) and nACB2 (Myoviridae morphotype), which infect Acinetobacter beijerinckii and Acinetobacter halotolerans, respectively, were isolated from sewage samples. The genome sequences of nACB1 and nACB2 revealed that their genome sizes were 80,310 bp and 136,560 bp, respectively. Comparative analysis showed that both genomes are novel members of the Schitoviridae and the Ackermannviridae families, sharing ≤ 40% overall nucleotide identities with any other phages. Interestingly, among other genetic features, nACB1 encoded a very large RNA polymerase, while nACB2 displayed three putative depolymerases (two capsular depolymerases and one capsular esterase) encoded in tandem. This is the first report of phages infecting A. halotolerans and beijerinckii human pathogenic species. The findings regarding these two phages will allow us to further explore phage—Acinetobacter interactions and the genetic evolution for this group of phages. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

20 pages, 2196 KiB  
Article
Tailoring the Host Range of Ackermannviridae Bacteriophages through Chimeric Tailspike Proteins
by Jose Gil, John Paulson, Matthew Brown, Henriett Zahn, Minh M. Nguyen, Marcia Eisenberg and Stephen Erickson
Viruses 2023, 15(2), 286; https://doi.org/10.3390/v15020286 - 19 Jan 2023
Cited by 10 | Viewed by 3212
Abstract
Host range is a major determinant in the industrial utility of a bacteriophage. A model host range permits broad recognition across serovars of a target bacterium while avoiding cross-reactivity with commensal microbiota. Searching for a naturally occurring bacteriophage with ideal host ranges is [...] Read more.
Host range is a major determinant in the industrial utility of a bacteriophage. A model host range permits broad recognition across serovars of a target bacterium while avoiding cross-reactivity with commensal microbiota. Searching for a naturally occurring bacteriophage with ideal host ranges is challenging, time-consuming, and restrictive. To address this, SPTD1.NL, a previously published luciferase reporter bacteriophage for Salmonella, was used to investigate manipulation of host range through receptor-binding protein engineering. Similar to related members of the Ackermannviridae bacteriophage family, SPTD1.NL possessed a receptor-binding protein gene cluster encoding four tailspike proteins, TSP1-4. Investigation of the native gene cluster through chimeric proteins identified TSP3 as the tailspike protein responsible for Salmonella detection. Further analysis of chimeric phages revealed that TSP2 contributed off-target Citrobacter recognition, whereas TSP1 and TSP4 were not essential for activity against any known host. To improve the host range of SPTD1.NL, TSP1 and TSP2 were sequentially replaced with chimeric receptor-binding proteins targeting Salmonella. This engineered construct, called RBP-SPTD1-3, was a superior diagnostic reporter, sensitively detecting additional Salmonella serovars while also demonstrating improved specificity. For industrial applications, bacteriophages of the Ackermannviridae family are thus uniquely versatile and may be engineered with multiple chimeric receptor-binding proteins to achieve a custom-tailored host range. Full article
(This article belongs to the Special Issue Roles and Applications of Phages in the Food Industry and Agriculture)
Show Figures

Figure 1

18 pages, 2668 KiB  
Article
Isolation and Characterization of Two Lytic Bacteriophages Infecting a Multi-Drug Resistant Salmonella Typhimurium and Their Efficacy to Combat Salmonellosis in Ready-to-Use Foods
by Ahmed Esmael, Ehab Azab, Adil A. Gobouri, Mohamed A. Nasr-Eldin, Mahmoud M. A. Moustafa, Shereen A. Mohamed, Omnia A. M. Badr and Alzahraa M. Abdelatty
Microorganisms 2021, 9(2), 423; https://doi.org/10.3390/microorganisms9020423 - 18 Feb 2021
Cited by 57 | Viewed by 5615
Abstract
Foodborne salmonellosis is a global threat to public health. In the current study, we describe the isolation and characterization of two broad-spectrum, lytic Salmonella phages: SPHG1 and SPHG3 infecting a multidrug-resistant Salmonella Typhimurium EG.SmT3. Electron microscopy and whole genome analysis identified SPHG1 as [...] Read more.
Foodborne salmonellosis is a global threat to public health. In the current study, we describe the isolation and characterization of two broad-spectrum, lytic Salmonella phages: SPHG1 and SPHG3 infecting a multidrug-resistant Salmonella Typhimurium EG.SmT3. Electron microscopy and whole genome analysis identified SPHG1 as a Myovirus, while SPHG3 as a new member of the genus “Kuttervirus” within the family Ackermannviridae. SPHG1 and SPHG3 had a lysis time of 60 min. with burst sizes of 104 and 138 PFU/cell, respectively. The two phages were robust at variable temperatures and pH ranges that match the corresponding values of most of the food storage and processing conditions. A phage cocktail containing the two phages was stable in the tested food articles for up to 48 h. The application of the phage cocktail at MOIs of 1000 or 100 resulted in a significant reduction in the viable count of S. Typhimurium by 4.2 log10/sample in milk, water, and on chicken breast. Additionally, the phage cocktail showed a prospective ability to eradicate and reduce the biofilm that formed by S. Typhimurium EG.SmT3. A phage cocktail of SPHG1 and SPHG3 is considered as a promising candidate as a biocontrol agent against foodborne salmonellosis due to its broad host ranges, highly lytic activities, and the absence of any virulence or lysogeny-related genes in their genomes. Full article
(This article belongs to the Special Issue Antimicrobial Interventions for Raw and Processed Foods)
Show Figures

Figure 1

18 pages, 2775 KiB  
Article
Application of a Broad Range Lytic Phage LPST94 for Biological Control of Salmonella in Foods
by Md. Sharifull Islam, Yang Zhou, Lu Liang, Ishatur Nime, Ting Yan, Stephan P. Willias, Md. Zakaria Mia, Weicheng Bei, Ian F. Connerton, Vincent A. Fischetti and Jinquan Li
Microorganisms 2020, 8(2), 247; https://doi.org/10.3390/microorganisms8020247 - 13 Feb 2020
Cited by 60 | Viewed by 6245
Abstract
Salmonella, one of the most common food-borne pathogens, is a significant public health and economic burden worldwide. Lytic phages are viable alternatives to conventional technologies for pathogen biocontrol in food products. In this study, 40 Salmonella phages were isolated from environmentally sourced [...] Read more.
Salmonella, one of the most common food-borne pathogens, is a significant public health and economic burden worldwide. Lytic phages are viable alternatives to conventional technologies for pathogen biocontrol in food products. In this study, 40 Salmonella phages were isolated from environmentally sourced water samples. We characterized the lytic range against Salmonella and among all isolates, phage LPST94 showed the broadest lytic spectrum and the highest lytic activity. Electron microscopy and genome sequencing indicated that LPST94 belongs to the Ackermannviridae family. Further studies showed this phage is robust, tolerating a wide range of pH (4–12) and temperature (30–60 °C) over 60 min. The efficacy of phage LPST94 as a biological control agent was evaluated in various food products (milk, apple juice, chicken breast, and lettuce) inoculated with non-typhoidal Salmonella species at different temperatures. Interestingly, the anti-Salmonella efficacy of phage LPST94 was greater at 4 °C than 25 °C, although the efficacy varied between different food models. Adding phage LPST94 to Salmonella inoculated milk decreased the Salmonella count by 3 log10 CFU/mL at 4 °C and 0.84 to 2.56 log10 CFU/mL at 25 °C using an MOI of 1000 and 10000, respectively. In apple juice, chicken breast, and lettuce, the Salmonella count was decreased by 3 log10 CFU/mL at both 4 °C and 25 °C after applying phage LPST94 at an MOI of 1000 and 10,000, within a timescale of 48 h. The findings demonstrated that phage LPST94 is a promising candidate for biological control agents against pathogenic Salmonella and has the potential to be applied across different food matrices. Full article
(This article belongs to the Special Issue Phage Display—Perspectives and Translational Applications)
Show Figures

Figure 1

19 pages, 3274 KiB  
Article
Application of a Phage Cocktail for Control of Salmonella in Foods and Reducing Biofilms
by Md. Sharifull Islam, Yang Zhou, Lu Liang, Ishatur Nime, Kun Liu, Ting Yan, Xiaohong Wang and Jinquan Li
Viruses 2019, 11(9), 841; https://doi.org/10.3390/v11090841 - 10 Sep 2019
Cited by 137 | Viewed by 9267
Abstract
Salmonella contamination in foods and their formation of biofilms in food processing facility are the primary bacterial cause of a significant number of foodborne outbreaks and infections. Broad lytic phages are promising alternatives to conventional technologies for pathogen biocontrol in food matrices and [...] Read more.
Salmonella contamination in foods and their formation of biofilms in food processing facility are the primary bacterial cause of a significant number of foodborne outbreaks and infections. Broad lytic phages are promising alternatives to conventional technologies for pathogen biocontrol in food matrices and reducing biofilms. In this study, 42 Salmonella phages were isolated from environmentally-sourced water samples. We characterized the host range and lytic capacity of phages LPSTLL, LPST94 and LPST153 against Salmonella spp., and all showed a wide host range and broad lytic activity. Electron microscopy analysis indicated that LPSTLL, LPST94, and LPST153 belonged to the family of Siphoviridae, Ackermannviridae and Podoviridae, respectively. We established a phage cocktail containing three phages (LPSTLL, LPST94 and LPST153) that had broad spectrum to lyse diverse Salmonella serovars. A significant decrease was observed in Salmonella with a viable count of 3 log10 CFU in milk and chicken breast at either 25 °C or 4 °C. It was found that treatment with phage cocktail was able to significantly reduced biofilm on a 96-well microplate (44–63%) and on a stainless steel surface (5.23 to 6.42 log10). These findings demonstrated that the phage cocktail described in this study can be potentially used as a biological control agent against Salmonella in food products and also has the effect to reduce Salmonella formed biofilms. Full article
(This article belongs to the Special Issue Bacteriophages and Biofilms)
Show Figures

Figure 1

Back to TopTop